Yvan Le

ID#: 260 430 278

MATH-354

Assignment #5

Exercise 2.

b) To show that F is well-defined, it is enough to show that $\forall x \in \mathcal{C}$, its corresponding ternary expansion $x = \sum_{k \in \mathbb{N}} \frac{a_k}{3^k}$ in which $a_k \in \{0,2\}$ is unique. Suppose not; let $x \in \mathcal{C}$ be such that it has two such distinct ternary expansions, denoted $\sum_{k \in \mathbb{N}} \frac{a_k}{3^k}$ and $\sum_{k \in \mathbb{N}} \frac{a'_k}{3^k}$. Since these ternary expansions are distinct, then $\exists k \in \mathbb{N}$ such that $a_k \neq a'_k$; let k_0 be the smallest such k. Then $0 = x - x = \sum_{k \in \mathbb{N}} \frac{c_k}{3^k}$ where for any $k \in \mathbb{N}$, $c_k = a_k - a'_k$. Since for $k < k_0$ we have $a_k = a'_k$ then $c_k = 0$, and so we have $0 = \sum_{k \geq k_0} \frac{c_k}{3^k}$. Now we note that $c_{k_0} \in \{-2,2\}$. Furthermore, $\forall k > k_0, c_k \in \{-2,0,2\}$.

Suppose that $c_{k_0} = -2$.

Then
$$0 = -\frac{2}{3k_0} + \sum_{k > k_0} \frac{c_k}{3^k} \le -\frac{2}{3k_0} + \sum_{k > k_0} \frac{2}{3^k} = -\frac{2}{3k_0} + 2\sum_{k > k_0} \frac{1}{3^k} = -\frac{2}{3k_0} + \frac{1}{3k_0} = -\frac{1}{3k_0}$$
. That is, $0 \le -\frac{1}{2k_0}$. Clearly, this is a contradiction.

Now, suppose that $c_{k_0} = 2$.

Then
$$0 = \frac{2}{3^{k_0}} + \sum_{k > k_0} \frac{c_k}{3^k} \ge \frac{2}{3^{k_0}} + \sum_{k > k_0} \frac{(-2)}{3^k} = \frac{2}{3^{k_0}} - 2\sum_{k > k_0} \frac{1}{3^k} = \frac{2}{3^{k_0}} - \frac{1}{3^{k_0}} = \frac{1}{3^{k_0}}.$$

That is, $0 \ge \frac{1}{3^{k_0}}$; again, this is a contradiction. Hence, we conclude that for any $x \in \mathcal{C}$, its ternary expansion with $a_k \in \{0,2\}$ is unique, and so F is well-defined.

Now, to show continuity, we first note that F is monotone non-decreasing; let $x,y \in \mathcal{C}$ be such that x < y with ternary expansions $x = \sum_{k \in \mathbb{N}} \frac{a_k}{3^k}$, $y = \sum_{k \in \mathbb{N}} a'_k/3^k$. Since x < y, then for some $k_0 \in \mathbb{N}$, if $k < k_0$ then $a_k = a'_k$, and $a_{k_0} = 0$, $a'_{k_0} = 2$.

Denote $F(x) = \sum_{k \in \mathbb{N}} \frac{b_k}{2^k}$ and $F(y) = \sum_{k \in \mathbb{N}} \frac{b_k'}{2^k}$; then for $k < k_0$, we have $b_k = b_k'$ and $b_{k_0} = 0$, $b_{k_0}' = 1$, and so $F(x) \le F(y)$ (with equality if and only if $b_k = 1$ and $b_k' = 0$ for any $k > k_0$). So F is monotone non-decreasing.

