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Honours Analysis 3 - MATH 354 Assignment 5: due November 17th

2. The Cantor set C can also be described in terms of ternary expansions.

{b) The Cantor-Lebesgue function is defined on C by

Qk

oG oG
F(x) = Z b ifx = Z ar37%, where by = ay/2.
k=1 k=1

In this definition, we choose the expansion of x in which ag = 0 or 2. Show that F'
is well defined and continuous on C, and moreover F(0) = 0 as well as F(1) = 1.

Solution

Clearly, the ternary series expansion of # = 0 is ap = 0V k, thus, by = 0V k and we
have F(0) = 0. Taking the expansion in k for © = 1, we have a5 = 2V k. Indeed,
the sum of the geometric series 33, 1/3%F = T’l}"ﬁ? —1=23/2—-1=1/2. Thus,
taking ar = 2V k gives x = 1. With this choice of the sequence ag, by = 1V k and
so Fz) = Y72,1/2F =2 — 1 = 1, thus showing F(1) = 1.

Recall that by € {0, 1}. For continuity on C, let £ > 0 be given and consider z,y € C.
Then 3N € N such that 27V < ¢ (why?). Indeed, suppose that the difference is
less than £, there must exist an index N for which all by agree, but for which for
indices n > N, the by may differ. The difference between the two series then is
at least 27V=2 (if only one term differ) and at most 27V (if all terms for index
greater than N differ).

Thus, for all n < N, by, = by,. Thus,
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thus take 6 = 3~ (V+1_ For this choice, we have indeed
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To show now that F(x) is well defined, we want if z =y, then F(z) = F(y). First,
we claim that this entail that the expansion ap, = ak, V k. For, suppose not and
let m be any natural number for which they disagree and wlog, say am, > am,-
Then, in the m'™ step of the construction of the Cantor set, we fret x is in the left
endpoint of a right subinterval, y is the left endpoint of the left subinterval which
are at distance 2°™ apart. Thus x # y, which is a contradiction. Since all terms
in the series expansion are equal, so ag, = ag,, then by, = by, V k and we conclude
that F(z) = F(y).

Prove that F': C — [0, 1] is surjective, that is, for every y € [0,1] there exists x € C
such that F(z) =y.

Let y € [O 1]. Then, there exists a unique binary expansion such that y =
> k1 br, /2 Taking ay, = by, - 2, we get a ternary series expansion of the form
S22, ak, 3%, It remains thus to show that this element say x, is in C. We pro-
ceed by induction on the points created at the n' h step of the construction of the
Cantor set. Clearly, the left endpoints in the first step of the construction are
0 and 2/3. Suppose that we have at step C, removed the intervals and by the
induction hypothesis all left endpoints have ternary expansion with ax € {0,2},
where z = ") 1a,k3 . Thus, for any z satisfying the above conditions, in Cyy1,
for in the interval the expansion in 0 corresponding to the left endpoint of the left
subinterval (equal to ) or the left endpoint of the right subinterval (corresponding
to the the left endpoint to the right of the term at distance d,,, which corresponds
to 2/3°™ for m the first natural number less than n for which the expansion differ
by 2. Namely, we have

T i) 7t
ag Qg Qg 1

Zg‘gﬁxﬁzg + Z 3n+1 => @ te

k=1 k=1 =N+1 k=1
Since no endpoint is removed in the Cantor set, all points in which a; = {0,2} are
in C,, and this for all n.
One can also extend F to be a continuous function on [0, 1] as follows. Note that
if (a,b) is an open interval of the complement of C, then F(a) = F'(b). Hence we
may define F' to have the constant value F(a) in that interval.



