5. Suppose F is a closed set in \mathbb{R} , whose complement has finite measure, and let $\delta(x)$ denote the distance from x to F, that is,

$$\delta(x) = d(x, F) = \inf\{|x - y| : y \in F\}.$$

Consider

$$I(x) = \int_{\mathbb{R}} \frac{\delta(y)}{|x - y|^2} dy.$$

(a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condition

$$|\delta(x) - \delta(y)| \le |x - y|.$$

Solution

This was proven in Assignment 1, nevertheless here is the proof for completeness.

Proof Let $\varepsilon > 0$ be given. The definition of infimum implies that for $\varepsilon > 0$, $\exists a_{\varepsilon} \in F$ such that

$$\left(\forall \varepsilon > 0\right) \left(\exists a_{\varepsilon} \in F\right) \left(\inf_{a \in F} d(x, F) + \varepsilon > d(x, a_{0})\right). \tag{1}$$

By the triangle inequality (d(x,y):=|x-y|) being a distance), we have for $a_1,a_2\in F$ satisfying (1) for the given ε and for the points y,x respectively that

$$d(x, F) \le d(x, a_1) \le d(x, y) + d(y, a_1) \le d(x, y) + d(y, F) + \varepsilon$$

and similarly

$$d(y, F) \le d(y, a_2) \le d(x, y) + d(x, a_2) \le d(x, y) + d(x, F) + \varepsilon.$$

Combining the two statements, we find that

$$|d(x,F) - d(y,F)| \le d(x,y) + \varepsilon$$

where ε is arbitrary. Now, it is clear that from the definition of continuity, one can take $\delta \equiv \varepsilon$ satisfies the requirements and so we conclude that for fixed F, d(x,F) is a continuous function satisfying the Lipschitz condition, as the above condition can be rewritten for the particular given metric as

$$|\delta(x) - \delta(y)| \le |x - y|.$$

(b) Show that $I(x) = \infty$ for each $x \notin F$.

Solution

We get from the Lipschitz condition that $\exists \varepsilon > 0$ such that $0 \le 2\varepsilon \le \delta(y)$

$$I(x) \ge \int_{x-\varepsilon}^{x+\varepsilon} \frac{\varepsilon dy}{(x-y)^2} = \varepsilon \int_{-\varepsilon}^{\varepsilon} \frac{dy_*}{y_*^2} = \infty$$

taking the integral over a smaller set, and using the translation invariance of the Lebesgue measure (that is making a change of variable $(x-y)=y_*$). Since on the smaller interval the integral diverges, then $I(x)=\infty$ if $x\notin F$.

(c) Show that $I(x) < \infty$ for a.e. $x \in F$.

Solution

Using the fact that $\delta(y) = 0$ for each $y \in F$, we want to show that

$$\int_{F} \int_{\mathbb{R}} \frac{\delta(y)}{|x-y|^{2}} dy = \int_{F} \int_{F^{\mathbb{C}}} \frac{\delta(y)}{|x-y|^{2}} dy dx$$
$$= \int_{F^{\mathbb{C}}} \delta(y) \left(\int_{F} (x-y)^{-2} dx \right) dy$$

using Fubini in the last step. Now, fix $y \in F^{\mathbb{C}}$ and let $x \in F$; in such case, we know that $|x - y| \ge \delta(y)$ and thus we also have the inclusion $F \subset D := \{x \in \mathbb{R} : |x - y| \ge \delta(y)\}$. We can thus enlarge the integral by taking the larger set D and so

$$\int_{F^{\complement}} \delta(y) \left(\int_{F} (x-y)^{-2} dx \right) dy \leq \int_{F^{\complement}} \delta(y) \left(\int_{D} x^{-2} dx \right) dy$$

and we can now invoke Stein and Shakarchi, p.63, who show that for the function $f(x) = x^{-d-1}$, (in our case $(x-y)^{-2}$, which is nowhere zero since we assume $x \in F, y \in F^{\complement}$), we get the bound for

$$\int_{|x-y| > \delta(y)} f(x) dx \le \frac{2}{\delta(y)}$$

using the relative dilation-invariance and translation invariance of the Lebesgue measure. The justification is explicited in the book, which I reproduce below for convenience, consisting at using the compactness of the set F^{\complement} , decomposed into sets

