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2. b) We are given = = 322 3k, f( ) > he gk and by = % so given |z — y| < d,z,y € C we
find [f(z) - f(y)| = DIy bgk — Yhe1 2k ]2220 m[ < 2[ > e “L“‘“&‘l = 20. Thus with
the choice of 0 := £ the continuity follows. It is clear that for the ternary expansion of 0 and 1
respectively, ay is {0,0,0...0...} and {2,2...2...} respectively, so f(0) =0 and f(1) = 2, 27%F = 1.

c) Suppose we are given an arbitrary y € [0,1]. It follows y has a binary expansion, i.e. 3{c,}
such that y = 3732, &k, where ¢, € {0,1}. It follows then that a; = 2¢, € {0,2}. Now consider
our function and its mapping; = = 332, %, f(z) = X2, gl,f;. Now a;, :=€ {0,2} and by = %.
Notice too that with {bf = cx : Yk}, y = f(x) and x is an element of the cantor set. But this was
an arbitrary point from [0, 1], so it follows that f(z) is surjective.

d) Suppose we are given an open set in the complement of the cantor set, say S = (a,b), and
we define {F(z) = F(a) : x € S}. Since our function is continuous in the cantor set and in the
complement of the cantor set, as well as continuous at a, the continuity remains to be shown over
the point b. Indeed, suppose we have a point in the delta neighbourhood of x, called vy, such that
y > b. Then |F(y) — F(z)| < |F(y) — F(b)| + |F(b) — f(z)| < 2¢ so the continuity follows.

14. a) Consider a finite set Q) of closed cubes which cover ¢l(E), and a finite set of closed cubes
R which cover E. It follows that since @) is a cover of ¢l(E) it is also a cover of E, for all Q. Thus
JAE)=1inf3> |R| < infX> |Q| = J.(cl(E)). Now for the reverse inequality, consider a closed set
Ey C E. We keep a similar Q, such that Q is a set of closed cubes which cover c/(F). We choose

S such that S + 5% = @, and 3. |5] < J.(Ep) + 5. It is worth noting that our first construction
is viable for an adequatg Chozce of Q Notice that by our construction, (37]5]) + § = 3 |Q|. Then
JAcd(E)) <31Q Z |S| + § < J(Ey) + ¢ < J.E) +¢ which completes the reverse inequality.

We conclude J,(E) = (CZ(E))

b) Consider the rationals over [0,1]. It is true that all irrationals are limit points of rationals.
Thus the closure of the rationals over [0, 1] is [0, 1]. Next, [0, 1] covers itself, so J,([0,1]) < 1. Also,
J.([0,7] < r by the same logic. Since [0,r] C [0,1]]r < 1, it follows r < J.([0,1]) < 1. But r is
arbitrarily smaller than 1, so it follows 1 < J.([0,1]) < 1, s0 J.([0,1]) = 1. But by a), it follows the



jordan content of the rationals over [0, 1] is 1. Also, because the rationals are countable, we may
create a countable number of disjoint sets each with length zr. It follows from the sub-additivity
property of the lebesgue measure that m(F) < 332, m(Ey) = ¢. Since € is arbitrary, we conclude
m(E) = 0.

16. a) We know that E = N2, U, E,, and all Ej, are measurable. Since measure is closed
under countable union, Fy = U, B, is measurable for any k. Now measure is closed under count-
able intersection, so N2, F}, is measurable. It follows E is a measurable set.
b) M2, Uy By Consider the case k = 1,k = 2, then (Bt UE,U . UE.)N(EUE3U
U E;.) = UX,E, Now consider k& = k' such that W Uy By = UYE,, then UPE, N
®b, = (By UBpi U UEU..) N (Bga U Bk U UE U ) = Uy Thus
E =2, ux, B, = U2, E, By the sub-additivity of the measure, 0 < m(E) < 3302, m(Ey,).
But it is clear, since their sum is finite, 3&" such that 322, m(E,) < e. With the choice k = K
we obtain 0 < m(FE) < e. Since ¢ is arbitrary, it follows m(£) = 0.

91. Consider the functiongdl defined such that z = 332, §, ax € {0,2}, f(z) = 33, % and
extend this function as is done in 2.d). such that f : C — N, where C is the cantor set and N
is the unmeasurable set constructed in the book and in class. We have shown the continuity of
this function over [0,1]. Since f : C — [0,1] is surjective, it follows that f: C — A € [0,1] is also
surjective, that is our function can truly map the cantor set to our non-measurable set. Now all
that remains to be shown is the continuity of f over f : C — N. Indeed, consider z,y such that
f(z) €N, fy) € N, |z —y| < 8. Notice that f(z), f(y) € [0,1], so by the continuity of f(x), f(y)
over [0,1], |z — y| < & implies |f(z) — f(y)| < 2c. But this immediately implies the continuity of
f:C — N, and so our proof is complete.

