Pr. Dmitry Jakobson Léo Raymond-Belzile, 260424542
Honours Analysis 3 - MATH 354 Assignment 6: due December 3rd

5. Suppose I is a closed set in R, whose complement has finite measure, and let § (z) denote the
distance from z to F, that is,

dr)=d(z,F)=inf{lz —y|:y € F}.

Consider

[(f)"—‘é——«é—(—@—u(iy.

x -yl

(a) Prove that ¢ is continuous, by showing that it satisfies the Lipschitz condition

0(z) = 6()| < |z ~y].

Solution
This was proven in Assignment 1, nevertheless here is the proof for completeness.

Proof Let € > 0 be given. The definition of infimum implies that for ¢ > 0,3a. € F
such that

(v £> o) (aaf c F) (gggd(x, F)+e> d(z,a0)>. 1)

By the triangle inequality (d(z,y) :— |z — y| being a distance), we have for ay,a9 € F
satisfying (1) for the given e and for the points y,  respectively that

d(z, F) <d(z,a1) < d(z,y) +d(y,a1) < d(z,y) + d(y, F) +¢
and similarly

d(y, I') < d(y,a) < d(z,y) +d(z,a2) < d(z,y) +d(z, F) +e.
Combining the two statements, we find that

|d(xz, F) — d(y, F)

<d(z,y) +e

where ¢ is arbitrary. Now, it is clear that from the definition of continuity, one can
take § = ¢ satisfies the requirements and so we conclude that for fixed F, d(z, F') is
a continuous function satisfying the Lipschitz condition, as the above condition can be
rewritten for the particular given metric as

0(z) = o(y)| < lv —yl.

(b) Show that I(z) = oc for each x ¢ F.



Solution
We get from the Lipschitz condition that 3¢ > 0 such that 0 < 2¢ < 8(y)

; e zdy ¢ dy.
Iz 2/ E— :E/ — =
(@) ae (T — y)? —¢ yf

taking the integral over a smaller set, and using the translation invariance of the Lebesgue
measure (that is making a change of variable (x—y) = y.). Since on the smaller interval
the integral diverges, then [(z) = o if z ¢ F.

Show that I(z) < oo for a.e. z € F.

Solution
Using the fact that 6(y) = 0 for each y € I, we want to show that

/Fﬂg }xéfy;,Qdy = /F/FG ’—;é%i-gdyda:

:/pc 5(y) (/F(:v-y)”2d$> dy

using Fubini in the last step. Now, fix y € FC and let z € F; in such case, we know that
|z — y| > 8(y) and thus we also have the inclusion " C D = {reR:jz—yl =0y}
We can thus enlarge the integral by taking the larger set D and so

/FC 3(y) (/F(I - y)MEd:c> dy < /FG 5(y) (/D :v"Qdm> ay

and we can now invoke Stein and Shakarchi, p.63, who show that for the function f (x)
z~ %1, (in our case (z — y)~2, which is nowhere zero since we assume z € Fy¢e FC), we
get the bound for

1

2
de < —r
/!:c~y!25(y) f(m) t= 6(y)

using the relative dilation-invariance and translation invariance of the Lebesgue measure.
The justification is explicited in the book, which I reproduce below for convenience,
consisting at using the compactness of the set I’ C, decomposed into sets

A ={z e R:2F6(y) < o — y| < 257 16(y)}
for y fixed and getting an approximation from above by a simple function g(x)
2% 0 (286(y)) *xa, (). The sets Ay are obtained from dilation of the sets A = {1
lr — y| < 2}. From there,

S ) S )
J o= > @) = A L wE)p

k=0

A

Coming back to our case, we get

1 5(y) o
/FC /F (x —y)? V= Jp 5(y) (%)

SR

by assumption.
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This work and the question are related on extensions of lemmas by Marcinkiewicz and
Fine, which was the work of Stein and Ostrow (1957).

Let I C RYx R, I = {(z,y) € R x R: y = f(2)}, and assume f is measurable on R%. Show
that I' is a measurable subset of R and m(I) = 0.