$$A_k = \{x \in \mathbb{R} : 2^k \delta(y) < |x - y| \le 2^{k+1} \delta(y)\}$$

for y fixed and getting an approximation from above by a simple function $g(x) = \sum_{k=0}^{\infty} (2^k \delta(y))^{-2} \chi_{A_k}(x)$. The sets A_k are obtained from dilation of the sets $A = \{1 \leq |x-y| < 2\}$. From there,

$$\int g = \sum_{k=0}^{\infty} \frac{m(A_k)}{(2^k \delta(y))^2} = m(A) \sum_{k=0}^{\infty} \frac{2^k \delta(y)}{(2^k \delta(y))^2}$$

Coming back to our case, we get

$$\int_{F^{\complement}} \int_{F} \frac{1}{(x-y)^{2}} dx dy \leq \int_{F^{\complement}} 2 \frac{\delta(y)}{\delta(y)} = 2 \int_{\mathbb{R}} \chi_{F^{\complement}} = 2m(F^{\complement}) < \infty$$

by assumption.

This work and the question are related on extensions of lemmas by Marcinkiewicz and Fine, which was the work of Stein and Ostrow (1957).

7. Let $\Gamma \subset \mathbb{R}^d \times \mathbb{R}$, $\Gamma = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : y = f(x)\}$, and assume f is measurable on \mathbb{R}^d . Show that Γ is a measurable subset of \mathbb{R}^{d+1} , and $m(\Gamma) = 0$.

Solution

This resembles question 37 in the previous assignment, except for the notable exception that now f is measurable rather than being continuous. Consider an interval of unit length, of the form $y \in \mathbb{R}$: $y \in E_n := [n, n+1)$ and wlog of generality suppose that f is positive (otherwise, consider a partition of $f = f^+ - f^-$ and cover the space accordingly) and finite-valued. Let $\varepsilon > 0$ be given. By Lusin's theorem, we can find closed set $F_{\varepsilon}^{(n)}$ such that $F_{\varepsilon}^{(n)} \subset E$ and $m(E - F_{\varepsilon}^{(n)}) \le \varepsilon/2$. such that $f|_{F_{\varepsilon}^{(n)}}$ is continuous. Using then uniform continuity on the closed and bounded interval, then we can tile the unit interval with N different hypercubes of length $\varepsilon = 2^{-k}$,. By absolute continuity, we have that there exists δ_{ε} for each given ε which corresponds here to the base of each hypercube. Taking $\delta = \min\{1/2^d N, \delta_{\varepsilon}\}$ given, then the total hypervolume of the cover for $\Gamma|_{[n,n+1]}$ is $N \times 2^d \delta/2^k \le 2/2^k$. This holds for all k, thus from this we infer that $m(\Gamma|_{F_{\varepsilon}^{(n)}}) = 0$, taking $k \to \infty$. Since our choice of partition of the real line is countable, we can then using countable subadditivity to take

$$m(\Gamma) = m\left(\bigcup_{n \in \mathbb{Z}} \Gamma \cap F_{\varepsilon}^{(n)}\right) + m(\Gamma \cap (E_n \setminus F_{\varepsilon}^{(n)}))$$

$$\leq \sum_{n \in \mathbb{Z}} m(\Gamma \cap F_{\varepsilon}^{(n)}) + \sum_{n \in \mathbb{Z}} m(\Gamma \cap (E_n \setminus F_{\varepsilon}^{(n)}))$$

$$= 0$$

since each individual $\Gamma \cap F_{\varepsilon}^{(n)}$ has measure zero for $n \in \mathbb{Z}$. Indeed, the sets $E_n \setminus F_{\varepsilon}^n$ has measure 2^{-k-1} and we can infer that in each interval the measure is zero since ε can be chosen arbitrarily small.

$$\max_{x \in E_n \setminus F_{\varepsilon}^{(n)}} f(x) m(E_n \setminus F_{\varepsilon}^{(n)}) + 1/2^{k-1} = \max_{x \in E_n \setminus F_{\varepsilon}^{(n)}} f(x) \frac{1}{2^k} + \frac{1}{2^{k-1}} \xrightarrow{k \to \infty} 0.$$

