Problem 2

For any $\delta > 0$, let $f_{\delta}(x) = f(\delta x)$ for $x \in \mathbb{R}^d$. By Theorem 2.4, for any $\epsilon > 0$ given, there exists a continuous function $g \colon \mathbb{R}^d \to \mathbb{R}$ with compact support such that $||f - g||_{L_1} < \epsilon$. We can thus write:

$$f_{\delta} - f = (g_{\delta} - g) + (f_{\delta} - g_{\delta}) - (f - g)$$

However, $||f_{\delta} - g_{\delta}||_{L_1} = ||f - g||_{L_1} < \epsilon$. Moreover, as g is continuous with compact support, then:

$$\|g_\delta-g\|_{L_1}=\int_{\mathbb{R}^d}|g(\delta x)-g(x)|dx o 0$$
 as $\delta o 1$

Thus, for $|\delta - 1|$ sufficiently small, we have that:

$$||f_{\delta} - f||_{L_1} \le ||g_{\delta} - g||_{L_1} + ||f_{\delta} - g_{\delta}||_{L_1} + ||f - g||_{L_1} < 3\epsilon$$

That is, for any $x \in \mathbb{R}^d$, $f(\delta x)$ converges to f(x) in the L^1 -norm as $\delta \to 1$.

Problem 5

(a) For $x, y \in \mathbb{R}$ and $t \in F$, assume WLOG that $\delta(x) > \delta(y)$ (otherwise, switch the roles of x and y in the inequality below), then consider the following:

$$|x-t| = |x-y+y-t| \le |x-y| + |y-t|$$

If we take the infimum of this equation over all $t \in F$, then we have that:

$$\delta(x) = \inf_{t \in F} |x - t| \leq |x - y| + \inf_{t \in F} |y - t| = |x - y| + \delta(y) \Longrightarrow \delta(x) - \delta(y) = |\delta(x) - \delta(y)| \leq |x - y|$$

Therefore, δ is Lipschitz on \mathbb{R} , and thus continuous on \mathbb{R} .

(b) Take $x \notin F$, then $\delta(x) > 0$ i.e. for any $\epsilon > 0$, $\delta(x) > \epsilon$. Now, for any $y \in F$, $\delta(y) = 0$, so we have that:

$$I(x) = \int_{\mathbb{R}} \frac{\delta(y)}{|x-y|^2} dy = \int_{F} \frac{\delta(y)}{|x-y|^2} dy + \int_{F^C} \frac{\delta(y)}{|x-y|^2} dy = \int_{F^C} \frac{\delta(y)}{|x-y|^2} dy$$

If we consider the ball $B(x, \frac{\epsilon}{2})$ centered at x of radius $\frac{\epsilon}{2}$, then we must have that $\delta(y) < \frac{\epsilon}{2}$. Moreover, by the continuity of δ , we can make $|x-y| \leq \frac{\epsilon}{2}$. Thus, consider the following:

$$\int_{F^C} \frac{\delta(y)}{|x-y|^2} dy \geq \int_{F^C \cap B(x,\frac{\epsilon}{2})} \frac{\delta(y)}{|x-y||x-y|} dy \geq \int_{F^C \cap B(x,\frac{\epsilon}{2})} \frac{\epsilon/2}{|x-y| \cdot \epsilon/2} dy = \int_{F^C \cap B(x,\frac{\epsilon}{2})} \frac{1}{|x-y|} dy = \infty$$

To see that this last integral is infinite, we just use the translational invariance of the Lebesgue integral to integrate over the singularity at x. Therefore, for $x \notin F$, $I(x) = \infty$.

(c) For $x \in F$, $\delta(x) = 0$. Using the same argument as in (b) along with the Lipschitz condition, we have that:

$$I(x) = \int_{\mathbb{R}} \frac{\delta(y)}{|x-y|^2} dy \leq \int_{F^C} \frac{\delta(y)}{|x-y| |\delta(x) - \delta(y)|} dy \int_{F^C} \frac{\delta(y)}{|x-y| |0 - \delta(y)|} dy = \int_{F^C} \frac{1}{|x-y|} dy$$

If $x \notin \partial F$, then this is the integral of a continuous function over a set of finite measure, and thus the integral $\int_{F^C} \frac{1}{|x-y|} dy < \infty$.