Solution

F is the Devil’s staircase, and is right-continuous. Let z,y € [0,1] be given. If
x,y are as in (b), we have continuity. Given a step height ¢, we want to find the
distance from which two points are away from one another by less than 4 imply
that the steps are less than ¢ . Let ¢ be given, there exists IV such that ¢ < 2N
Using the same continuity on the Cantor set, we can take § = 3-N=2 1 claim this
§ works. Indeed, if |z —y| < §, then there exists ¢1, cp € C (not necessarily different
from z,y) with F(cy) = F(x) and F(eg) = y+2V~1. There are multiple cases now:
if z,y are in C, we are good. Similarly, if one of the endpoints is in the Cantor set,
but y is not, Jeo € C which is the next endpoint on the right of y. By the choice
of §, using the triangle inequality, we have |z — y| = |z — ca + o — y| < & — c2| +
leo —y| < 2/37 V-2 < 37N=1 Now, by the triangle inequality,

[F(x) = F(y)| = [F(x)F(ca) + Flez) = F(y)l <27V 1y 27Vt =27V,

More generally, take = to be a point not in the Cantor set, then Je; € C with
¢y <z, yet F(ec1) = F(x). Therefore, using the same argument as above

};’z:-~y§:§$c‘—cl+(:1—()2+02‘y§
<o —er] +er = ea] + |y — e
3 1

< 3NFE T 3N
then from the continuity in (b) and the construction of the Cantor set intervals,

|F(z) — Fy)| = |[F(x) ~ Fler) + Fler) = Fleg) + Flea) = F(y)]
< |F(er) = F(ea)|

1
LeE= SN
by construction and the choice of §. This proves that F extends to a continuous
function on |0, 1].

9. Extra-credit. Give an example of an open set O with the following property: the
boundary of the closure of O has positive Lebesgue measure.
[Hint: Consider the set obtained by taking the union of open intervals which are deleted
at the odd steps in the construction of a Cantor-like set.]

Seolution

The fat Cantor set here is such example. Consider a set in which we remove (instead of
the third intervals remove from [0,1]) the subintervals of length 27" from the middle of
each of the 277! intervals at step n € N. Thus, the intervals of the set Cf, constructed
iteratively left are precisely at step one: Cyy = [0,3/8] U [5/8,1], etc. The measure is
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then the sum of the measure of each closed interval, since the countable union of those
closed intervals is closed and we can take the infimum over the cover by closed intervals
to be precisely this, then

R N

so the measure of Cy is zero. Thus, by construction Cy is closed, being the countable
union of closed sets, so the subspace restriction [0,1]\ Cy is open and has measure 1 /2.
We can construct an sequence of limit points that converge to any points in [0,1],
constructed by taking a point in S = [0,1] \ Cy that converge to some point in C¢. The
closure of the set S is [0, 1] and since C; U 0Cp = Cs, and since the boundary must
contain at least Cg, then we infer that 9O = 9]0, 1]\ C; has measure at least one half.

The purpose of this exercise is to show that covering by a finite number of intervals will
not suffice in the definition of the outer measure m..
The outer Jordan content J.(E) of a set E/ in R is defined by

N
Jo(E) = inf Y |I]
j=1

where the inf is taken over every finite covering £ C U?’;l I;, by intervals [;.

(a) Prove that J.(E) = J.(E) for every set E (here E denotes the closure of E).
Proof. Since by definition E C E, we must have for a finite cover U?’i} I;. of E
that £ C U;;i I;,, thus since we are taking the infimum for E over a bigger set,
JAE) < J.(E).

Conversely, consider an arbitrary finite cover of E by intervals. For each interval
I;, take C; to be the infimum over all closed interval containing I; (here we assume
I; # 0), so that |C;| < (1 + €)|I;]. This corresponds to adding the endpoints of
each I; Taking the infimum over all finite covers, we get that Cj are almost disjoint



{other wise, the [; overlap and one could choose non-overlapping intervals /;, such
that ZY I < Z —1 /;. which is a contradlctlon) Also, since E C Uj 1(33 EC

UM iy ;. but this infimum must be equal to Uy =1 Q} since the finite union of closed
sets is closed. Thus, by countable sub-additivity, we have

N

N
Ulcii< > 1c] <L%H(1+)
j=1

=1 F=1

where ¢ is chosen arbitrarily small. ]

(b) Exhibit a countable subset E € [0,1] such that J,(E) = 1 while m.(FE) = 0.