Therefore, $m(\Gamma) = 0$. The measurability of Γ in \mathbb{R}^{d+1} is immediate from Corollary 3.8; since f is measurable on \mathbb{R}^d if and only if Γ is measurable in $\mathbb{R}^d \times \mathbb{R}$ and having the former gives us the desired result. Indeed, we could construct one set with $f(x) = g(x) - g^*(x)$ where the function we consider $\mathcal{A} = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} : 0 \le y \le f(x)\}$ and $\mathcal{A}^* = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} : 0 \le y < f(x)\}$. Using the measurability, we would then get by linearity that

$$\int_{\mathbb{R}^d} f(x)dx = \int_{\mathbb{R}^d} [g(x) - g^*(x)]dx = m(\mathcal{A}) - m(\mathcal{A}^*) = 0.$$

9. Tchebychev inequality. Suppose $f \ge 0$, and f is integrable. If $\alpha > 0$ and $E_{\alpha} = \{x : f(x) > \alpha\}$, prove that

$$m(E_{\alpha}) \leq \frac{1}{\alpha} \int f.$$

Proof Recall that $m(E_{\alpha}) = \int \chi_{E_{\alpha}}$. Since $f(x) > \alpha$ on E_{α} , we have

$$\int f \le \int_{E_{\alpha}} f \le \alpha \int_{E_{\alpha}} = \alpha \int \chi_{E_{\alpha}} = \alpha m(E_{\alpha}).$$

15. Consider the function defined over \mathbb{R} by

$$f(x) = \begin{cases} x^{-1/2} & \text{if } 0 < x < 1, \\ 0 & \text{otherwise} \end{cases}$$

For a fixed enumeration $\{r_n\}_{n=1}^{\infty}$ of the rationals \mathbb{Q} , let

$$F(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n).$$

Prove that F is integrable, hence the series defining F converges for almost every $x \in \mathbb{R}$. However, observe that this series is unbounded on every interval, and in fact, any function \tilde{F} that agrees with F a.e. is unbounded in any interval.

Solution

Want to show that

$$F(x) = \sum_{n=1}^{\infty} \frac{2^{-n}}{\sqrt{|x-r_n|}} < \infty$$
 a.e. Lebesgue

First, consider the sequence of function

$$g_n(x) = \begin{cases} x^{-1/2} & \text{if } x \in (1/n, 1] \\ 0 & \text{if } x = 0 \end{cases}$$

agrees a.e.x with f(x). Also, we can use the translation invariance of f to deduce the equality for any given translation by a rational. Given that $g\chi_{(1/n,1]}$, we get that the integral of f is equal to

$$\int_{0}^{1} (0,1]f(x)dx = \int_{[1/n,1]}^{1} g_n(x)dx$$

since we do not care about sets of measure zero. Moreover, since $g_n(x)$ is monotonically increasing and positive, we can use Monotone convergence theorem to get

$$\lim_{n \to \infty} \int_{1/n}^{1} g_n(x) dx = \lim_{n \to \infty} 2\left(1 - \frac{1}{\sqrt{n}}\right) = 2$$

as the value of the integral. Using again Monotone convergence theorem in conjunction with Corollary 1.10, since the series $2^{-n}f(x-r_n)$ is measurable and positive for each n, we get

$$\int \sum_{k=1}^{\infty} a_k(x) dx = \sum_{k=1}^{\infty} \left[\int a_k(x) dx \right]$$

interchange of integral and summations. In our specific case, this translates to the following:

$$\int F dx = \int \sum_{n=1}^{\infty} \frac{1}{2^n} f(x - r_n) dx = \sum_{n=1}^{\infty} \frac{1}{2^n} \int f(x - r_n) dx = 2 \sum_{n=1}^{\infty} \frac{1}{2^n} = 2(2 - 1)$$

