Yvan Le

ID#: 260 430278
MATH-354
Assignment #5

Exercise 2.
b) To show that F is well-defined, it is encugh to show that Vx € C, its corresponding ternary expansion

x = Zkefggf in which a, € {0,2} is unique. Suppose not; let x € C be such that it has two such distinct
ternary expansions, denoted ZkEN% and Y yen %,;(’f Since these ternary expansions are distinct, then
3k € N such that a; # ay; let k, be the smallest such k. Then 0 = x —x = Zkewgéfg where for any
k € N, ¢, = ay — ay,. Since for k < k, we have a; = a; then ¢, = 0, and so we have 0 = Zkzk()%'%
Now we note that ¢y € {—2,2}. Furthermore, Vk > kg, ¢, € {—2,0,2}.

Suppose that ck = —~2.
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Then 0= - +Zk>k,}3k S =35t Bk = T3 T2 ek = T3 T3 T T
Thatis, 0 g — 5;(-0—. Clearly, this is a contradiction.
Now, suppose that ¢, = 2.
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Then 0 = = +Zk>k03k—— 3k0+zk>k0 = Tt5 ~ 2 Xioko 3k T 3k T 3k = 3Re-

That is, 0 = —— k ; again, this is a contradiction. Hence, we conclude that for any x € C, its ternary

expansion with a; € {0,2} is unique, and so F is well-defined.

Now, to show continuity, we first note that F is monotone non-decreasing; let x,y € C be such that
x < y with ternary expansions x = ZkeN%,y = Yren @' /3%. Since x < y, then for some k, € N, if

k <k then a, = ai, and ai, = 0,aj, = 2.

Denote F(x) = Zkef&‘i‘% and F(y) = Zke&xg%} then for k <k, we have by = by and by, = 0,by, =1,
and so F(x) < F(y) (with equality if and only if b, = 1 and by, = 0 for any k > k;). So F is monotone
non-decreasing.

Let € > 0 be given; w.Lo.g., we may assume that € < 1. We note that 3k € N such that-z}g < g; let kg, be

the smallest such k. Pick § = —1~— and fix x € C, where x = Zkem% and vk € N,aq; € {G 2}. We note

that ¥y € C such that [x — y| < §, we have two bounds bn yegivenbyy <y, = Zk 1 3’6 £ 4 D>k, ;k

and y 2 y, = Zk 1 =4 Zk>k0 S&- By monotonicity, it is sufficient to show that F(yl) < F(x)+— zk
1
and F(y;) = F(x) — ——~—, Denote F(x) = Z,{gpg—f; where b, = —. Then F(y,) = Zk 1 zk £+ Yok, oE 7

thatis, F(y,) = Zk 12;: 2% Zkem = F(x) +--—~as claimed.

o



Similarly, F(x) —— ZkEN Zbkg xS Zk ) 2,{ £t Zk>k0 : = F(y,) as claimed. Hence, F is

continuous on C. Fmally; 0= ZREN—‘ - F(0) = X!(EN sc=0and 1= Z,{EM T F(1) = ZREN =1

as claimed. m

c) We note that Yy € [0,1], y has a binary expansion; that is, y = ZkeNZ‘E where by, € {0,1}. Pick any
such expansion, and define x = Z,‘i":lg—f where a; = 2by; then clearly, F(x) = y'and since 2by, € {0,2},

then x has a ternary expansion where a; € {0,2} and so x € C. Hence, F is surjective. m

d) Suppose (a,b) € [0,1]\C; then 3n, k, € N such that a = —33,1—5 and b = %}3, where bothnandn+1
are co-prime to 3. So n = 1(mod 3) and n+ 1 = 2(mod 3). Since n = 1(mod 3), let a = Zk" 2

k=1 3k’
— k-1 ak ko—14ag
where @, = 1 and Vk < kg, a; € {0,2}. Thena =}, 2, o 3k0 =Y v 3k0 + Zk>k —. On the
_vko—1@ | 2 — by _ Gk — - -
other hand, we have b=}, % T3 Let F(a) —ka? with by, —;—. ag, =0, so by, =0;

-1b -1b
furthermore, Yk > kg, a, = 2 so bk =1. So F(a) = Zi‘_’,ll—z-% zko +Zk>ko : Z’,ﬁ" 11 2'; +—2—;,; On

the other hand, F(b) = 220_11 ;’; 4 2ko = F(a) as claimed. Hence, the function F obtained by extending
to [0,1] as described is well-defined.

