McGill University Math 354: Honors Analysis 3

Practice problems

not for credit

Problem 1. Determine whether the family of $\mathcal{F} = \{f_n\}$ functions $f_n(x) = x^n$ is uniformly equicontinuous.

1st Solution: The family \mathcal{F} is clearly uniformly bounded. If it were uniformly equicontinuous, we could apply Arzela-Ascoli's theorem to conclude that a sequence f_n has a subsequence that converges uniformly in C[0, 1]; the limit would have to be a continuous function g(x). However, it is easy to see that $f_n(x) \to h(x)$ as $n \to \infty$, where

$$h(x) = \begin{cases} 0, & x \in [0, 1), \\ 1, & x = 1. \end{cases}$$

This function has a jump discontinuity at x = 1 and so the convergence cannot be uniform, hence \mathcal{F} is not uniformly equicontinuous.

2nd Solution: Alternatively, we can show that for any sequence n_k , the sequence of functions f_{n_k} cannot be a Cauchy sequence in C[0, 1] (which would be necessary for uniform convergence). Indeed, fix some $m = n_k$, and consider the d_{∞} distance between x^m and $x^n, n = n_{k+1}, n_{k+2}, \ldots$ We claim that $\limsup_{n\to\infty} d_{\infty}(x^m, x^n) \ge 1/2$.

Indeed, choose x_0 s.t. $x_0^m > 3/4$, say. Then let N be such that $x_0^n < 1/4$ for n > N. Then for any $n_k > N$, we have $x_0^m - x_0^{n_k} \ge 3/4 - 1/4 = 1/2$, hence the same inequality holds for d_{∞} , QED. **3rd Solution:** Finally, take x = 1 in the definition of the uniform equicontinuity. Then for any fixed $\delta > 0$, we clearly have $\lim_{n\to\infty} (1-\delta)^n = 0 \neq 1 = f_n(1)$, which shows that for large enough n, $|f_n(1-\delta) - f_n(1)| \ge 1/2$, and so the family \mathcal{F} cannot be uniformly equicontinuous at x = 1.

Problem 2. Suppose $f_n : \mathbb{R} \to \mathbb{R}$ is differentiable for each $n \in \mathbb{N}$. Suppose also that $\{f'_n\}$ converges uniformly on \mathbb{R} and that $\{f_n(0)\}$ converges. Then $\{f_n\}$ converges pointwise on \mathbb{R} .

Solution. Fix $x \in \mathbb{R}, x \neq 0$, and let $\epsilon > 0$ be given. Since $\{f_n(0)\}$ converges it is Cauchy, so we may choose $N_1 \in \mathbb{N}$ so that

$$m, n \ge N_1$$
 implies $|f_n(0) - f_m(0)| < \frac{\epsilon}{2}$

Furthermore, since $\{f'_n\}$ is uniformly convergent it is uniformly Cauchy. Therefore we may choose $N_2 \in \mathbb{N}$ so that

$$m, n \ge N_2$$
 implies $|f'_n(y) - f'_m(y)| < \frac{\epsilon}{2|x|}$ for all $y \in \mathbb{R}$

Now set $N = \max(N_1, N_2)$ and fix any $m, n \ge N$. Then use the mean value theorem to choose $c \in (0, x)$ so that

$$(f_n - f_m)'(c)(x - 0) = (f_n - f_m)(x) - (f_n - f_m)(0)$$

Then using the above inequalities we find that

$$\begin{aligned} |f_n(x) - f_m(x)| &\leq |f_n(0) - f_m(0)| + |f_n(x) - f_n(0) + f_m(0) - f_m(x)| \\ &= |f_n(0) - f_m(0)| + |(f_n - f_m)(x) - (f_n - f_m)(0)| \\ &= |f_n(0) - f_m(0)| + |(f_n - f_m)'(c)(x - 0)| \\ &= |f_n(0) - f_m(0)| + |f'_n(c) - f'_m(c)||x| \\ &< \epsilon \end{aligned}$$

We conclude that $\{f_n(x)\}$ is Cauchy and hence convergent. Thus $\{f_n\}$ converges pointwise.

Problem 3. Suppose that $A \subset \mathbb{R}^n$ and that $F : A \to \mathbb{R}^m$ is continuous. If A is path connected, then its graph

$$G = \{ (\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{n+m} | \mathbf{u} \in A, \mathbf{v} = F(\mathbf{u}) \}$$

is also path connected.