If, however, $x \in \partial F$, then we the above integral may not converge. If we consider the open set $F^C \subset \mathbb{R}$, there must exist a countable set $\{I_k\}_{k=1}^{\infty}$ of disjoint open intervals such that $F^C = \bigcup_{k=1}^{\infty} I_k$. The union of all boundary points of the I_k 's are exactly the boundary points of F, i.e. we have that $\partial F = \bigcup_{k=1}^{\infty} \partial(I_k)$. However, each $\partial(I_k)$ is at most 2 points in \mathbb{R} , so ∂F is a countable subset of \mathbb{R} , i.e. ∂F is a set of measure zero. In otherwords, we don't care what happens for $x \in \partial F$.

Therefore, $I(x) \leq \int_{F^C} \frac{1}{|x-y|} dy < \infty$ for $x \in F$ and not on the boundary, i.e. not in a set of measure zero. Thus, $I(x) < \infty$ for a.e. $x \in F$.

Problem 6

(a) Let f be the the function defined as follows:

$$f(x) = \begin{cases} n & : x \in [n, n + \frac{1}{n^3}) \text{ for } n \ge 2\\ 0 & : \text{ otherwise} \end{cases}$$

In order to continuously extend f, we can interpolate linearly from 0 to n for $x \in [n - \frac{1}{n^3}, n]$ and similarly from n to 0 for $x \in [n + \frac{1}{n^3}, n + \frac{2}{n^3}]$. Note that $\frac{1}{n^3}$ is fairly arbitrary, it just needs to be sufficiently small. In effect, we have added to f the hypotenuse of the triangle formed by n and 0.

Let g be this continuous extension of f, then consider the integral of g over \mathbb{R} :

$$\int_{\mathbb{R}} g(x)dx = \int_{\mathbb{R}} f(x)dx + (\text{area under the triangles added})$$

$$= \sum_{n=2}^{\infty} n \cdot (n + \frac{1}{n^3} - n) + 2\sum_{n=2}^{\infty} \left(\frac{n \cdot 1/n^3}{2}\right)$$

$$= \sum_{n=2}^{\infty} \frac{1}{n^2} + \sum_{n=2}^{\infty} \frac{1}{n^2}$$

$$= 2\left(\frac{\pi^2}{6} - 1\right)$$

$$< \infty$$

Therefore, since |g|=g, g is integrable. Furthermore, it is clear that g is zero almost everywhere, so $\limsup_{x\to\infty}g(x)$. Thus, there does indeed exists a positive continuous functions that is integrable on $\mathbb R$ yet whose $\limsup_{x\to\infty}g(x)$.

Problem 7

Notice that Γ is a d-manifold in \mathbb{R}^{d+1} , so any sufficiently small neighborhood on Γ is locally homeomorphic to \mathbb{R}^d . If we construct a countable partition $\{Q_j\}_{j=1}^{\infty}$ of \mathbb{R}^d into almost disjoint closed cubes, then this induces a partition $\{\tilde{Q}_j\}_{j=1}^{\infty}$ of Γ . Since each \tilde{Q}_j is homeomorphic to \mathbb{R}^d as a subspace of \mathbb{R}^{d+1} , the $(d+1)^{\text{st}}$ -dimensional measure of \tilde{Q}_j is zero, i.e. $m(\tilde{Q}_j) = 0$. By countable subadditivity, we have that:

$$m(\Gamma) \leq \sum_{j=1}^{\infty} m(\tilde{Q}_j) = \sum_{j=1}^{\infty} 0 = 0$$

Clearly, $Q = \bigcup_{j=1}^{\infty} \tilde{Q}_j$ is a measurable set of measure zero, and $\Gamma \subset Q$, so Γ is measurable and has measure zero.