using the properties of geometric series. This shows that F is integrable and converges. However, in any interval, we can using the density of the rationals $\mathbb Q$ in the real find r_k such that $f(x-r_k)>N$ for any arbitrarily large K in the interval $A_k=(r_k-2^{-k},r_k+2^{-k})$ and the series is unbounded on any such interval. Yet, the series converge, indeed, recall from the Borel-Cantelli lemma that if $\sum_{k=1}^{\infty} m(A_k) < \infty$, then $m(\bigcup_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) = 0$. We have $m(A_n) = 2^{-n+1}$ and $\sum_{n=1}^{\infty} 2a_n < \infty$, where $a_n = 1/2^n$ is used for convenience, as the result holds more generally for convergent series. Therefore, $m(\limsup_{k\to\infty} A_k) = 0$ by Borel-Cantelli. In fact, the set $\{x: f(x) = \infty\} \subset \mathbb Q \cup \limsup_{k\to\infty} A_k := S$. The above holds if and only if $S^{\complement} \subset \{x: f(x) < \infty\}$; if $x \in S^{\complement}$, then $x \notin \mathbb Q$ and $x \notin \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$, so $\exists N$ such that $\forall n \geq N, x \notin \bigcup_{k=N}^{\infty}$. Fix this N, then $|x-r_k| \geq a_k = \frac{1}{2^k}$ and we get that

$$F(x) = \sum_{n=1}^{\infty} \frac{1}{2^n f(x - r_n)}$$

$$= \sum_{n=1}^{N-1} \frac{1}{2^n} \frac{1}{\sqrt{x - r_n}} + \sum_{n=N}^{\infty} \frac{1}{2^n \sqrt{x - r_n}}$$

$$\leq \sum_{n=N}^{\infty} \frac{1}{2^{n/2}} < 1 + \sqrt{2} < \infty$$

as $\sum_{n=1}^{N-1} \frac{1}{2^n} \frac{1}{\sqrt{x-r_n}}$ is finite unless $x=r_m$ for some m, but this equality is true only on a set of measure zero (rationals are countable), entailing that $x \notin \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty}$ which in turn imply $f(x) < \infty$ so $x \notin \{x : f(x) = \infty\}$. Finally, by the contrapositive, the set $\{x : f(x) = \infty\} \subset \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$, which has measure zero.

- 17. Suppose f is defined on \mathbb{R}^2 as follows: $f(x,y) = a_n$ if $n \le x < n+1$ and $n \le y < n+1, (n \ge 0)$; $f(x,y) = -a_n$ if $n \le x < n+1$ and $n+1 \le y < n+2, (n \ge 0)$; while f(x,y) = 0 elsewhere. Here $a_n = \sum_{k \le n} b_k$ with $\{b_k\}$ a positive sequence such that $\sum_{k=0}^{\infty} b_k = s < \infty$.
 - (a) Verify that each slice f^y and f^x is integrable. Also for all x, $\int f_x(y)dy = 0$, and hence $\int (\int f(x,y)dy)dx = 0$.

Solution

A picture helps here.

Clearly, each slice is integrable since the function is a simple function. For $x \in \mathbb{R}$

in some interval $E_n = \{x : x \in [n, n+1)\}$, we have $f^y(x) = -a_n \chi_{E_n} + a_{n+1} \chi_{E_{n+1}}$,

which is integrable by the definition of Lebesgue integral, since the function is simple. We have for $y \in [0,1)$ that $f^y(x) = a_0$ (see picture). Then, for $f_x(y)$ we get a similar result, namely that if for $n \geq 0$, $A_n = \{y : y \in [n, n+1)\}$ and this time for any given x, $\int_x f(y) = a_n \chi_{A_n} - a_n \chi_{A_{n+1}}$ by definition since the measure of the cubes (or slices) are equal. This latter part is zero, since a_n and $-a_n$ cancel each other. Since $\int f_x(y) dy = a_n \chi_{A_n} - a_n \chi_{A_{n+1}} = 0$, then $\int (\int f_x(y) dy) dx = \int 0 dx = 0$. On the other hand, since $a_n - a_{n-1} = b_n$, we get

$$\int \left(\int f^{y}(x)dx \right) dy = \lim_{n \to \infty} \sum_{i=0}^{n} b_{n} \chi_{E_{n}} = s$$

(b) However, $\int f^y(x)dx = a_0$ if $0 \le y < 1$, and $\int f^y(x)dx = a_n - a_{n-1}$ if $n \le y < n+1$ with $n \ge 1$. Hence $y \mapsto \int f^y(x)dx$ is integrable on $(0, \infty)$ and

$$\int \left(\int f(x,y)dx \right) dy = s.$$

This was explained above.

