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Practice problems not for credit

Problem 1. Determine whether the family of F = {fn} functions fn(x) = xn is uniformly equicon-
tinuous.
1st Solution: The family F is clearly uniformyl bounded. If it were uniformyl equicontinuous, we
could apply Arzela-Ascoli’s theorem to conclude that a sequence fn has a subsequence that converges
uniformly in C[0, 1]; the limit would have to be a continuous function g(x). However, it is easy to
see that fn(x)→ h(x) as n→∞, where

h(x) =

{
0, x ∈ [0, 1),

1, x = 1.

This function has a jump discontinuity at x = 1 and so the convergence cannot be uniform, hence
F is not uniformly equicontinuous.
2nd Solution: Alternatively, we can show that for any sequence nk, the sequence of functions fnk

cannot be a Cauchy sequence in C[0, 1] (which would be necessary for uniform convergence). Indeed,
fix some m = nk, and consider the d∞ distance between xm and xn, n = nk+1, nk+2, . . . We claim
that lim supn→∞ d∞(xm, xn) ≥ 1/2.

Indeed, choose x0 s.t. xm0 > 3/4, say. Then let N be such that xn0 < 1/4 for n > N . Then for
any nk > N , we have xm0 − x

nk
0 ≥ 3/4− 1/4 = 1/2, hence the same inequality holds for d∞, QED.

3rd Solution: Finally, take x = 1 in the definition of the uniform equicontinuity. Then for any
fixed δ > 0, we clearly have limn→∞(1− δ)n = 0 6= 1 = fn(1), which shows that for large enough n,
|fn(1− δ)− fn(1)| ≥ 1/2, and so the family F cannot be uniformly equicontinuous at x = 1.

Problem 2. Suppose fn : R→ R is differentiable for each n ∈ N. Suppose also that {f ′n} converges
uniformly on R and that {fn(0)} converges. Then {fn} converges pointwise on R.
Solution. Fix x ∈ R, x 6= 0, and let ε > 0 be given. Since {fn(0)} converges it is Cauchy, so we
may choose N1 ∈ N so that

m,n ≥ N1 implies |fn(0)− fm(0)| < ε

2

Furthermore, since {f ′n} is uniformly convergent it is uniformly Cauchy. Therefore we may choose
N2 ∈ N so that

m,n ≥ N2 implies |f ′n(y)− f ′m(y)| < ε

2|x|
for all y ∈ R

Now set N = max(N1, N2) and fix any m,n ≥ N . Then use the mean value theorem to choose
c ∈ (0, x) so that

(fn − fm)′(c)(x− 0) = (fn − fm)(x)− (fn − fm)(0)

Then using the above inequalities we find that

|fn(x)− fm(x)| ≤ |fn(0)− fm(0)|+ |fn(x)− fn(0) + fm(0)− fm(x)|
= |fn(0)− fm(0)|+ |(fn − fm)(x)− (fn − fm)(0)|
= |fn(0)− fm(0)|+ |(fn − fm)′(c)(x− 0)|
= |fn(0)− fm(0)|+ |f ′n(c)− f ′m(c)||x|
< ε



We conclude that {fn(x)} is Cauchy and hence convergent. Thus {fn} converges pointwise.

Problem 3. Suppose that A ⊂ Rn and that F : A → Rm is continuous. If A is path connected,
then its graph

G = {(u,v) ∈ Rn+m|u ∈ A,v = F (u)}

is also path connected.
Solution. Let (u1, F (u1)) and (u2, F (u2)) be two points in G. Since A is path connected, there
exists a continuous path φ : [0, 1] → A connecting u1 and u2. Consider the path Γ : t →
(γ(t), F (γ(t))) ∈ G. The function F (γ(t)) is continuous, since it is a composition of two contin-
uous functions. Since the coordinate functions of Γ are continuous, Γ is a continuous path joining
the points (u1, F (u1)) and (u2, F (u2)) in G, hence G is path connected.

Problem 4. Let d(n) be the number of digits in the decimal expansion of a natural number n, e.g.

d(7) = 1, d(262) = 3, d(20032004) = 8.

Determine the interval of convergence (including the behavior at the endpoints) for the series

∞∑
n=1

10d(n)

n
xn.