Let $\epsilon > 0$ be given; w.l.o.g., we may assume that $\epsilon < 1$. We note that $\exists k \in \mathbb{N}$ such that $\frac{1}{2^k} \le \epsilon$; let k_0 be the smallest such k. Pick $\delta = \frac{1}{3^{k_0}}$ and fix $x \in \mathcal{C}$, where $x = \sum_{k \in \mathbb{N}} \frac{a_k}{3^k}$ and $\forall k \in \mathbb{N}$, $a_k \in \{0,2\}$. We note that $\forall y \in \mathcal{C}$ such that $|x - y| < \delta$, we have two bounds on y given by $y \le y_1 := \sum_{k=1}^{k_0} \frac{a_k}{3^k} + \sum_{k > k_0} \frac{2}{3^k}$ and $y \ge y_2 := \sum_{k=1}^{k_0} \frac{a_k}{3^k} + \sum_{k > k_0} \frac{0}{3^k}$. By monotonicity, it is sufficient to show that $F(y_1) \le F(x) + \frac{1}{2^{k_0}}$ and $F(y_2) \ge F(x) - \frac{1}{2^{k_0}}$. Denote $F(x) = \sum_{k \in \mathbb{N}} \frac{b_k}{2^k}$ where $b_k = \frac{a_k}{2}$. Then $F(y_1) = \sum_{k=1}^{k_0} \frac{b_k}{2^k} + \sum_{k > k_0} \frac{1}{2^{k'}}$; that is, $F(y_1) = \sum_{k=1}^{k_0} \frac{b_k}{2^k} + \frac{1}{2^{k_0}} \le \sum_{k \in \mathbb{N}} \frac{b_k}{2^k} + \frac{1}{2^{k_0}} = F(x) + \frac{1}{2^{k_0}}$ as claimed.

Similarly, $F(x) - \frac{1}{2^{k_0}} = \sum_{k \in \mathbb{N}} \frac{b_k}{2^k} - \sum_{k > k_0} \frac{1}{2^k} \le \sum_{k=1}^{k_0} \frac{b_k}{2^k} + \sum_{k > k_0} \frac{0}{2^k} = F(y_2)$ as claimed. Hence, F is continuous on C. Finally, $0 = \sum_{k \in \mathbb{N}} \frac{0}{3^k} \to F(0) = \sum_{k \in \mathbb{N}} \frac{0}{2^k} = 0$ and $1 = \sum_{k \in \mathbb{N}} \frac{2}{3^k} \to F(1) = \sum_{k \in \mathbb{N}} \frac{1}{2^k} = 1$ as claimed. \blacksquare

c) We note that $\forall y \in [0,1]$, y has a binary expansion; that is, $y = \sum_{k \in \mathbb{N}} \frac{b_k}{2^k}$ where $b_k \in \{0,1\}$. Pick any such expansion, and define $x = \sum_{k=1}^{\infty} \frac{a_k}{2^k}$ where $a_k = 2b_k$; then clearly, F(x) = y and since $2b_k \in \{0,2\}$, then x has a ternary expansion where $a_k \in \{0,2\}$ and so $x \in \mathcal{C}$. Hence, F is surjective.

d) Suppose $(a,b) \subseteq [0,1] \setminus \mathcal{C}$; then $\exists n, k_0 \in \mathbb{N}$ such that $a = \frac{n}{3^{k_0}}$ and $b = \frac{n+1}{3^{k_0}}$, where both n and n+1 are co-prime to 3. So $n \equiv 1 \pmod{3}$ and $n+1 \equiv 2 \pmod{3}$. Since $n \equiv 1 \pmod{3}$, let $a = \sum_{k=1}^{k_0} \frac{a_k}{3^k}$, where $a_{k_0} = 1$ and $\forall k < k_0, a_k \in \{0,2\}$. Then $a = \sum_{k=1}^{k_0-1} \frac{a_k}{3^k} + \frac{1}{3^{k_0}} = \sum_{k=1}^{k_0-1} \frac{a_k}{3^k} + \frac{0}{3^{k_0}} + \sum_{k>k_0} \frac{2}{3^k}$. On the other hand, we have $b = \sum_{k=1}^{k_0-1} \frac{a_k}{3^k} + \frac{2}{3^{k_0}}$. Let $F(a) = \sum_{k\in\mathbb{N}} \frac{b_k}{2^k}$ with $b_k = \frac{a_k}{2}$. $a_{k_0} = 0$, so $b_{k_0} = 0$; furthermore, $\forall k > k_0, a_k = 2$ so $b_k = 1$. So $F(a) = \sum_{k=1}^{k_0-1} \frac{b_k}{2^k} + \frac{0}{2^{k_0}} + \sum_{k>k_0} \frac{1}{2^k} = \sum_{k=1}^{k_0-1} \frac{b_k}{2^k} + \frac{1}{2^{k_0}}$. On the other hand, $F(b) = \sum_{k=1}^{k_0-1} \frac{b_k}{2^k} + \frac{1}{2^{k_0}} = F(a)$ as claimed. Hence, the function F obtained by extending to [0,1] as described is well-defined.

