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Problem 2. It is true that the lebesgue integral is relatively invariant under dialiation so that
given f(z) is integrable so too is f(52). It is also true that 6¢ [ f(6z) = [ f(z). Now if we consider
the limit as § — 1, we obtain limd? [ f(6x) = lim [ f(6%) = [ f(z) so that ||f(6z) — f(z)|| = 0
as required.

Problem 5 a) To save tedious repetition, it is to be understood z,w € F. [§(z) — 5(y)| =
linflz — 2z|~infly — w|| < |inflz — 2 — y + w|| <inf(jz — y| + |w — zl) <inf(lz —y]) = |z — vy

as required.

b) Note that if y € F, () =0s0 I(x . 25 Now since F is closed the complement is
rf F

Je—yP?
open, there exists ¢y := 4¢ such that (z — €0, + €) € F°. Consider the interval A = [z, + €.
5(y) > 3¢ > € > |z — y| thus fA l < I(z). Also, f(z) > 0 so from the properties of non-negative

integrable functions, [, f(z) < f re f(). Ais a closed interval, and f(z) is riemann integral, and
SO fL f(z) = [T f(z). Consider limy e f“€ o yldy = lln]a: = yll = limp|In(35)| = Inoo = co.
Since I(z) is greater than that quantity, it is clear I(z) =

c) I(z fR - le dy. Note again that 6(y) = OVy € F so I(z) = ch . yP dy. Note too that
|l — yl > d(y) from the deﬁmton of & and since z € F. Thus I(z) < [, = =3 Suppose x is not
on the boundary of F, then 5 57 is bounded by some M, and so is the measure of F so then the

integral is clearly bounded by M % m(F*€). Simply noticing the set of {z} which are boundary
points is a set of measure zero, we conlude that I(z) < oo for a.e. x.

(Problem 7) f is a measurable function and so g := f* — f~ is also measurable and g(x) is strictly
non-negative and m(f) < m(g). Consider two sets £y = {z : 7 € R} and E, = {(z,y) : y = f(x)}.
Since By = R, it follows £ is measurable, and since f (x) is a measurable function, it follows
E = {(z,y) : x € Ey,(x,y) € By} =T, E € R is measurable by proposition 3.6. Further
more, m(E) = m(Ey)m(F,). Now m(Es) = m({(z,y) : y = g(x)}). We use theorem 3.2 to obtain
m(Eg Jzar fRdg X(z,9)dydz. Note that for each x the measure of y is zero; it is simply a point, so
we eventually obtain m(£;) = 0. Finally, by proposition 3.6, m(E) = m(E;)m(E,) = 0 as required.

(Problem 9) m(E,) = [ xp,. Alsoif xp, = 1, %f-) >1=xg, and if xg, =0, f(z) > 0= xp,
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thus, xg, < f—gik@ so by monotonicity of the integral, m(E,) = [xe. <[ i%f)« = L [ f(z) as
required.

(Problem 17) a) Since both functions are simple functions with a finite sum (up to s) they must
both be integrable. Suppose we fix x, then there exists a single integer n such that n <z < n+1.
Notice that we have a simple function, and the for all y such that y < n,y >n+2, f(z, y) =0s0

S £y = [y Jr @)Y + Jpri1 gz foy)dy = 1xan =1 xan = 0so [(f f(z,y)dy)dz =0

b) Fix y. Note that for the interval 0 < y < 1 occurs forn =0, n <y < n+ 1, and would occur
forn=—1,n+1<y <n-+1, but n> 0. Thus for the first interval, we have [ fY(z)dr = ao. For
subsequent intervals, the interval occurs for n +1 <y < n+2 at an n value one lower than the
same interval will occur for n < y < n+ 1. Thus for fixed y, y > 1, f[nn ) fU(z)dr = an — an_1.

Now we integrate over all y > 0 since it is zero otherwise. g(y) = [ f¥(z)dz is a simple function,
so its integral is given by D rogGn — an-1 + a0 = an = S a8 required.

¢) Notice that our simple function g(y) = ay, + a1 so for sufficient large n our integral is larger
than $°°°, s — € which fails the nth term test and diverges.

(Problem 21) a) By proposition 3.9, f(z — y) is measurable on R2¢ and the product of mea-
surable functions is also measurable, so we conclude f(z —y)g(y) is a measurable function.

b) By theorem 3.2, since our function is measurable, [p. [ou f(z — ¥)g(y) = Joza flz = v)g(y)
but both of these are integrable, and we may integrate first f(z—y) and, after noting the transla-
tion invariance of the obtained result, integrate again to obtain [ f(z—y)g(y) = [ f(z) [g(y) < oo

¢) By theorem 3.2, since our function is measurable, [pu [pa f(z —y)9(y) = Jgza f(z — y)g(y) but
both of these are integrable, and we may integrate first f(z — y) and, after noting the translation
invariance of the obtained result, integrate again to obtain [ fz—ygly) = [ f(x) [ gly) < oo.
(I don’t know how to do this one).

Q) |If * gllown = 1 [ fz = wa)daldy < [ [1f(@ = yllg(y)ldedy = [ I1f(z — »)lowsla)]

but the integral is translation invariant, so we have [1f(z = Dllueygly) = ) ewey * 191l ey
Finally, notice that if all functions are positive then the aboslute values become unnecessary and

we obtain ||f * gllme) = [[fllc@sllgllze

Problem 3. Given a sequence of functions fi(x) converge to f (r), by egarov there exists a set
A such that if = & A, [|[fe(z) — f(@)]| < € and m(A) < e It is true then that £ = {z :
|| fi(z) — f(z)]| > €} = A. But by definition m(A) < ¢, and so (—) is complete. The converse is
true. This is because the limiting function and f differ at most by a set of measure 0 in L, and so
their integrals must be identical.