Solution. Let an = 10d(n)/n be the n-th coefficient of the power series. Suppose

10k ≤ n < 10k+1.

Then d(n) = k + 1 and so

1 =
10k+1

10k+1
<

10d(n)

n
≤ 10k+1

10k
= 10.

Accordingly,
1 = 11/n < |an|1/n ≤ 101/n

Now, 101/n → 1 as n→∞, so |an|1/n → 1 as well. Therefore, the radius of convergence is

R = 1/( lim
n→∞

|an|1/n) = 1.

The series diverges for x = ±1 since an 6→ 0 as n→∞.

Problem 5. Determine whether the following sequences of functions converge uniformly or pointwise
(or neither) in the regions indicated; explain why.

a)

fn(x) =

{
sinnx
nx , x 6= 0

1, x = 0.

for x ∈ [−π, π].

b) fn(x) = x2/(3 + 2nx2) for x ∈ [0, 1].

c) Find limn→∞ fn(x) in a); is it continuous?



Solution. The limiting function g = limn→∞ fn(x) in a) is equal to 1 at x = 0 and to 0 for
x 6= 0 (since | sinnx| ≤ 1 while nx → ∞ for 0 < |x| ≤ π). Since fn is continuous for every n
(limx→0(sin(nx)/(nx)) = 1), the convergence cannot be uniform, since a uniform limit of continuous
functions is continuous. So, the functions in a) converge only pointwise. The functions in b)
converge uniformly to the zero function on [0, 1]. Since fn(0) = 0, there is nothing to prove there.
For 0 < x ≤ 1, we can estimate fn as follows:

0 <
x2

3 + 2nx2
=

1

2n+ 3/x2
<

1

2n

Accordingly, as n→∞, 0 ≤ fn(x) ≤ 1/(2n) and thus converges to zero uniformly by the “squeezing
principle”.

Problem 6. Determine whether the following sets are open, closed (or neither open nor closed) and
explain why.

a) The set of all (x, y, z) ∈ R3 such that | cos(2x+ 3y + 5z)| < 1/2 and x2 + y2 + z2 < 180.

b) The set of all continuous functions f ∈ C([0, 1]) (with the uniform distance) such that
|f(1/n)| ≤ 1/n2 for every natural n ≥ 1.

Solution. The functions f1(x, y, z) = cos(2x+3y+5z) and f2(x, y, z) = x2 +y2 +z2 are continuous
everywhere (by results about the continuity of sum and composition of continuous functions, and
since linear and quadratic functions and cosx are continuous everywhere). Accordingly, the sets
U1 = f−11 ((−1/2, 1/2)) and U2 = f−12 ((−∞, 180)) are open, since they are inverse images of open
sets by continuous functions. Accordingly, the set U in a) is open, since it is an intersection of two
open sets U1 and U2. It is easy to see that U is nonempty and that U 6= R3. Since R3 is connected,
U cannot be both closed and open, so it is not closed.
For b), let Bk be the set of all continuous functions f on [0, 1] such that |f(1/k)| ≤ 1/k2 for a fixed
k ≥ 1. Then the set V in b) is equal to ∩∞k=1Bk. If we show that Bk is closed for all k, then we
can conclude that B is also closed as an intersection of closed sets. The set V is nonempty (the zero
function lies in V ), and its complement is also nonempty (the function f(x) ≡ 2000 is not in V ).
Since the space of continuous functions on [0, 1] is connected (being convex), the set V cannot be
both open and closed. It remains to be shown that Bk is closed. Suppose a sequence of functions
fj ∈ Bk converges to a function f (which is continuous by a theorem about uniform convergence, but
we are only considering continuous functions anyway, so we may as well assume that it’s continous!).
Since dist(fj , f) = max |fj(x) − f(x)| goes to 0 as j → ∞ by the definition of convergence, we see
that |fj(1/k)− f(1/k)| → 0 as j →∞. Since the interval [−1/k2, 1/k2] is closed, we conclude that
f(1/k) ∈ [−1/k2, 1/k2], and so f ∈ Bk and the set Bk is closed, QED.

Problem 7.

a) Prove that the set A of all (x, y, z) ∈ R3 such that x2+y2+z2 ≤ 10 and | exp(5y−3z2)−1| ≤ 1/3
is compact.

b) Does the function (x + y2 + z3)2 attain a maximum and a minimum on the set A? What is
the value of the minimum?