Solution

This resembles question 37 in the previous assignment, except for the notable exception that
now f is measurable rather than being continuous. Consider an interval of unit length, of the
foomyeR:y € L, = n,n+1)and wlog of generality suppose that f is positive (otherwise,
consider a partition of f = f* — f~ and cover the space accordingly) and finite-valued. Let
¢ > 0 be given. By Lusin’s theorem, we can find closed set F;i’”“ such that F£”> C F and
m(FE — Ff(”)} < £/2. such that fIan) is continuous. Using then uniform continuity on the
closed and bounded interval, then we can tile the unit interval with N different hypercubes of
length e = 27% . By absolute continuity, we have that there exists ¢, for each given & which
corresponds here to the base of each hypercube. Taking § = min{1/29N, 4.} given, then the
total hypervolume of the cover for Mgy is N x 245/2k < 2/2%. This holds for all k, thus
from this we infer that m(I'| F(’”) = 0, taking k — oc. Since our choice of partition of the real
line is countable, we can then using countable subadditivity to take

mT)=m | |JTNE™ | +m(n(E,\ F™))
nez

S m@AFM) + S m( N (B, \ FM))

nel nez

=0

IA

. . e n F

since each individual I' N F5< ) has measure zero for n € Z. Indeed, the sets F,, \ F has
measure 2°%°1 and we can infer that in each interval the measure is zero since £ can be
chosen arbitrarily small.

1 1 k—oo 0.

max  f(z)m(E, \ F') +1/28"' = max f(l);—]; + T

IGVEn\,Fs(n) xGEn\Fs(n)

Therefore, m(I') = 0. The measurability of I' in R4t} is immediate from Corollary 3.8; since f
is measurable on R? if and only if I" is measurable in R% xR and having the former gives us the
desired result. Indeed, we could construct one set with f(z) = g(z)—¢*(z) where the function
we consider A = {(z,y) e RIxR:0< y < f(2)) and 4* = {(z,y) e RIXR:0 <y < flz)).
Using the measurability, we would then get by linearity that

/ﬂyd flz)de = f\d glx) — g"(z)ldz = m(A) — m(A*) = 0.

Tchebychev inequality. Suppose f > 0, and f is integrable. If & > 0 and E, = {z: f(z) >
a}, prove that

: 1
m(E,) < g/f



Proof Recall that m(E,) = [ xg, . Since f(z) > a on E,, we have

/fﬁ/Eafﬁﬁé];Eﬂ ZO:'/XEQ =am(FE,).

5. Consider the function defined over R by

flx) =

V2 i<z <1,
0 otherwise

For a fixed enumeration {r,}>2, of the rationals Q, let
F(x) = Z 27" f(x —rn).
n=1

Prove that F is integrable, hence the series defining I converges for almost every z € R.
However, observe that this series is unbounded on every interval, and in fact, any function a
that agrees with " a.e. is unbounded in any interval.

Solution
Want to show that

F(z) = < 00 a.e. Lebesgue

k=

First, consider the sequence of function

2712 itz e (1/n,1]
gn(m) = .
0 ifax=0

agrees a.e.x with f(z). Also, we can use the translation invariance of f to deduce the equality
for any given translation by a rational. Given that gx(i/n,1), We get that the integral of f is

equal to
/O, 1 f(z)de = / gn(z)dr
( [1/n.1]

since we do not care about sets of measure zero. Moreover, since g,(x) is monotonically
increasing and positive, we can use Monotone convergence theorem to get

! 1
lim [ gulz)dr = lim 2 (l — /_.> =2

n=o0 J1/n vn

as the value of the integral. Using again Monotone convergence theorem in conjunction with
Corollary 1.10, since the series 27" f(x — 1,,) is measurable and positive for each n, we get

/i&k(fﬁ)dl‘ == i /(Zk(3?>d1
T k=1 b1 Y
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interchange of integral and summations. In our specific case, this translates to the following:

/F(ZL—/Z — [z ~7rn dl"“an/f(I"Tnd‘x““QZ 2(2-1)

=1

using the properties of geometric series. This shows that F is integrable and converges.
However, in any interval, we can using the density of the rationals Q) in the real find r, such
that f(z — ry) > N for any arbitrarily large K in the interval Ay = (r; — 27k - 21‘)
and the series is unbounded on any such interval. Yet, the series converge, indeed, recall
from the Borel-Cantelli lemma that if 3°7° , m(Ag) < oo, then m (oo, U2, Ax) = 0. We
have m(A,) = 27" and 3°°° | 2a, < oo, where a,, = 1/2" is used for convenience, as the
result holds more generally for convergent series. Therefore, m(lim sup,_, ., Ax) = 0 by Borel-

Cantelli. In fact, the set {z: f(z) = %} C QUlimsupy_,~ Ak := 5. The above holds if and
only if St {z: f(z) < oo};if 2 € SC, then 2 ¢ Q and z ¢ Mooy Uiey, Ak, so IN such that
Vn>Nzé¢ oy le this N, then }af — 71 > ap = Qk and we get that

> 1

F(z) = Z —
n=1 2 f(‘}j - T”)
S S S S
N
< Z 577 < 142 < oo
eyt

as EYIL}I %\/;lj is finite unless = r,, for some m, but this equality is true only on a set
of measure zero (rationals are countable), entailing that = ¢ (U5, 5=, which in turn imply
flz) <oosox ¢ {z: f(x) =oc}. Finally, by the contrapositive, the set {z : f(z) = o0} C

U Mier, Ak, which has measure zero.