Problem 9

Since $f \ge 0$ and for $\alpha > 0$, $E_{\alpha} = \{x : f(x) > \alpha\} \subset \mathbb{R}^d$, then $\int_{\mathbb{R}^d} f \ge \int_{E_{\alpha}} f$, by monotonicity. Moreover, on E_{α} , $f > \alpha$, so:

$$\int_{\mathbb{R}^d} f \geq \int_{E_\alpha} f \leq \int_{E_\alpha} \alpha = \alpha \cdot m(E_\alpha) \Longrightarrow m(E_\alpha) \leq \frac{1}{\alpha} \int_{\mathbb{R}^d} f$$

Problem 14

(a) Consider the function $f(x) = 2(1-x^2)^{1/2}$. It is clearly \mathbb{R} -measurable, so by Corollary 3.8, $B_1 = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le f(x)\}$ is \mathbb{R}^2 -measurable, and moreover, we have that:

$$v_2 = m(B_1) = \int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} 2(1 - x^2)^{1/2} \cdot \chi_{[-1,1]} dx = 2 \int_{-1}^{1} (1 - x^2)^{1/2} dx$$

We can evaluate this integral by using the substitution $x = \sin(t)$ as follows:

$$v_2 = 2 \int_{-\pi/2}^{\pi/2} (1 - \sin^2(t))^{1/2} \cos(t) dt = 2 \int_{-\pi/2}^{\pi/2} \cos^2(t) dt = t + \sin(t) \cos(t) \Big|_{-\pi/2}^{\pi/2} = \pi$$

Problem 17

(a) We can draw \mathbb{R}^2 where the value of f is indicated in each region:

If we first fix x, then consider the following:

$$\int_{\mathbb{R}} |f|^x(y)dy = \begin{cases} a_{\lfloor x \rfloor} + a_{\lfloor x \rfloor} + 0 + \cdots & : x \ge 0 \\ 0 & : \text{ otherwise} \end{cases} < \infty$$

Therefore, for fixed x, f^x is integrable. Similarly, if we fix y, consider the following:

$$\int_{\mathbb{R}} |f|^{y}(x)dx = \begin{cases} a_{\lfloor y \rfloor - 1} + a_{\lfloor y \rfloor - 2} + 0 + \cdots & : y \ge 1 \\ a_{0} & : y \in [0, 1) \\ 0 & : \text{ otherwise} \end{cases} < \infty$$

Therefore, for fixed y, f^y is integrable. If we now compute the integral of f^x for a fixed x > 0, we have that:

$$\int_{\mathbb{R}} f^{x}(y)dy = a_{\lfloor x \rfloor} - a_{\lfloor x \rfloor} + 0 + \dots = 0$$

We can thus conclude that:

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) dy dx = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f^x(y) dy \right) dx = \int_{\mathbb{R}} 0 \cdot dx = 0$$

(b) From the diagram above, we can see that for a fixed $y \in (0, \infty)$:

$$\int_{\mathbb{R}} f^{y}(x)dx = \begin{cases} a_0 & : y \in [0,1) \\ a_n - a_{n-1} & : y \in [n,n+1) \text{ for } n \ge 1 \\ 0 & : \text{ otherwise} \end{cases}$$

It is clear that the integral of $|f^y|$ for fixed $y \in (0, \infty)$ is finite, so $y \mapsto \int f^y(x) dx$ is integrable on $(0, \infty)$. Now, consider the following:

$$\int_{(0,\infty)} \left(\int_{\mathbb{R}} f^{y}(x) dx \right) dy = \int_{0}^{1} a_{0} dy + \int_{1}^{2} (a_{1} - a_{0}) dy + \int_{2}^{3} (a_{2} - a_{1}) dy + \cdots$$

$$= \int_{0}^{1} a_{0} dy + \sum_{k=1}^{\infty} \int_{k}^{k+1} (a_{k} - a_{k-1}) dy$$

$$= a_{0} \cdot (1 - 0) + \sum_{k=1}^{\infty} (a_{k} - a_{k-1}) \cdot (k+1-k)$$

$$= b_{0} + \sum_{k=1}^{\infty} b_{k}$$

$$= s$$

(c) We note that the integral over \mathbb{R}^2 of |f| is equivalent to summing the absolute value of each square in the diagram above:

$$\int_{\mathbb{R}}\int_{\mathbb{R}}|f(x,y)|dxdy=\sum_{i=0}^{\infty}2a_{i}=2\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i}b_{i}\right)=\infty$$

We clearly have that this sum diverges as we are counting every value b_k infinitely-many times, and taking the sum of these infinite sums of positive numbers. Thus, |f| is not integrable (which is why Fubini's Theorem cannot be applied).