Solution. Let A be the set in a). Then A is the intersection of the closed ball U of radius
√

10
centered at 0, with the set V = g−1([2/3, 4/3]) where g(x, y, z) = exp(5y − 3z2). The function
g is continuous (it’s a composition of the continuous function exp with a sum of two continuous



functions), so the set V is closed, and since U is closed and bounded, the set A = U ∩ V is a closed
and bounded subset of R3, and so is compact. The function f(x, y, z) = (x+ y2 + z3)2 is continuous
(it’s a composition of the continuous function w → w2 with a sum of three continuous functions),
so it attains a maximum and a minimum on a compact set A. The minimum is equal to 0, since
f(x, y, z) ≥ 0 and f vanishes at (0, 0, 0) ∈ A.

Problem 8.

a) Prove that the mapping F (x, y) = (x, y,
√

1− x2 − y2) is continuous in the region {(x, y)|x2 +
y2 ≤ 1}.

b) Prove that the “northern hemisphere” N := {(x, y, z)|x2 + y2 + z2 = 1, z ≥ 0} is connected.

c) Prove that the function f(x, y, z) = ez cosx cos y attains the value 2 on the set N .

Solution. The function 1 − x2 − y2 is nonnegative and continuous on the set D = {x2 + y2 ≤
1} (it’s a sum of continuous functions), so its composition with a continuous function

√
is also

continuous on D. The component functions of the mapping F are thus continuous functions, hence
F itself is continuous on D. The continuous function F maps the set D into N . The set D is a
ball in R2 and so is convex, path connected and connected. Therefore, its image under a continuous
function is also connected. The function f takes the value e > 2 at (0, 0, 1) ∈ N , and the value
cos 1 < 2 at (0, 1, 0) ∈ N , so by the intermediate value theorem f attains the value 2 on N .
Problem 9. For a metric space X and a positive number r, can one have Br(p) = Br(q) and yet
p 6= q?
Solution. This can happen, for example, if the distance d on the metric space X is discrete (i.e.
d(x, y) = 1 if x 6= y and d(x, x) = 0), and the radius of the ball is r > 1. Then B(x, r) = X for any
x ∈ X.

Problem 10. Is the product of two real-valued uniformly continuous functions again uniformly
continuous?
Solution. No, not necessarily. For example, let f(x) = g(x) = x. Then f and g are obviously
uniformly continuous, but [f · g](x) = x2 is not.
Problem 11.

a) Prove that the mapping F (x, y) = (x, y,
√

1− x2 − y2) is continuous in the region {(x, y)|x2 +
y2 ≤ 1}.

b) Prove that the “northern hemisphere” N := {(x, y, z)|x2 + y2 + z2 = 1, z ≥ 0} is connected.

c) Prove that the function f(x, y, z) = ez cosx cos y attains the value 2 on the set N .

Solution. The function 1−x2−y2 is nonnegative and continuous on the set D = {x2 +y2 ≤ 1} (it’s
a sum of continuous functions), so its composition with a continuous function

√
is also continuous

on D. The component functions of the mapping F are thus continuous functions, hence F itself is
continuous on D. The continuous function F maps the set D into N . The set D is a ball in R2

and so is convex, path connected and connected. Therefore, its image under a continuous function
is also connected. The function f takes the value e > 2 at (0, 0, 1) ∈ N , and the value cos 1 < 2 at
(0, 1, 0) ∈ N , so by the intermediate value theorem f attains the value 2 on N .



Problem 12. Prove that the shift map F of the spaces of sequences is continuous with respect to
the l1 distance d1:

F : (x1, x2, x3, . . . , xn, xn+1, . . .)→ (x2, x3, x4, . . . , xn+1, xn+2, . . .),

i.e. all coordinates are shifted by 1 to the left. Recall that

d1[(x1, x2, . . .), (y1, y2, . . .)] =

∞∑
j=1

|xj − yj |.

Solution: It suffices to show that d1(F (x), F (y)) ≤ d1(x, y) for infinite sequences x, y ∈ l1. By
definition of the shift map we have

d1(F (x), F (y)) =

∞∑
k=2

|xk − yk| ≤
∞∑
k=1

|xk − yk| = d1(x, y).

The proves that F is continuous.