Continuity is also clear; for any $x \in Int(\mathcal{C})$ (the interior of \mathcal{C}), F is continuous at x as shown in b). Furthermore, for any $x \in [0,1] \setminus \mathcal{C}$, clearly F is continuous at x, since the function is constant on a sufficiently small neighborhood centered at x. Hence, it remains to be shown that F is continuous at any $x \in \partial \mathcal{C}$, the boundary of \mathcal{C} . Suppose w.l.o.g. that x is the left end-point of some sufficiently small closed interval contained in \mathcal{C} (here we allow singleton points to be a closed interval), and that x is the right end-point of some sufficiently small open interval contained $[0,1] \setminus \mathcal{C}$. By continuity of F in \mathcal{C} , we have $\lim_{t \to x^+} F(t) = F(x)$. By continuity of F in $[0,1] \setminus \mathcal{C}$, we have $\lim_{t \to x^-} F(t) = F(x)$, and so F is continuous everywhere on [0,1].

Exercise 14.

- a) We note that by analogy with $m_*(E)$, the intervals I_j covering E as defined for $J_*(E)$ are closed. Let $\{I_j\}_{j=1}^N$ be a finite covering of E by closed intervals; we claim that any limit point of E is covered as well. Let x be a limit point of E, and let $(x_n)_{n=1}^\infty$ be a sequence in E converging to x. Since $E \subseteq \bigcup_{j=1}^N I_j$, then $(x_n)_{n=1}^\infty$ is a sequence in $\bigcup_{j=1}^N I_j$. Since $\bigcup_{j=1}^N I_j$ is a finite union of closed intervals, then it must be closed as well, and so it contains all its limit points; hence, $x \in \bigcup_{j=1}^N I_j$. Therefore, it follows that $\bar{E} \subseteq \bigcup_{j=1}^N I_j$. Then clearly, for any $\{I_j\}_{j=1}^N$ covering \bar{E} , $\{I_j\}_{j=1}^N$ must cover E. Hence, $J_*(E) = J_*(\bar{E})$.
- b) Consider $E:=\mathbb{Q}\cap[0,1]$, the set of rationals in [0,1]. Since this set is countable, $m_*(E)=0$; however, since $\bar{E}=[0,1]$, then $J_*(E)=1$.

Exercise 16.

- a) We have $E = \bigcap_{n=1}^{\infty} \bigcup_{k \geq n} E_k$. For any $n \in \mathbb{N}$, let $E'_n = \bigcup_{k \geq n} E_k$; since it is a countable union of measurable sets, then E'_n is measurable. Then $E = \bigcap_{n=1}^{\infty} E'_n$ is a countable intersection of measurable sets, and so E is measurable.
- b) Since we have $\sum_{k=1}^{\infty} m(E_k) < \infty$, then for any $\epsilon > 0, \exists N \in \mathbb{N}$ such that $\sum_{k \geq N} m(E_k) < \epsilon$. By countable sub-additivity, this implies then that $m(\cup_{k \geq N} E_k) \leq \sum_{k \geq N} m(E_k) < \epsilon$. We note that $E \subseteq \bigcup_{k \geq N} E_k$ and so by monotonicity, $m(E) < \epsilon$. Since $\epsilon > 0$ is arbitrary, we conclude that m(E) = 0.