Solution

Our good old friend @ N [0,1]. Indeed, by (a), we know that J.(QN[,o00]) =
JQN[0,1]) = J.(RN[0,1]) which is just 1 since we can cover by the closed
interval [0,1], of length 1. The outer measure of Q N [0, 1] is however 0, since we
can cover each rational in the interval by a countable number of degenerate boxes
(consisting of the rational point). Let n be the position of rational ¢ € [0, 1] using
Cantor diagonalization argument. Using countable sub-additivity, we are summing
a countable number of measure zero set, so > ir; m.(gn)=0. if one wants, cover
them instead with boxes of length £/2" so that ¢, € Q C Qp = [gn—¢/2", gn+€/2"]
as above. Then by countable sub-additivity,

(U Qn) < Zm* Qn)

’]’l::
2e
< — = 2¢.

on
n=1

and since £ was arbitrary, we conclude that the measure of a countable set is zero.
Thus, m.(Q N0, 1}) = 0, while J,(Q@N[0,1]) = 1.

16. The Borel-Cantelli lemma. Suppose {E;}i°, is a countable family of measurable
subsets of R? and that

0
Z m{E) < oo
k=1

Let

E ={z e RY: 2z ¢ E, for infinitely many k}

= lim sup(Ey)



{a) Show that F is measurable.

Solution

Since Ej, is a family of measurable subsets and that countable union of measurable
sets is measurable, then for each k > 1, select Oy open such that m,(Op — E) <
5/21“, Write B, = U, Ex. The countable union of Oy, O, is open and by
sub-additivity,

o0
my(On — Bp) < Y mu(Of — Ey) <e.
k=n
thus each B,, is measurable. Since complement of measurable sets are measurable,
we have therefore that the countable intersection is. These properties are proved
on p.18 of the book.

(b) Prove m(E) = 0.
[Hint: Write E = (72 Ugsp Er]

Solution

First, at least one of E}, is finite, since Y 5o ; m(E}) < co. Let B, as in the previous
part, B, forms a decreasing sequence of sets, since we take the union over less sets,
thus B, 2 Bpy1 2 -+ for all n. Using continuity from above, and the fact that
m(E},) < oo for some k, then by continuity from above, we have

oG
lim m(By) =m ( Bn> .
n—0o0 1

T

thus

o o0
m (lim sup Ek> =m (ﬂ B,,) = nlgréo m(B,) = nhr}go m (U Ek)

koo n=1 k=n

and from countable sub-additivity, we have furthermore that

oG] 2n(Em)

Since the sum on the right hand side converges, Ve > 0, 3N > n, N € N such that
for my,ma > N, m(Epm,) — m(Em,) < ¢ (we can bound using Cauchy sequences
the partial sum for the tail). Fix mq; passing to the limit (letting ms — 00), we
see that the right hand side goes to zero, thus m(E) = 0. '

21. Prove that there is a continuous function that maps a Lebesgue measurable set to a
non-measurable set.
[Hint: Consider a non-measurable subset of [0,1], and its inverse image in C by the
function F in Exercise 2.]
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28.

Solution

Indeed, consider the non-measurable set A constructed in class using the axiom of
choice. Using the hint, we consider the function F : C — [0, 1}, which is surjective and
continuous by 2. Consider then the pre-image set F~}(\) = {z € C, F(z) € N'}. Taking
f: F7YN) — N and the function f to be the restriction of F(x)| e, this function is
also sur, Jetm\fc and continuous since F ( ') was. Now, since F~1(N) € C, by monotonicity
0 <m(FYNY)) <m(C) =0,s0 F7YN) is xneammblt, while f(F 1(./'\/ )) = N is not
measurable.

Extra credit. Suppose F1 and Fy are a pair of compact sets in R? with E; ¢ E», and
let a = m(Ey) and b = m(E>). Prove that for any ¢ with a < ¢ < b, there is a compact
set I/ with Ey ¢ EC Ey and m(E) = c.