98. Let us choose an open set @ such that E C O and m.(E) > am,(O) where o € (0,1). Then by
the lemma 1.3, 3{1,} where I;NI; = 0, such that O = U2 I,. Thus = ENUZ [, = U2, EN L.
We suppose Al such that m,(ENIy) > am.(I}). It follows m*OEE) < e ﬂ:(EPII) o ma(Ly).
Then by our initial assumption we have m.(O) < mé{fl < 3%, m.(1,). But each I, is an open set,
and so measurable, and so is @, so by theorem 3.3, m,(0) = m(0) = Y02, m(I,) = 352, ma(lz).
But our assumption Al such that m.(E N 1) > am.(Iy) implied m,(0) < 3232, m.(1;), a con-
tradiction. Thus our assumption is false and we conclude 31y, such that m.(E N I;) > am.(lx).

29. Suppose E contains an interval 1. Since it is well ordered, it has a minimum and maxium
point, m and M respectively. Then the point 0 is included in the difference interval M — M =0
and it is centered about the origin. i, = m— M, Ly = M —m and L, = — .. Now suppose
E does not, contain an interval. Then by 28, 31 such that m(E N 1) > m(I) For simplicity sake
we label Ey := E N 1. Now suppose the difference set of Ey does not have an open interval about
the origin. Then Y,y € Ey, |z —y| > ¢, for any ¢ we like. Thus the sets Ep, Eq + € are disjoint. By
definition, it is clear (Eq U (Eg +€)) C (1U (I +¢). It follows m(Ey N (Eo +€)) < m(I U (I +¢€)).
Since the sets Ey, Ey + ¢ are disjoint, it follows m(2Ey) < m(I + 2¢). It follows m(Ep) < -}%ﬁ + €.
But ¢ was arbitrary, and by assumption i%m(f ) < m(FEy). Since our interval I need not have zero
measure, we reach a contradiction. Thus the difference set of Ey has an open interval about the
origin. Since E; € E we conclude E has an open interval about the origin. It is clear that it is



centered at the origin, as any point in this open set about the origin can be written as z = 2 — g,
so 32’ =y — x = —z which concludes our proof.

31. Suppose we are given the constructed set N'* in exercise 31. Next consider the set of ra-
tional numbers over the reals; {r}. Then we claim [0, 1] C U2, N + ry. Indeed suppose z € [0, 1].
Then by constructlon da such that z — 2, = 74 since  — x, € &,. Next by monotonicity and
gub-countable additivity, 1 = m([0, 1) < ¥2,mNE) = X2, m(N*). Thus m(N*) > 0. Thus
by exercise 29 the difference set of N* must ha:ve an open interval (a,b) about the origin. But
the difference set cannot contain any rationals. This is because if x — y = |z, y € N*, then x
is equivalent to y and so either x or y is not part of N*. Since the rationals are dense in R, it
follows that any interval centered at zero must contain a rational. Thus there cannot be an open
set about the origin for this difference set, which contradicts exercise 29. By assumption for exer-
cise 29, F is measurable and m(FE) > 0. We showed m(N*) > 0, so it follows A™* is not measurable.

1. Notice that this set is simply the same set over [0, 1] which is transla,ted to each interval
[, n+1] for integer ns. This is clear when one considers for |z — < Where z € [0, 1], if we con-

sider an arbitrary set z € [n,n+1], then [z +n 2| < L implies

q3 so that if we define
p’ = p—ngq then we have effectively reduced our set over ['n n+1] to the set over [0, 1]. Now we claim
m(E)jp,) = 0. If this claim is true then Y m(E) over all intervals is 0, and the proof is complete.
Thus it is sufficient to show m(E)1 = 0. Indeed, let us define Ey, = {x : lz—E| < —q%lq > k}. Then
Eppqp = Mz Uiy En. Thus, by the borel-cantilli theorem it is sufficient to show 332, m(E}) < oo
to prove our claim. Indeed, we first notice that forp > q, |z — 91 > 1 . Thus we have at most ¢+ 1
intervals for each ¢ > k. 1t is clear that = . < z-P< 1 S0 that m(Ek) < (q+ 1)( 5) = q—22' + 53’~
We also have - = < 5 so that m(Ey) < 5+ & Thus ka1 m(Ey) <32 & + 7 < 0o. Our claim
therefore holds and the so m(FE) = 0.






