Math 354 Assignment 6 Professor Jakobson

Eric Kissel 260477928

December 3, 2012

Problem 2. It is true that the lebesgue integral is relatively invariant under dialiation so that given f(x) is integrable so too is $f(\delta x)$. It is also true that $\delta^d \int f(\delta x) = \int f(x)$. Now if we consider the limit as $\delta \to 1$, we obtain $\lim \delta^d \int f(\delta x) = \lim \int f(\delta x) = \int f(x)$ so that $||f(\delta x) - f(x)|| = 0$ as required.

Problem 5 a) To save tedious repetition, it is to be understood $z, w \in F$. $|\delta(x) - \delta(y)| = |\inf|x - z| - \inf|y - w|| \le |\inf|x - z - y + w|| \le \inf(|x - y| + |w - z|) \le \inf(|x - y|) = |x - y|$ as required.

- b) Note that if $y \in F$, $\int_F f(x) = 0$ so $I(x) = \int_{F^c} \frac{\delta(x)}{|x-y|^2}$. Now since F is closed the complement is open, there exists $\epsilon_0 := 4\epsilon$ such that $(x \epsilon_0, x + \epsilon_0) \in F^c$. Consider the interval $A = [x, x + \epsilon]$. $\delta(y) > 3\epsilon > \epsilon > |x-y|$ thus $\int_A \frac{1}{|x-y|} < I(x)$. Also, $f(x) \ge 0$ so from the properties of non-negative integrable functions, $\int_A f(x) \le \int_{F^c} f(x)$. A is a closed interval, and f(x) is riemann integral, and so $\int_a^L f(x) = \int_a^R f(x)$. Consider $\lim_{p \to x} \int_p^{x+\epsilon} \frac{1}{|x-y|} dy = |\ln|x-y|| = \lim_{p \to x} |\ln(\frac{\epsilon}{x-p})| = \ln \infty = \infty$. Since I(x) is greater than that quantity, it is clear $I(x) = \infty$.
- c) $I(x) = \int_{\mathbb{R}} \frac{\delta(y)}{|x-y|^2} dy$. Note again that $\delta(y) = 0 \forall y \in F$ so $I(x) = \int_{F^c} \frac{\delta(y)}{|x-y|^2} dy$. Note too that $|x-y| > \delta(y)$ from the definition of δ and since $x \in F$. Thus $I(x) \leq \int_{F^c} \frac{1}{|x-y|}$. Suppose x is not on the boundary of F, then $\frac{1}{|x-y|}$ is bounded by some M, and so is the measure of F^c so then the integral is clearly bounded by $M * m(F^c)$. Simply noticing the set of $\{x\}$ which are boundary points is a set of measure zero, we conclude that $I(x) < \infty$ for a.e. x.

(Problem 7) f is a measurable function and so $g:=f^+-f^-$ is also measurable and g(x) is strictly non-negative and $m(f) \leq m(g)$. Consider two sets $E_1 = \{x : x \in \mathbb{R}\}$ and $E_2 = \{(x,y) : y = f(x)\}$. Since $E_1 = \mathbb{R}$, it follows E_1 is measurable, and since f(x) is a measurable function, it follows $E = \{(x,y) : x \in E_1, (x,y) \in E_2\} = \Gamma$, $E \in \mathbb{R}^{d+1}$ is measurable by proposition 3.6. Further more, $m(E) = m(E_1)m(E_2)$. Now $m(E_2) = m(\{(x,y) : y = g(x)\})$. We use theorem 3.2 to obtain $m(E_2) = \int_{\mathbb{R}^{d_1}} \int_{\mathbb{R}^{d_2}} \chi_{(x,y)} dy dx$. Note that for each x the measure of y is zero; it is simply a point, so we eventually obtain $m(E_2) = 0$. Finally, by proposition 3.6, $m(E) = m(E_1)m(E_2) = 0$ as required.