(c) Note that $\int_{\mathbb{R}\times\mathbb{R}} |f(x,y)| dxdy = \infty$.

Solution

The above explanation show that Fubini theorem does not apply, and so we must conclude that $\int \int |f(x,y)| dxdy = \int_{\mathbb{R}\times\mathbb{R}} 2\sum_{k=0}^n b_k = 2\sum_{n=0}^\infty \sum_{k=0}^n b_k = \infty$ as each term of the sequence $\{b_k\}$ appears infinitely often and the Lebesgue integral of a constant is not finite (and doesn't exist).

19. Suppose f is integrable on \mathbb{R}^d . For each $\alpha > 0$, let $E_\alpha = \{x : |f(x)| > \alpha\}$. Prove that

$$\int_{\mathbb{R}}^{d} |f(x)| dx = \int_{0}^{\infty} m(E_{\alpha}) d\alpha.$$

Solution

Given $f \geq 0$ integrable, we can write

$$\int_{\mathbb{R}^d} f(x)dx = \int_0^\infty m\{x \in E_\alpha : f(x) > \alpha\}d\alpha$$

If E_{α} is measurable, we can write $\int_{\mathbb{R}} \chi_{E_{\alpha}}(\alpha) d\alpha = m(E_{\alpha})$. Then, since $f(x) = \int_{0}^{\infty} \chi_{[0,f(x)]}(\alpha) d\alpha$ as a function of α , we get as $f \in L^{1}(\mathbb{R}^{d})$ that Fubini-Tonelli theorem applies and so

$$\int_{\mathbb{R}^d} f(x)dx = \int_{\mathbb{R}^d} \int_0^\infty \chi_{[0,f(x)]} d\alpha dx$$

$$= \int_0^\infty \left(\int_{\mathbb{R}} \chi_{[0,f(x)]}(\alpha) dx \right) d\alpha$$

$$= \int_0^\infty m\{x : f(x) > \alpha\} dt$$

$$= \int_0^\infty m(E_\alpha) d\alpha$$

since $\chi_{[0,f(x)]}(\alpha)$ is one only if $\alpha < f(x)$. This proves the result.

- 21. Suppose that f and g are measurable functions on \mathbb{R}^d .
 - (a) Prove that f(x-y)g(y) are measurable on \mathbb{R}^{2d} .

Solution

From the definition of measurable functions in chapter 1, the function f is measurable on $E \subset \mathbb{R}^d$, if $\forall a \in \mathbb{R}$, the set

$$f^{-1}([-\infty, a)) = \{x \in E : f(x) < a\}$$

is measurable. First, we show that the functions f(x), g(y) are measurable in \mathbb{R}^{2d} . By Corollary 3.7, we know that for f measurable on \mathbb{R}^d , then $\tilde{f}(x,y)=\{(x,y)\in\mathbb{R}^d\times\mathbb{R}^d: \tilde{f}(x,y)< a\}$ is measurable. We get similar result for $\tilde{g}(x,y)=g(y)$. Using translation invariance of the Lebesgue measure, we have that $f(x-y)=\tilde{f}(x,y)$ is measurable (see Proposition 3.9). Now, from chapter 1, by property 5, we have measurability of $\tilde{f}^2(x-y)$ and $\tilde{g}^2(y)$ and the product of functions $\tilde{f}\tilde{g}$ is also measurable, since one can write $\tilde{f}\tilde{g}=\frac{1}{4}[(\tilde{f}+\tilde{g})^2-(\tilde{f}-\tilde{g})^2]$. These proposition follow by translation-invariance of the Lebesgue measure.

(b) Show that if f and g are integrable on \mathbb{R}^d , then f(x-y)g(y) is integrable on \mathbb{R}^{2d} .

Solution

Using integrability of f and g, we find as f(x-y)g(y) is measurable that

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| dx dy \le \int_{\mathbb{R}^d} ||f||_{L^1} |g(y)| dy$$
$$= ||f||_{L^1} ||g||_{L^1} < \infty.$$

and so by Fubini theorem, is integrable on the product space. Note that we can also interchange limits. $(f*g) \in L^1(\mathbb{R}^{2d})$ and $||f*g||_{L^1} \leq ||f||_{L^1}||g||_{L^1}$

(c) Recall the definition of the convolution of f and g given by

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y)dy.$$

Show that f * g is well-defined for a.e. x (that is, f(x - y)g(y) is integrable on \mathbb{R}^d for a.e. x).