Continuity is also clear; for any x € Int(C) (the interior of C), F is continuous at x as shown in b).
Furthermore, for any x € [0,1]\C, clearly F is continuous at x, since the function is constant on a
sufficiently small neighborhood centered at x. Hence, it remains to be shown that F is continuous at any
X € 0C, the boundary of C. Suppose w.l.0.g. that x is the left end-point of some sufficiently small closed
interval contained in C (here we allow singleton points to be a closed interval), and that x is the right
end-point of some sufficiently small open interval contained [0,1]\C. By continuity of F in C, we have
lim,_,,+ F(t) = F(x). By continuity of F in [0,1]\C, we have lim,,,- F(t) = F(x), and so F is
continuous everywhere on [0,1]. =

Exercise 14.
a) We note that by analogy with m,(E), the intervals I; covering E as defined for J.(E) are closed. Let

{Ij}jil be a finite covering of E by closed intervals; we claim that any limit point of E is covered as well.

Let x be a limit point of E, and let (xn)ff , be a sequence in E converging to x. Since £ QU}“‘LI I;, then
(% )m=1 is @ sequence in U} =1 1. Since U is a finite union of closed intervals, then it must be closed

as well, and so it contains all its limit pomts, hence, x €U}-._.1 [;. Therefore, it follows that E QUF} I

Then clearly, for any {I;}i} covering E, {ij}ii must cover E. Hence, |.(E) = J.(E). m

b) Consider E := @ n [0,1], the set of rationals in [0,1]. Since this set is countable, m.(E) = 0; however,
since £ = [0,1],then J.(E) = 1. m



Exercise 16.

a) We have E =N, Upspn Ex. For any n € N, let E;, =U,., Ej; since it is a countable union of
measurable sets, then Ej, is measurable. Then E =N, E}, is a countable intersection of measurable
sets, and so E is measurable. m

b) Since we have Yy m(E;) < o, then for any € > 0,3N € N such that ¥ ,.ym(E;) <e€. By
countable sub-additivity, this implies then that m(Upsy Ex) € Yaym(Ey) < €. We note that
E SUysy Ey and so by monotonicity, m(E) < €. Since € > 0 is arbitrary, we conclude that m(E) = 0.
]

Exercise 21.

Consider F:C — [0,1] as defined in Problem 2, and consider the non-measurable set N' € [0,1] as
defined on p.24 (Stein). Since F is surjective, then F~ () is well-defined, and we have F~1(V) € C.
By monotonicity of the exterior measure, m,,(F“l(N)) < m,(C). Since the Cantor set is Lebesgue
measurable with measure 0, we have m, (C) = m(C) = 0, and so m*(F“l(N)) = (. Sets of exterior
measure 0 are measurable, and so we conclude that F~1() is measurable. Hence, this is an example
of a continuous function that maps a measurable set to a non-measurable set. m

Exercise 28.

Fix 0 <a <1;let 0 € R be an open set such that £ € 0 and m,(E) = am,(0). Let 0 =[], I}
where [}, are open intervals in R. We note that EN O = E n I}, I, = LZX=1(E N I,). Furthermore,
since E S 0, we have ENO = E; hence, E =[[}.,(E nI). Now, suppose for contradiction that
vk € N we have m,(En[l,) < am,(l;). Since I,'s are disjoint and measurable, we must have
m(E) <m, (U (Enl)) = Y- mJ(Enl) < Yie,am, () = aYie;m. () = am,(0); where
the first inequality follows from countable sub-additivity. That is, m,(E) < am,(0). This is a
contradiction, and so 3/, suchthatm,(EN1I,) > am,(I,). m

Exercise 29.