Suppose [ is defined on R? as follows: f(x,y) = a, ifn <z <n+landn <y < n+l,(n>0);
fle,y) ==anifn<z<n+landn-+1<y<n+2/(n>0); while f(z,y) = 0 elsewhere.
Here a,, = >« br with {bx} a positive sequence such that 3 7%, b = s < 0.

(a) Verify that each slice f¥ and f¥ is integrable. Also for all z, [ f.(y)dy = 0, and hence
J(f Fla, y)dy)de = 0.
Solution

A picture helps here.
Clearly, each slice is integrable since the function is a simple function. For z ¢ R

in some interval F,, = {& : 2 € [n,n+ 1)}, we have fY(x) = —a,XE, + Gnt1XE, .1



which is integrable by the definition of Lebesgue integral, since the function is simple.
We have for y € [0,1) that f¥(x) = ag (see picture). Then, for f.(y) we get a similar
result, namely that if for n > 0, A, = {y : y € [n,n + 1)} and this time for any
given z, [ f(y) = anXxA4, — GnXA,,, by definition since the measure of the cubes (or
slices) are equal. This latter part is zero, since a, and —a, cancel each other. Since
[ [(Wdy = anxa, — anxa,., = 0, then [([ fo(y)dy)dz = [Odr = 0. On the other
hand, since a, — a, 1 = b, we get

J ([ rrae) ar= i 3 voxs, =5

(b) However, [ f¥(z)dz = ag if 0 <y < 1, and [ f¥(z)dr = ap, —a, 1 ifn <y <n+1 with
n > 1. Hence y = [ f¥(z)dx is integrable on (0, 00) and

/ (/ f(;c.y)d:r) dy = s.
This was explained above.

(c) Note that [z g |f(z,y)ldzdy = occ.

Solution

The above explanation show that Fubini theorem does not apply, and so we must con-
clude that [ [|f(z,y)ldedy = [p r2> i—obr = 2> 00> k-0br = 00 as each term of
the sequence {b;} appears infinitely often and the Lebesgue integral of a constant is not
finite (and doesn’t exist).

19. Suppose [ is integrable on R%. For each a > 0, let E, = {z : |f(z)| > a}. Prove that

./Rd |f(z)|dz = /OOO m(E,)da.

Solution
Given f > 0 integrable, we can write

[*{d f(z)dr = /OOO mix € E, : f(z) > a}da

If E,, is measurable, we can write [, x5, (@)do = m(E,). Then, since f(x) = I X[0.f(2)) (@) dex
as a function of o, we get as f € L'(R?) that Fubini-Tonelli theorem applies and so

' / f(l)dl = / / X[o_,f@)}dozdr

d
N /0 ( / X{D-ﬂm](a)dx) do

= /% miz: flz) > aldt
0

_ / Y (E.)da
0

since X (2 (@) is one only if o < f(x). This proves the result.
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21. Suppose that f and g are measurable functions on R<.

(a) Prove that f(z — y)g(y) are measurable on R%?
Solution
From the definition of measurable functions in chapter 1, the function f is measurable
on ECRYif VaeR, the set

S ~oca)) ={z € F: flz) <a)

is measurable. First, we show that the functions f(z),g(y) are measurable in R*?. By
Corollary 3.7, we know that for [ measurable on R?, then f(x,y) = {(z,y) € RY x R¢ ;
flz,y) < a} is measurable. We get similar result for glz,y) = gly j). Using translation
invariance of the Lebesgue measure, we have that f(z — y) = f(J: y) is measurable
(bae Proposition 3.9). Now, from chapter 1, by property 5, we have measurability of

x -1 and 7*(y) and the product of ﬁlnctlonb is also measurable, since one can
Y p g

wnte fi= Z (f +§)? — —(f - §)?]. These proposition follow by translation-invariance of

the Lebesgue measure.

(b) Show that if f and g are integrable on R?, then f(z — y)g(y) is integrable on R?%%,

Solution
Using integrability of [ and ¢, we find as f(z — y)g(y) is measurable that

/H.{d /@d [/ = y)g(y)ldzdy < fRd /129 (w)ldy

=1 fllzillgllzr < oo

and so by Fubini theorem, is integrable on the product space. Note that we can also
interchange limits. (f % g) € LY(R?) and || f * gl ;2 < [Ifllz: gl

(¢) Recall the definition of the convolution of f and g given by
(f =g)(: / J(x = y)g(y)dy.