Problem 19

Assume WLOG that f is positive on \mathbb{R}^d and let $\alpha > 0$. The set $E_{\alpha} = \{x \in \mathbb{R}^d : f(x) > \alpha\}$ is the complement of the preimage $f^{-1}[-\infty, \alpha)$, i.e. the complement of a measurable set. Thus, E_{α} is measurable as f is integrable, and so we have that:

$$\int_0^\infty \chi_{E_\alpha}(x) dx = m(E_\alpha)$$

Moreover, for $x \in \mathbb{R}^d$, we can rewrite f(x) as follows:

$$f(x) = \int_0^\infty \chi_{[0,f(x))}(t)dt$$

Thus, using Fubini's Theorem, we have that:

$$\int_{\mathbb{R}^d} f(x) dx = \int_{\mathbb{R}^d} \int_0^\infty \chi_{[0, f(x))}(t) dt dx = \int_0^\infty \int_{\mathbb{R}^d} \chi_{[0, f(x))}(t) dx dt = \int_0^\infty m(\{x \in \mathbb{R}^d : f(x) > t\}) dt = \int_0^\infty m(E_t) dt$$

Problem 21

(a) If f, g are measurable on \mathbb{R}^d , then for any $x, y \in \mathbb{R}^d$, the preimages $f^{-1}[-\infty, x)$ and $g^{-1}[-\infty, y)$ are measurable sets. In particular, for $x, x - y \in \mathbb{R}^d$, we have that the preimage of f(x - y)g(y) is $f^{-1}[-\infty, x - y) \times g^{-1}[-\infty, y)$, and the Cartesian product of measurable sets is measurable in \mathbb{R}^{2d} . Therefore, any preimage of f(x - y)g(y) is a measurable set in \mathbb{R}^{2d} i.e. f(x - y)g(y) is a measurable function on \mathbb{R}^{2d} .

(b) For $f, g \in L_1(\mathbb{R}^d)$, by translation invariance of the Lebesgue integral, then:

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| dx dy = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x)| dx \right) |g(y)| dy = \int_{\mathbb{R}^d} ||f||_{L_1} |g(y)| dy = ||f||_{L_1} \int_{\mathbb{R}^d} |g(y)| dy = ||f||_{L_1} ||g||_{L_1} < \infty$$

Therefore, f(x-y)g(y) is integrable on \mathbb{R}^{2d} .

(c) Since f(x-y)g(y) is integrable on \mathbb{R}^{2d} , we have that:

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| dy dx < \infty \Longrightarrow \int_{\mathbb{R}^d} |f(x-y)g(y)| dy < \infty \text{ for a.e. } x \in \mathbb{R}^d$$

Thus, f(x-y)g(y) is integrable for a.e. $x \in \mathbb{R}^d$ i.e. (f*g)(x) is well-defined for a.e. $x \in \mathbb{R}^d$.

(d) For $f,g\in L_1(\mathbb{R}^d)$, then using Fubini's Theorem and the argument from (b), we have that:

$$\|f * g\|_{L_1} = \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d} f(x - y) g(y) dx \right| dy \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x - y) g(y)| dx dy = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x - y) g(y)| dy dx = \|f\|_{L_1} \|g\|_{L_1} < \infty$$

Therefore, $f * g \in L_1(\mathbb{R}^d)$, as required. Notice that if f, g are nonnegative on \mathbb{R}^d , then the only inequality above must be an equality; that is, $||f * g||_{L_1} = ||f||_{L_1}||g||_{L_1}$.