By Exercise 28, 3] &€ R open such that m(Enl) = -;am(l). Llet E; = ENI. tet [ =(qab); then
m(l) = b — a. We claim that if the difference set of E, contains an interval centered at the origin, then
so must E. Suppose such an interval exists for £, denote (—a, a). Then Vx € (—a, a), 3y, ¥, € E; such

thaty, —y, = x.Since E; € E, then 3y,,y, € E such that y; — y, = x. Since x is arbitrary, this implies
that (—a, a) is contained in the difference set of E.

Suppose for contradiction that no such interval exists in the difference set of E;. Then given € > 0
o . . b~ .
arbitrarily small (without loss of generality, let € < -;(—?—), vx,ye Eywithx >y, wehavex -y >¢e—

x >y + €. Now suppose the sets E, and £y + € are not disjoint; then 3x,y € E, such that x = y + ¢,
contradicting the above inequality. So E, and E; + € are disjoint. We note that m(E, + €) = m(Ey),
since the Lebesgue measure is invariant under translation, and so m(E, U Ey + €) = 2m(E,).



On the other hand, [ +¢€ = (a+¢€b+e€). Since €<2§, then Ul +e=(ab+e€), and so
m(lUI+e)=b+e~a<§%(b~a)=~i~%m(}‘). Since E, &1, we have Ej+e&l+e€ and so

E, u50+e Clul+e Som(EqUE,+€) <mIUl+€) - 2*im(f) < 2m(Ey) gﬂm(z). Then
18 _
10
at the ongm, and so the difference set of E contains an interval centered at the origin. m

th:s is clearly a contradiction, and so the difference set of £, must contain an interval centered

Problem 1.
Let E = {x € R: 3 infinitely many p/q withgcd(p, q) = 1 such that lx ~ < pe } Here, we insist

that ¢ > 1 and let p € Z\{0}. The reasoning for letting q¢ > 1 is as follows: for any x € R, there are
finitely many p € Z\{0} such that |x — p|] < 1; these p are, in fact, |x] and [x], and so the case where
g = 1 does not affect whether or not a given x is in E. The reason for excluding p = 0 is simply because
0 is not relatively prime to any number other than 1.

First, we let R = [ [,ez[n n + 1) and denote E,, == E N [n,n + 1); then clearly, E = Unez En- To show
that m(E) = 0, it is sufficient to show that vVn € Z, E,, is measurable and m(E,) = 0.Fixn € Z.

For any q >1, define E,,= {x € [—n,n):3p € Z\{0} such thatged(p,q) = 1 and lx ——-l < }

Then E,, = {x € [-n,n):x € E, , for infinitely many q}. Thatis, E; = lim SUPg—co (Eq i)-

Fixq > 1.x € E, g - x € [-n,n) and 3p € Z\{0} such that ged(p,q) = 1land lx --‘ < — - for some

pe{ng+1Lng+2..,(n+1)q-1} xE[-——a—- -+ ] Note that pe{nq,(n«l»l)q} since we

insist that p is relatively prime to q. Note that there may be some p in the given range where

(n+1)g-1 [E _ip
q

ged(p, ) > 1; hence, we can conclude that £y, ; SU,,_, 1y eyl

+;1§]. Each of these intervals

2(q-2) < 2

have length -5; and there are at most (g — 2) such intervals. So m(En,q) < e pe2

Now we note that ¥, .o m(Ey ) < z‘?’*‘”% < 0. So by the Borel-Cantelli Lemma, we conclude that

m(E,) = 0.Since n € Z is arbitrary, we thus conclude that m(EyY=0.m