Show that f x g is well-defined for a.e. z (that is, f(z —y)g(y) is integrable on R? for

Solution

[ Lt =vewavde = [ [ 1= pgty)dzay

:/Edg(y) /d f(z)dzdy
- (/ f(‘r)d'f) </9(y)dy>

using Fubini-Tonelli theorem, the translation invariance of the Lebesgue integral. Also,

/ /fl’“‘/(J(ﬂjdydz._//f 9(z — y)dydz
= A I(y) (/1 g(z — ;y)d:r> dy



(d) Show that f =g is integrable whenever [ and g are integrable, and that

If*g

with equality if f and g are non-negative.

pirey < I prma gl gay,

8

Solution
Again, repetition of the above, this time with absolute values.

17 * gl e = [zd /»v |/ (x = y)g(y)|dyde
< [ [0 = wlgtw)ldzdy
Rd JR4
= [ 1ol [, 17 = ldzdy
R4 R

= [ 9@ sy
K
= 1l L2 (reyllg]

Li(R4) < 00

where the first line is by definition, the second uses the triangle inequality for functions
and Fubini theorem. Clearly, we have equality of | f(z—y)g(v)| = |f(x—y)g()] if £(),90)
are a.e. positive.

(e) The Fourier transform of an integrable function f is defined by
f)= | [flx)e?™ iz,
Rd

Check that f is bounded and is a continuous function of £. Prove that each £ one has

F(&)ae).

e —

(f *9)(&)

f

Solution
Denote for simplicity (f * ¢)(&) = h(£), then

;\l(f) e [‘d }Z(IL’)E*Q“’Tismd;p

= / {/ f(l“ — U)Q(U)dy} G"’ng‘rdg;
JRd rd
= Ld 9(y) [wd [z — y)e STy g gy

I
o
—
&2
N

m n
w
=
o
1y
@
TN
£,

Sy
T
=3
|
«
p——
o

v
3

£
13
jo

2

N
=,
=

= f(€)§(¢)

upon making the change of variable z = # — y,dz = dz. Now, for boundedness, since
from FEuler formula

e = | cos(2néx) + isin(2wéx)| < 2




By the triangle inequality,

% f(r)rz”l‘fdr{ < Ef(x)e"gm?gd:r{

|/ ma Jral |
< [ 1@ |2
32/ f(z)]dr < oc

. . 1
since by assumption f(x) € L'(R%).
For continuity, we use the sequential definition of continuity, letting &, be defined as a
sequence of points &, — € as n — oo, Now

if(fn) - f(f)] = /M f(lf)(g"’zﬂ'?:gnl' . C/M'Z’;Ti&l‘)d:r
< [ 7)o e - oy

dr

using the triangle inequality. Since the function inside the integral; is dominated by
2|| fllz1, we can use the Dominated convergence theorem: thus

: 7 _F o , = 2mibnx _ —2milw
Jim [ f(8n) = (&) Sntggoéd | f(2)] ](c e )| dx
_ : —2mifnx __  —2mifx o
= [ 1@ Jim e e 2 dr = 0

which proves continuity. This completes the proof of (e).

22. Prove that if f € L*(R%) and
f&) = [ ra)e =,

then f(€) — 0 as |€| — 00. (This is the Riemann-Lebesgue lemma).

Hint: Write (&) = § Jga [f(2) — f(2 — €)] e 2™ dz, where ¢ = %é? and use Proposition
Proof Using the hint, we first start with f(f) which we translate by a factor of ¢/. Since
the Lebesgue integral is invariant under translation, we get that

2112
c 2
1 ¢ - omig?
N / [ (”E Y. 2) e e A dy
Jwa 2 |¢]
| ¢ o
:~/ fle—525 )€ AT
JRd 2 1€l
since €™ = cos(m) +isin(m) = —1 using Euler’s identity. Thus, since the above formulation,

which I label f*(£) is equal to the original formulation, we can use the hint and rewrite it in
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terms of

L, x N
f&) = 515 - 7€)

= ; o Slz) = flz - f’)}t?“i‘zmgf{fzt

So we have using the triangle inequality that

:}‘}/ @) = fla =€) " da

1 e
S “/ - E/)éewzn?,l?f (1‘,)3

2 Jpe

1 o

5/ — flz =N e 7™ da

L ¢
— —== | dz

/ /) - (‘E 2 >} !
which equals || f(z) — f (.’E — %%) 1. Now, using Proposition 2.5, since we can write the
translation & = wQ-ELy that goes to zero as |¢| — oo, we infer that || f(z)—f (= ( %—%) I —

0 and as a consequence, from our definition, that f (&) — 0. |

10