[Hint: As an example, if d = 1 and F is a measurable subset of [0, 1], consider m(ENI[0, t])
as a function of ¢.|

Solution

Consider the function f : m(E; U E2 N Cy), f: [a,b] — R, where we take the cube Cy
centered at zero with side length of ¢ € [0,1] such that (7}, is a hypercube of side length
[ in which F5 is properly contained, thus C; > Es. Then, taking cubes C; of measure
thus measure m(Cy) = t4. Since Ei, Ey are bounded, we can consider Fy ¢ C B, and
Es C CFQ “Since compact in R? is equivalent to closed and bounded. If ¢t = 0, then
ExnCy = 0, and so f(0) = m(E,) = a. Similarly, if ¢ = [, then by construction
Cp, N Ea = Ey and f(E2) = m(FE; N Ey) = m(Es) = b since £y C FE;. Clearly, since
the intersection and union of closed sets is again closed, and since E C Fy bounded, £
must be compact. Furthermore, the function f defined above is continuous. Indeed, f
is monotone increasing for ¢ and we have for £ given, then we know that for z,y € [0,],

|m(Ey U (Ey i Cy)) — m(EL U (Ex N Cy))l
= }m(Eg NE2NCy) — m(E? N Ey N Cy)l

< m(Cy) — m(C,)|
|zt — |

and in particular, if z or wlog ¥ # 0, then we can write a = z/y and the above will
be y¥(a® — 1) = y%(a — D)(a®™ + - 4+ 1) and taking = Y close enough we get a — 1
=ylz — y|, thus taking |z — y| < §, we get continuity. oo

By the Intermediate value theorem, since the function is (ontmuous on [0,1] and a <
¢ < b, with Ey C E C Es, then 3ty € [0,1] such that f(tg) = ¢. Taking this delta, we
get that B = Iy U By N Cy, which is compact corresponds to the desired result.

Let E be a subset of R with m.(E) > 0. Prove that for each 0 < & < 1 there exists an
open interval [ so that

m{ENT) Z am.(]).

-1




Loosely speaking, this estimate shows that F contains almost a whole interval.

[Hint: Choose an open set O that contains E, and such that m.(E) = am.(O). Write
O as the countable union of disjoint open intervals, and show that one of these intervals
must satisfy the desired property.]

Solution

Here, use the fact that every open set in R can be decomposed uniquely into a countable
union of disjoint sets, that is can write O C R, O = |2 [;.

The case where m,(E) = oo will be dealt with later. Assume that the outer measure
of the set E is non-zero and finite. Let £ > 0 given be such that am.(E) +& <m.(E).
Indeed, from the definition of infimum, ans assuming m.(E) > 0, then m.(E)(1~a) >0,
so Je > 0 such that m.(E)(1 — @) > ¢, yielding the above claim. We thus have

a<l-—
- m.(E)
By regularity, 30 open such that m.(O\ E) <e, £ C O so that m,(0) < m,(E) + €.
Now, since m,(Q) > m.(E) > 0 by monotonicity, we can safely divide through by
m«(O) to get
€ m(E) € €

_ — e 2> (Y
! m.(O) < ma(0) =1 ma(O) > 1 m«(O) ~ “

and from above, we get m.(E)/m.(0) > «, therefore m.(E) > am,(Q). We now use
the decomposition of O into disjoint intervals and write

my(E) =m(ENO)=m. | EN u I;

j=1
o0
= My U Eny
j=1
oG
< Zm(Eﬂlj)

j=1

where the last two steps use De Morgan’s law and countable additivity (the sets E N1,
being disjoint). To conclude, since we have disjoint I;, it follows that

Zm{E N1 > am,(0) = Z am.(f;)
j=1

J=1
and this inequality entails that for at least one j, say jo, we have m. (ENj,) = amy(Ij,).