Solution. Let $(\mathbf{u}_1, F(\mathbf{u}_1))$ and $(\mathbf{u}_2, F(\mathbf{u}_2))$ be two points in G. Since A is path connected, there exists a continuous path $\phi : [0,1] \to A$ connecting \mathbf{u}_1 and \mathbf{u}_2 . Consider the path $\Gamma : t \to (\gamma(t), F(\gamma(t))) \in G$. The function $F(\gamma(t))$ is continuous, since it is a composition of two continuous functions. Since the coordinate functions of Γ are continuous, Γ is a continuous path joining the points $(\mathbf{u}_1, F(\mathbf{u}_1))$ and $(\mathbf{u}_2, F(\mathbf{u}_2))$ in G, hence G is path connected.

Problem 4. Let d(n) be the number of digits in the decimal expansion of a natural number n, e.g.

$$d(7) = 1, d(262) = 3, d(20032004) = 8.$$

Determine the interval of convergence (including the behavior at the endpoints) for the series

$$\sum_{n=1}^{\infty} \frac{10^{d(n)}}{n} x^n$$

Solution. Let $a_n = 10^{d(n)}/n$ be the *n*-th coefficient of the power series. Suppose

$$10^k \le n \le 10^{k+1}$$

Then d(n) = k + 1 and so

$$1 = \frac{10^{k+1}}{10^{k+1}} < \frac{10^{d(n)}}{n} \le \frac{10^{k+1}}{10^k} = 10.$$

Accordingly,

$$\mathbf{l} = 1^{1/n} < |a_n|^{1/n} \le 10^{1/r}$$

Now, $10^{1/n} \to 1$ as $n \to \infty$, so $|a_n|^{1/n} \to 1$ as well. Therefore, the radius of convergence is

$$R = 1/(\lim_{n \to \infty} |a_n|^{1/n}) = 1.$$

The series diverges for $x = \pm 1$ since $a_n \not\to 0$ as $n \to \infty$.

Problem 5. Determine whether the following sequences of functions converge uniformly or pointwise (or neither) in the regions indicated; explain why.

a)

$$f_n(x) = \begin{cases} \frac{\sin nx}{nx}, & x \neq 0\\ 1, & x = 0. \end{cases}$$

for $x \in [-\pi, \pi]$.

- b) $f_n(x) = x^2/(3+2nx^2)$ for $x \in [0,1]$.
- c) Find $\lim_{n\to\infty} f_n(x)$ in a); is it continuous?

Solution. The limiting function $g = \lim_{n\to\infty} f_n(x)$ in a) is equal to 1 at x = 0 and to 0 for $x \neq 0$ (since $|\sin nx| \leq 1$ while $nx \to \infty$ for $0 < |x| \leq \pi$). Since f_n is continuous for every n $(\lim_{x\to 0} (\sin(nx)/(nx)) = 1)$, the convergence cannot be uniform, since a uniform limit of continuous functions is continuous. So, the functions in a) converge only pointwise. The functions in b) converge uniformly to the zero function on [0, 1]. Since $f_n(0) = 0$, there is nothing to prove there. For $0 < x \leq 1$, we can estimate f_n as follows:

$$0 < \frac{x^2}{3 + 2nx^2} = \frac{1}{2n + 3/x^2} < \frac{1}{2n}$$

Accordingly, as $n \to \infty$, $0 \le f_n(x) \le 1/(2n)$ and thus converges to zero uniformly by the "squeezing principle".

Problem 6. Determine whether the following sets are open, closed (or neither open nor closed) and explain why.

- a) The set of all $(x, y, z) \in \mathbb{R}^3$ such that $|\cos(2x + 3y + 5z)| < 1/2$ and $x^2 + y^2 + z^2 < 180$.
- b) The set of all continuous functions $f \in C([0,1])$ (with the uniform distance) such that $|f(1/n)| \leq 1/n^2$ for every natural $n \geq 1$.

Solution. The functions $f_1(x, y, z) = \cos(2x + 3y + 5z)$ and $f_2(x, y, z) = x^2 + y^2 + z^2$ are continuous everywhere (by results about the continuity of sum and composition of continuous functions, and since linear and quadratic functions and $\cos x$ are continuous everywhere). Accordingly, the sets $U_1 = f_1^{-1}((-1/2, 1/2))$ and $U_2 = f_2^{-1}((-\infty, 180))$ are open, since they are inverse images of open sets by continuous functions. Accordingly, the set U in a) is open, since it is an intersection of two open sets U_1 and U_2 . It is easy to see that U is nonempty and that $U \neq \mathbb{R}^3$. Since \mathbb{R}^3 is connected, U cannot be both closed and open, so it is not closed.