(Problem 9)
$$m(E_{\alpha}) = \int \chi_{E_{\alpha}}$$
. Also if $\chi_{E_{\alpha}} = 1$, $\frac{f(x)}{\alpha} > 1 = \chi_{E_{\alpha}}$ and if $\chi_{E_{\alpha}} = 0$, $f(x) \geq 0 = \chi_{E_{\alpha}}$

thus, $\chi_{E_{\alpha}} \leq \frac{f(x)}{\alpha} \forall x$ so by monotonicity of the integral, $m(E_{\alpha}) = \int \chi_{E_{\alpha}} \leq \int \frac{f(x)}{\alpha} = \frac{1}{\alpha} \int f(x)$ as required.

(Problem 17) a) Since both functions are simple functions with a finite sum (up to s) they must both be integrable. Suppose we fix x, then there exists a single integer n such that $n \le x \le n+1$. Notice that we have a simple function, and the for all y such that y < n, y > n+2, f(x,y) = 0 so $\int f_x(y)dy = \int_{[n,n+1]} f_x(y)dy + \int_{[n+1,n+2]} f_x(y)dy = 1 * a_n - 1 * a_n = 0 \text{ so } \int (\int f(x,y)dy)dx = 0$

- b) Fix y. Note that for the interval $0 \le y \le 1$ occurs for n = 0, $n \le y \le n + 1$, and would occur for n = -1, $n + 1 \le y \le n + 1$, but $n \ge 0$. Thus for the first interval, we have $\int f^y(x)dx = a_0$. For subsequent intervals, the interval occurs for $n + 1 \le y \le n + 2$ at an n value one lower than the same interval will occur for $n \le y \le n + 1$. Thus for fixed y, y > 1, $\int_{[n,n+1]} f^y(x)dx = a_n a_{n-1}$. Now we integrate over all $y \ge 0$ since it is zero otherwise. $g(y) = \int f^y(x)dx$ is a simple function, so its integral is given by $\sum_{i=0}^{\infty} a_i a_{n-1} + a_0 = a_n = s$ as required.
- c) Notice that our simple function $g(y) = a_k + a_{k-1}$ so for sufficient large n our integral is larger than $\sum_{i=k}^{\infty} s \epsilon$ which fails the nth term test and diverges.

(Problem 21) a) By proposition 3.9, f(x-y) is measurable on \mathbb{R}^{2d} and the product of measurable functions is also measurable, so we conclude f(x-y)g(y) is a measurable function.

- b) By theorem 3.2, since our function is measurable, $\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x-y)g(y) = \int_{\mathbb{R}^{2d}} f(x-y)g(y)$ but both of these are integrable, and we may integrate first f(x-y) and, after noting the translation invariance of the obtained result, integrate again to obtain $\int f(x-y)g(y) = \int f(x) \int g(y) \leq \infty$.
- c) By theorem 3.2, since our function is measurable, $\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x-y)g(y) = \int_{\mathbb{R}^{2d}} f(x-y)g(y)$ but both of these are integrable, and we may integrate first f(x-y) and, after noting the translation invariance of the obtained result, integrate again to obtain $\int f(x-y)g(y) = \int f(x) \int g(y) \leq \infty$. (I don't know how to do this one).
- d) $||f * g||_{L(\mathbb{R}^d)} = \int |\int f(x-y)g(y)dx|dy \leq \int \int |f(x-y)||g(y)|dxdy = \int ||f(x-y)||_{L(\mathbb{R}^d)}|g(y)|$ but the integral is translation invariant, so we have $\int ||f(x-y)||_{L(\mathbb{R}^d)}g(y) = ||f||_{L(\mathbb{R}^d)} * ||g||_{L(\mathbb{R}^d)}$. Finally, notice that if all functions are positive then the aboslute values become unnecessary and we obtain $||f * g||_{L(\mathbb{R}^d)} = ||f||_{L(\mathbb{R}^d)}||g||_{L(\mathbb{R}^d)}$

Problem 3. Given a sequence of functions $f_k(x)$ converge to f(x), by egarov there exists a set A such that if $x \notin A$, $||f_k(x) - f(x)|| < \epsilon$ and $m(A) < \epsilon$. It is true then that $E = \{x : ||f_k(x) - f(x)|| > \epsilon\} = A$. But by definition $m(A) < \epsilon$, and so (\rightarrow) is complete. The converse is true. This is because the limiting function and f differ at most by a set of measure 0 in L_1 , and so their integrals must be identical.