Now, if m,(FE) is infinite, then we can consider the open interval R. Then, we have
E C R, so the LHS is 0o = m,(E) > am.(R) = oo, which is degenerate, but works.

8



. Suppose E is a measurable subset of R with m(FE) > 0. Prove that the difference set of

E, which is defined by

z€R:z2=ux -y for some x,y €L,

contains an open interval centered at the origin. If E contains an interval, then the
conclusion is straightforward. In general, one may rely on Exercise 28.

[Hint: Indeed, by Exercise 28, there exists an open interval I so that m(E N [) >
(9/10ym(I). If we denote E N[ by Ey, and suppose that the difference set of Eq does
not contain an open interval around the origin, then for arbitrarily small a the sets Ep,
and Ep + a are disjoint. From the fact that (Ep U (Ep +a)) € (U (I + a)) we get a
contradiction, since the left-hand side has measure 2m(Ey), while the right-hand side
has measure only slightly larger than m(I).]

Solution

Clearly, since E is non-empty (it has positive measure), 3v € Fand z =0 =1~z €
E — E = Z. If E is an nonempty interval, then there exists sup £ = b, and inf F = a,
and the set Z contains the open interval (—|b, — a,|,|b, — a.|) around zero, possibly
excluding the endpoints.

If E is not an interval (or doesn’t contain one), then we may rely as on Ex. 28, using
the fact that there exists I open such that m(E N [) > %rn,(l). Let ENI = Ep, then
Ja = min{inf, yep |z — y|, 2m(1)} > 0, a > 0 chosen arbitrarily small. Furthermore,
Je > 0 such that @ — e > 0. Finding such «a is possible due the positive measure of
E C I (cannot contain a single point, or only countably many isolated points, and we
are assuming that it doesn’t contain an interval, thus the distance between two points
is positive). From this, it follows that Ey and Ey — a are disjoint (see assignment 1 or
Observation 4 in Stein & Shakarchi). Here, Fy +a = {z +a:x € Ep}

Since d(Ey, Eg + a) > 0 are at distance a — £ > 0, then using countable sub-additivity
and the fact that the sets are disjoint, we have

m(Ey U (Ey + a)) = m(Ep) + m{Ey + a)

both of which are measurable since [ is measurable, and hence Ey = E N [ is also
measurable. The Lebesgue measure coincides with the outer measure and both are
translation invariant. Now Eg = EN I C I, and also Ey +a C [ + a, thus both Ey and
Eq + a are contained in /U ([ + ). We have by monotonicity, by translation invariance
and countable sub-additivity that

2m(Fg) = m(Eg U (Ey + a)) <m{l Ul + a))

where [ U (I + a) is an interval by the choice of a, which is (inf(I),sup{l) + a}. We can
write any open subset in R as the disjoint union of countably many open intervals, so
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TU(I+a)=1+J, where J is the interval (sup([),sup() + a) of Lebesgue measure a.
By countable sub-additivity, m(IU([ +a)) = m(IUJ) = m(I)+ m(J) < m(I)+3m(l).
But then

G
gy'r‘a(I} >m(I) +a > 2m(Ep) > gg)m(ifj
I8 ]

which is a contradiction. Thus, we conclude that there exists an open interval I centered
around the origin.

Extra credit. The result in Exercise 29 provides an alternate proof of the non-
measurability of the set A/ studied in the text. In fact, we may also prove the non-
measurability of a set in R that is very closely related to the set N .

Given two real numbers = and y, we shall write as before that = ~ y whenever the
difference z — y is rational. Let N* denote a set that consists of one element in each
equivalence class of ~. Prove that N'* is non-measurable by using the result in Exercise
29.

[Hint: If A is measurable, then so are its translates Ny = N* + 1y, where {rn}72, is
an enumeration of . How does this imply that m(N*) > 07 Can the difference set of
N* contain an open interval centered at the origin?]