Exercise 21.

Consider $F:\mathcal{C}\to [0,1]$ as defined in Problem 2, and consider the non-measurable set $\mathcal{N}\subseteq [0,1]$ as defined on p.24 (Stein). Since F is surjective, then $F^{-1}(\mathcal{N})$ is well-defined, and we have $F^{-1}(\mathcal{N})\subseteq \mathcal{C}$. By monotonicity of the exterior measure, $m_*\big(F^{-1}(\mathcal{N})\big)\leq m_*(\mathcal{C})$. Since the Cantor set is Lebesgue measurable with measure 0, we have $m_*(\mathcal{C})=m(\mathcal{C})=0$, and so $m_*\big(F^{-1}(\mathcal{N})\big)=0$. Sets of exterior measure 0 are measurable, and so we conclude that $F^{-1}(\mathcal{N})$ is measurable. Hence, this is an example of a continuous function that maps a measurable set to a non-measurable set.

Exercise 28.

Fix $0 < \alpha < 1$; let $0 \subseteq \mathbb{R}$ be an open set such that $E \subseteq O$ and $m_*(E) \ge \alpha m_*(O)$. Let $O = \coprod_{k=1}^\infty I_k$ where I_k are open intervals in \mathbb{R} . We note that $E \cap O = E \cap \coprod_{k=1}^\infty I_k = \coprod_{k=1}^\infty (E \cap I_k)$. Furthermore, since $E \subseteq O$, we have $E \cap O = E$; hence, $E = \coprod_{k=1}^\infty (E \cap I_k)$. Now, suppose for contradiction that $\forall k \in \mathbb{N}$ we have $m_*(E \cap I_k) < \alpha m_*(I_k)$. Since I_k 's are disjoint and measurable, we must have $m_*(E) \le m_*(\coprod_{k=1}^\infty (E \cap I_k)) = \sum_{k=1}^\infty m_*(E \cap I_k) < \sum_{k=1}^\infty \alpha m_*(I_k) = \alpha \sum_{k=1}^\infty m_*(I_k) = \alpha m_*(O)$; where the first inequality follows from countable sub-additivity. That is, $m_*(E) < \alpha m_*(O)$. This is a contradiction, and so $\exists I_k$ such that $m_*(E \cap I_k) \ge \alpha m_*(I_k)$.

Exercise 29.

By Exercise 28, $\exists I \subseteq R$ open such that $m(E \cap I) \geq \frac{9}{10} m(I)$. Let $E_0 = E \cap I$. Let I = (a,b); then m(I) = b - a. We claim that if the difference set of E_0 contains an interval centered at the origin, then so must E. Suppose such an interval exists for E_0 , denote (-a,a). Then $\forall x \in (-a,a)$, $\exists y_1,y_2 \in E_0$ such that $y_1 - y_2 = x$. Since $E_0 \subseteq E$, then $\exists y_1,y_2 \in E$ such that $y_1 - y_2 = x$. Since x is arbitrary, this implies that (-a,a) is contained in the difference set of E.

Suppose for contradiction that no such interval exists in the difference set of E_0 . Then given $\epsilon>0$ arbitrarily small (without loss of generality, let $\epsilon<\frac{b-a}{10}$), $\forall x,y\in E_0$ with x>y, we have $x-y>\epsilon\to x>y+\epsilon$. Now suppose the sets E_0 and $E_0+\epsilon$ are not disjoint; then $\exists x,y\in E_0$ such that $x=y+\epsilon$, contradicting the above inequality. So E_0 and $E_0+\epsilon$ are disjoint. We note that $m(E_0+\epsilon)=m(E_0)$, since the Lebesgue measure is invariant under translation, and so $m(E_0\cup E_0+\epsilon)=2m(E_0)$.