(e) For $f \in L_1(\mathbb{R}^d)$, $||f||_{L_1} < \infty$; so notice that:

$$|\hat{f}(\xi)| = \left| \int_{\mathbb{R}^d} f(x) e^{-i\xi x} dx \right| \le \int_{\mathbb{R}^d} |f(x)| |e^{-i\xi x}| dx = \int_{\mathbb{R}^d} |f(x)| dx = ||f||_{L_1} < \infty$$

Therefore, $\hat{f}(\xi)$ is bounded. Now, let ξ_n be a sequence in \mathbb{R} such that $\xi_n \to \xi$ as $n \to \infty$. Consider the following:

$$|\hat{f}(\xi_n) - \hat{f}(\xi)| = \left| \int_{\mathbb{R}^d} f(x) (e^{-i\xi_n x} - e^{-i\xi x}) dx \right| \le \int_{\mathbb{R}^d} |f(x)| |e^{-i\xi_n x} - e^{-i\xi x}| dx$$

The integrand of the above function is clearly dominated by 2|f(x)| for any $x \in \mathbb{R}^d$, and we clearly have that $2|f| \in L_1(\mathbb{R}^d)$ since $f \in L_1(\mathbb{R}^d)$. Thus, by the Dominated Convergence Theorem, we have that:

$$\lim_{n\to\infty}|\hat{f}(\xi_n)-\hat{f}(\xi)|\leq \lim_{n\to\infty}\int_{\mathbb{R}^d}|f(x)||e^{-i\xi_nx}-e^{-i\xi x}|dx=\int_{\mathbb{R}^d}|f(x)|\cdot\lim_{n\to\infty}|e^{-i\xi_nx}-e^{-i\xi x}|dx=\int_{\mathbb{R}^d}|f(x)|\cdot 0\cdot dx=0$$

Therefore, using its sequential definition, \hat{f} is continuous on \mathbb{R} .

For $f, g \in L_1(\mathbb{R}^d)$, then using Fubini's Theorem, we have that:

$$\widehat{(f*g)}(\xi) = \int_{\mathbb{R}^d} (f*g)(x)e^{-i\xi x} dx = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(x-y)g(y) dy \right) e^{-i\xi x} dx = \int_{\mathbb{R}^d} g(y) \int_{\mathbb{R}^d} f(x-y)e^{-i\xi x} dx dy$$

If we use the substitution u = x - y in the inner integral, then we have:

$$\int_{\mathbb{R}^d} g(y) \int_{\mathbb{R}^d} f(x-y) e^{-i\xi x} dx dy = \int_{\mathbb{R}^d} g(y) \int_{\mathbb{R}^d} f(u) e^{-i\xi u} e^{-i\xi y} du dy = \left(\int_{\mathbb{R}^d} g(y) e^{-i\xi y} dy \right) \left(\int_{\mathbb{R}^d} f(u) e^{-i\xi u} du \right) = \hat{f}(\xi) \hat{g}(\xi)$$

Therefore, we have that $(\widehat{f * g})(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$.

Problem 22

Let $\xi' = \frac{1}{2} \frac{\xi}{|\xi|^2}$, then $\xi' \to 0 \iff |\xi| \to 0$. Moreover, we can write:

$$|\hat{f}(\xi)| = \left| \frac{1}{2} \int_{\mathbb{R}^d} (f(x) - f(x - \xi')) e^{-2\pi i \xi x} dx \right| \le \frac{1}{2} \int_{\mathbb{R}^d} |f(x) - f(x - \xi')| \cdot |e^{-2\pi i \xi x}| dx$$

By Proposition 2.5, we know that $||f_{\xi'} - f||_{L_1} \to 0$ as $\xi' \to 0$. Thus, for any $x \in \mathbb{R}^d$, $|f(x) - f(x - \xi')| \to 0$ as $\xi' \to 0 \iff |\xi| \to 0$. We thus have that:

$$\frac{1}{2} \int_{\mathbb{R}^d} |f(x) - f(x - \xi')| \cdot |e^{-2\pi i \xi x}| dx \to \frac{1}{2} \int_{\mathbb{R}^d} 0 \cdot dx = 0 \text{ as } |\xi| \to 0$$

Therefore, $\hat{f}(\xi) \to 0$ as $|\xi| \to 0$.