Solution

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x - y)g(y)dydx = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x - y)g(y)dxdy$$
$$= \int_{\mathbb{R}^d} g(y) \int_{\mathbb{R}^d} f(x)dxdy$$
$$= \left(\int_{\mathbb{R}^d} f(x)dx\right) \left(\int_{\mathbb{R}^d} g(y)dy\right)$$

using Fubini-Tonelli theorem, the translation invariance of the Lebesgue integral. Also,

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x - y)g(y)dydx = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(y)g(x - y)dydx$$
$$= \int_{\mathbb{R}^d} f(y) \left(\int_{\mathbb{R}^d} g(x - y)dx \right) dy$$

(d) Show that f * g is integrable whenever f and g are integrable, and that

$$||f * g||_{L^1(\mathbb{R}^d)} \le ||f||_{L^1(\mathbb{R}^d)} ||g||_{L^1(\mathbb{R}^d)},$$

with equality if f and g are non-negative.

Solution

Again, repetition of the above, this time with absolute values.

$$||f * g||_{L^{1}(\mathbb{R}^{d})} = \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} |f(x - y)g(y)| dy dx$$

$$\leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} |f(x - y)| |g(y)| dx dy$$

$$= \int_{\mathbb{R}^{d}} |g(y)| \int_{\mathbb{R}^{d}} |f(x - y)| dx dy$$

$$= \int_{\mathbb{R}^{d}} |g(y)| ||f||_{L^{1}(\mathbb{R}^{d})} dy$$

$$= ||f||_{L^{1}(\mathbb{R}^{d})} ||g||_{L^{1}(\mathbb{R}^{d})} < \infty$$

where the first line is by definition, the second uses the triangle inequality for functions and Fubini theorem. Clearly, we have equality of |f(x-y)g(y)| = |f(x-y)g(y)| if f(), g() are a.e. positive.

(e) The Fourier transform of an integrable function f is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi i x \cdot \xi} dx.$$

Check that \hat{f} is bounded and is a continuous function of ξ . Prove that each ξ one has

$$\widehat{(f * g)}(\xi) = \hat{f}(\xi)\hat{g}(\xi).$$

Solution

Denote for simplicity $(f * g)(\xi) \equiv h(\xi)$, then

$$\begin{split} \hat{h}(\xi) &= \int_{\mathbb{R}^d} h(x) e^{-2\pi i \xi x} dx \\ &= \int_{\mathbb{R}^d} \left[\int_{\mathbb{R}^d} f(x-y) g(y) dy \right] e^{-2\pi i \xi x} dx \\ &= \int_{\mathbb{R}^d} g(y) \int_{\mathbb{R}^d} f(x-y) e^{-2\pi i \xi z} e^{-2\pi i \xi y} dz dy \\ &= \int_{\mathbb{R}^d} g(y) e^{-2\pi i \xi y} \left(\int_{\mathbb{R}^d} f(x-y) e^{-2\pi i \xi z} dz \right) dy \\ &= \hat{f}(\xi) \hat{g}(\xi) \end{split}$$

upon making the change of variable z = x - y, dz = dx. Now, for boundedness, since from Euler formula

$$|e^{i\xi 2\pi x}| = |\cos(2\pi\xi x) + i\sin(2\pi\xi x)| \le 2$$

By the triangle inequality,

$$\left| \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \xi} dx \right| \le \int_{\mathbb{R}^d} \left| f(x) e^{-2\pi i x \xi} dx \right|$$

$$\le \int_{\mathbb{R}^d} |f(x)| \left| e^{-2\pi i x \xi} dx \right|$$

$$\le 2 \int_{\mathbb{R}^d} |f(x)| dx < \infty$$

since by assumption $f(x) \in L^1(\mathbb{R}^d)$.