On the other hand, $I+\epsilon=(a+\epsilon,b+\epsilon)$. Since $\epsilon<\frac{b-a}{10}$, then $I\cup I+\epsilon=(a,b+\epsilon)$, and so $m(I\cup I+\epsilon)=b+\epsilon-a<\frac{11}{10}(b-a)=\frac{11}{10}m(I)$. Since $E_0\subseteq I$, we have $E_0+\epsilon\subseteq I+\epsilon$ and so $E_0\cup E_0+\epsilon\subseteq I\cup I+\epsilon$. So $m(E_0\cup E_0+\epsilon)\le m(I\cup I+\epsilon)\to 2*\frac{9}{10}m(I)\le 2m(E_0)\le \frac{11}{10}m(I)$. Then $\frac{18}{10}\le \frac{11}{10}$; this is clearly a contradiction, and so the difference set of E_0 must contain an interval centered at the origin, and so the difference set of E contains an interval centered at the origin.

Problem 1.

Let $E\coloneqq \left\{x\in\mathbb{R}:\exists \text{ infinitely many } p/q \text{ with } \gcd(p,q)=1 \text{ such that } \left|x-\frac{p}{q}\right|\leq \frac{1}{q^3}\right\}$. Here, we insist that q>1 and let $p\in\mathbb{Z}\setminus\{0\}$. The reasoning for letting q>1 is as follows: for any $x\in\mathbb{R}$, there are finitely many $p\in\mathbb{Z}\setminus\{0\}$ such that $|x-p|\leq 1$; these p are, in fact, $\lfloor x\rfloor$ and $\lfloor x\rfloor$, and so the case where q=1 does not affect whether or not a given x is in E. The reason for excluding p=0 is simply because 0 is not relatively prime to any number other than 1.

First, we let $\mathbb{R}=\coprod_{n\in\mathbb{Z}}[n,n+1)$ and denote $E_n\coloneqq E\cap [n,n+1)$; then clearly, $E=\coprod_{n\in\mathbb{Z}}E_n$. To show that m(E)=0, it is sufficient to show that $\forall n\in\mathbb{Z}$, E_n is measurable and $m(E_n)=0$. Fix $n\in\mathbb{Z}$. For any q>1, define $E_{n,q}\coloneqq \left\{x\in [-n,n)\colon \exists\, p\in\mathbb{Z}\setminus\{0\}\text{ such that }\gcd(p,q)=1\text{ and }\left|x-\frac{p}{q}\right|\leq \frac{1}{q^3}\right\}$. Then $E_n\coloneqq \left\{x\in [-n,n)\colon x\in E_{n,q}\text{ for infinitely many }q\right\}$. That is, $E_q\coloneqq \limsup_{k\to\infty}(E_{q,k})$.

Fix q>1. $x\in E_{n,q}\to x\in [-n,n)$ and $\exists p\in \mathbb{Z}\backslash\{0\}$ such that $\gcd(p,q)=1$ and $\left|x-\frac{p}{q}\right|\leq \frac{1}{q^3}\to \text{for some } p\in\{nq+1,nq+2,\dots,(n+1)q-1\},\ x\in\left[\frac{p}{q}-\frac{1}{q^3},\frac{p}{q}+\frac{1}{q^3}\right]$. Note that $p\notin\{nq,(n+1)q\}$ since we insist that p is relatively prime to q. Note that there may be some p in the given range where $\gcd(p,q)>1$; hence, we can conclude that $E_{n,q}\subseteq \cup_{p=nq+1}^{(n+1)q-1}\left[\frac{p}{q}-\frac{1}{q^3},\frac{p}{q}+\frac{1}{q^3}\right]$. Each of these intervals have length $\frac{2}{q^3}$ and there are at most (q-2) such intervals. So $m(E_{n,q})\le \frac{2(q-2)}{q^3}<\frac{2}{q^2}$.

Now we note that $\sum_{q\to\infty} m(E_{n,q}) < \sum_{q\to\infty} \frac{2}{q^2} < \infty$. So by the Borel-Cantelli Lemma, we conclude that $m(E_n)=0$. Since $n\in\mathbb{Z}$ is arbitrary, we thus conclude that m(E)=0.