Solution

We proceed by contradiction, assuming that N™* is measurable. If we consider as indi-
cated in the hint the set A3, which is the translation of the set N™* by r,, then since
by construction our equivalence classes are real numbers that differ by a rational, we
can enumerating all of  take the countable union of these translate, which have same
measure. Now, if we take

m([j N*+’rn> = m(R) = oo,

n==]

and by countable sub-additivity, we know that

m (U N* + rn> < z mN* + 1) = Z m(C}) =
n=1 n=1 i=1

from the previous result. On the other hand, we have if N'* is measurable that for sets
of positive measure, then the difference set of A contains an open interval centered at
the origin. But this cannot happen, since then z — y =0 would imply z ~ y, and since
the set consists of the selection of one element (using the axiom of choice) from each
equivalent class, then 0 is not in the difference set; we infer that m(N™) = 0, so together
this show that actually, N* is not measurable.

10



37. Extra credit. Suppose I is a curve y = f(z) in R?, where f is continuous. Show that
m(l") = 0.
[Hint: Cover I by rectangles, using the uniform continuity of f.]

Solution
Consider an interval E,[n,n+ 1] for n € Z. Then, for all n, the union of these sets form
a partition of R of almost disjoint closed intervals. For any such interval, we have since
the function is continuous absolute continuity for free on this interval. Let & = 27K,
then we can tile the unit interval with N different rectangles. By absolute continuity,
we have that there exists d, for each given & which corresponds here to the base of each
rectangle. Taking 6 = min{1/N, 4.} given, then the total area of the cover for I'|j, ;1) 18
N x 46/2F < 4/2%. This holds for all k, thus from this we infer that m(I'|[n,n + 1]) = 0,
taking k — oc. Since our choice of partition of the real line is countable, we can then
using countable subadditivity to take

m([) = U m(CME,) < Z m{(l'NE,) =0

nez neZ

since each individual I' N E,, has measure zero for n € Z. Therefore, m(I') =0

1. Given an irrational x, one can show (using the pigeon-hole principle, for example) that
there exists infinitely many fractions p/q, with relatively prime integers p and ¢ such ©
that

{
e
-

zL'w...
q

However, prove that the set of those # € R such that there exist infinitely many fractions
p/q, with relatively prime integers p and g such that

1
< < 2-te
<3 (or <1/¢77)

o=t
:L‘ e —
! qi
is a set of measure zero.

[Hint: Use the Borel-Cantelli lemma.]

Solution

Let z be given and consider the interval [n — 1,n] for n € N in which z lie. Wlog,
suppose r is positive. We want to consider the set of 2 such that

et
q° q g

and

H H
I . ] pl 1
E, = {;z‘n € [n—1,n): 3 infinitely many p, ¢ coprime for which |z, — = < —
3 Lq

11



Let

vy

« p 11 p)
Ey= (~ et
! ij g ¢ ¢
{n—1jg<p<ng
p.g.coprime

where ¢ is fixed. Now,

. 1 ] 1 4n
m(Eg) <2 L m (——§> < 2m (nq i n) < 2m (npq:: ) < ——?

- q q q

(n—1l)gsp<ng
p.g,coprime

Thus, we have m (Ugil E},) < Yy m(Ey) < Y f%]-? < oo since the latter series

converge by the p test.
Now, we can invoke the Borel-Cantelli lemma. Since

Z m(Eq) <oo = m (lim sup Eq> =0

—1 q—+00
by the previous problem. Considering the countable union of the sets
- 4 £ ;
E = U E,:{t,cQ" (n-1)<z<nnecN}
neN

over N, since each set is almost disjoint, then by countable sub-additivity, the corre-
sponding sets have measure less than the sum, and since each set as measure zero,

0<m(E)y=m (fj En> < i m(E,) =0
n==1 n=1

so m(E) = 0. It is straightforward to extend this by adjoining the sets of negative
irrationals satisfying the above conditions. Label them E_p 1 for —zn described above,
where x, >0 € @C, to E. Since Z is countable, a similar argument holds for

i

, ! —p 1
! g

and the union of these two sets is again less than the measure of the sum, which are
both zero. This is obvious (symmetry).