For continuity, we use the sequential definition of continuity, letting ξ_n be defined as a sequence of points $\xi_n \to \xi$ as $n \to \infty$. Now

$$\left| \hat{f}(\xi_n) - \hat{f}(\xi) \right| = \left| \int_{\mathbb{R}^d} f(x) (e^{-2\pi i \xi_n x} - e^{-2\pi i \xi x}) dx \right|$$

$$\leq \int_{\mathbb{R}^d} |f(x)| \left| (e^{-2\pi i \xi_n x} - e^{-2\pi i \xi x}) \right| dx$$

using the triangle inequality. Since the function inside the integral; is dominated by $2||f||_{L^1}$, we can use the Dominated convergence theorem; thus

$$\lim_{n \to \infty} |\hat{f}(\xi_n) - \hat{f}(\xi)| \le \lim_{n \to \infty} \int_{\mathbb{R}^d} |f(x)| \left| (e^{-2\pi i \xi_n x} - e^{-2\pi i \xi_n x}) \right| dx$$
$$= \int_{\mathbb{R}^d} |f(x)| \lim_{n \to \infty} \left| (e^{-2\pi i \xi_n x} - e^{-2\pi i \xi_n x}) \right| dx = 0$$

which proves continuity. This completes the proof of (e).

22. Prove that if $f \in L^1(\mathbb{R}^d)$ and

$$\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi ix\xi} dx,$$

then $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$. (This is the Riemann-Lebesgue lemma). [Hint: Write $\hat{f}(\xi) = \frac{1}{2} \int_{\mathbb{R}^d} \left[f(x) - f(x - \xi') \right] e^{-2\pi i x \xi} dx$, where $\xi' = \frac{1}{2} \frac{\xi}{|\xi|^2}$, and use Proposition 2.5.]

Proof Using the hint, we first start with $\hat{f}(\xi)$, which we translate by a factor of ξ' . Since the Lebesgue integral is invariant under translation, we get that

$$\begin{split} \hat{f}(\xi) &= \int_{\mathbb{R}^d} f\left(x - \frac{1}{2} \frac{\xi}{|\xi|^2}\right) e^{-2\pi i x \xi + \frac{2\pi i \xi^2}{2|\xi|^2}} dx \\ &= \int_{\mathbb{R}^d} f\left(x - \frac{1}{2} \frac{\xi}{|\xi|^2}\right) e^{-2\pi i x \xi} e^{\frac{2\pi i \xi^2}{2|\xi|^2}} dx \\ &= -\int_{\mathbb{R}^d} f\left(x - \frac{1}{2} \frac{\xi}{|\xi|^2}\right) e^{-2\pi i x \xi} dx \end{split}$$

since $e^{\pi i i} = \cos(\pi i) + i \sin(\pi i) = -1$ using Euler's identity. Thus, since the above formulation, which I label $\hat{f}^*(\xi)$ is equal to the original formulation, we can use the hint and rewrite it in

terms of

$$\hat{f}(\xi) = \frac{1}{2} [\hat{f}(\xi) - \hat{f}^*(\xi)]$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} [f(x) - f(x - \xi')] e^{-2\pi i x \xi} dx$$

So we have using the triangle inequality that

$$|\hat{f}(\xi)| = \frac{1}{2} \left| \int_{\mathbb{R}^d} [f(x) - f(x - \xi')] e^{-2\pi i x \xi} dx \right|$$

$$\leq \frac{1}{2} \int_{\mathbb{R}^d} \left| [f(x) - f(x - \xi')] e^{-2\pi i x \xi} \right| dx$$

$$\leq \frac{1}{2} \int_{\mathbb{R}^d} \left| [f(x) - f(x - \xi')] \right| \left| e^{-2\pi i x \xi} \right| dx$$

$$\leq \int_{\mathbb{R}^d} \left| f(x) - f\left(x - \frac{1}{2} \frac{\xi}{|\xi|^2}\right) \right| dx$$

which equals $||f(x) - f\left(x - \frac{1}{2}\frac{\xi}{|\xi|^2}\right)||_{L^1}$. Now, using Proposition 2.5, since we can write the translation $\xi' = -\frac{1}{2}\frac{\xi}{|\xi|^2}$ that goes to zero as $|\xi| \to \infty$, we infer that $||f(x) - f\left(x - \frac{1}{2}\frac{\xi}{|\xi|^2}\right)||_{L^1} \to 0$ and as a consequence, from our definition, that $\hat{f}(\xi) \to 0$.