For b), let B_k be the set of all continuous functions f on [0,1] such that $|f(1/k)| \leq 1/k^2$ for a fixed $k \geq 1$. Then the set V in b) is equal to $\bigcap_{k=1}^{\infty} B_k$. If we show that B_k is closed for all k, then we can conclude that B is also closed as an intersection of closed sets. The set V is nonempty (the zero function lies in V), and its complement is also nonempty (the function $f(x) \equiv 2000$ is not in V). Since the space of continuous functions on [0,1] is connected (being convex), the set V cannot be both open and closed. It remains to be shown that B_k is closed. Suppose a sequence of functions $f_j \in B_k$ converges to a function f (which is continuous by a theorem about uniform convergence, but we are only considering continuous functions anyway, so we may as well assume that it's continuous!). Since dist $(f_j, f) = \max |f_j(x) - f(x)|$ goes to 0 as $j \to \infty$ by the definition of convergence, we see that $|f_j(1/k) - f(1/k)| \to 0$ as $j \to \infty$. Since the interval $[-1/k^2, 1/k^2]$ is closed, we conclude that $f(1/k) \in [-1/k^2, 1/k^2]$, and so $f \in B_k$ and the set B_k is closed, QED.

Problem 7.

- a) Prove that the set A of all $(x, y, z) \in \mathbb{R}^3$ such that $x^2 + y^2 + z^2 \le 10$ and $|\exp(5y 3z^2) 1| \le 1/3$ is compact.
- b) Does the function $(x + y^2 + z^3)^2$ attain a maximum and a minimum on the set A? What is the value of the minimum?

Solution. Let A be the set in a). Then A is the intersection of the closed ball U of radius $\sqrt{10}$ centered at 0, with the set $V = g^{-1}([2/3, 4/3])$ where $g(x, y, z) = \exp(5y - 3z^2)$. The function g is continuous (it's a composition of the continuous function exp with a sum of two continuous

functions), so the set V is closed, and since U is closed and bounded, the set $A = U \cap V$ is a closed and bounded subset of \mathbf{R}^3 , and so is compact. The function $f(x, y, z) = (x + y^2 + z^3)^2$ is continuous (it's a composition of the continuous function $w \to w^2$ with a sum of three continuous functions). so it attains a maximum and a minimum on a compact set A. The minimum is equal to 0, since $f(x, y, z) \ge 0$ and f vanishes at $(0, 0, 0) \in A$.

Problem 8.

- a) Prove that the mapping $F(x,y) = (x, y, \sqrt{1 x^2 y^2})$ is continuous in the region $\{(x, y) | x^2 + y^2\}$ $y^2 \le 1$.
- b) Prove that the "northern hemisphere" $N:=\{(x,y,z)|x^2+y^2+z^2=1,z\geq 0\}$ is connected.
- c) Prove that the function $f(x, y, z) = e^z \cos x \cos y$ attains the value 2 on the set N.

Solution. The function $1 - x^2 - y^2$ is nonnegative and continuous on the set $D = \{x^2 + y^2 \leq x^2 + y^2 \leq x^2 + y^2 \}$ 1} (it's a sum of continuous functions), so its composition with a continuous function $\sqrt{}$ is also continuous on D. The component functions of the mapping F are thus continuous functions, hence F itself is continuous on D. The continuous function F maps the set D into N. The set D is a ball in \mathbf{R}^2 and so is convex, path connected and connected. Therefore, its image under a continuous function is also connected. The function f takes the value e > 2 at $(0,0,1) \in N$, and the value $\cos 1 < 2$ at $(0, 1, 0) \in N$, so by the intermediate value theorem f attains the value 2 on N.

Problem 9. For a metric space X and a positive number r, can one have $\mathcal{B}_r(p) = \mathcal{B}_r(q)$ and yet $p \neq q$?

Solution. This can happen, for example, if the distance d on the metric space X is discrete (i.e. d(x,y) = 1 if $x \neq y$ and d(x,x) = 0, and the radius of the ball is r > 1. Then B(x,r) = X for any $x \in X$.

Problem 10. Is the product of two real-valued uniformly continuous functions again uniformly continuous?

Solution. No, not necessarily. For example, let f(x) = q(x) = x. Then f and g are obviously uniformly continuous, but $[f \cdot g](x) = x^2$ is not. Problem 11.

- - a) Prove that the mapping $F(x,y) = (x, y, \sqrt{1 x^2 y^2})$ is continuous in the region $\{(x, y)|x^2 + y^2\}$ $y^2 < 1$.
 - b) Prove that the "northern hemisphere" $N := \{(x, y, z) | x^2 + y^2 + z^2 = 1, z \ge 0\}$ is connected.
 - c) Prove that the function $f(x, y, z) = e^z \cos x \cos y$ attains the value 2 on the set N.

Solution. The function $1 - x^2 - y^2$ is nonnegative and continuous on the set $D = \{x^2 + y^2 \le 1\}$ (it's a sum of continuous functions), so its composition with a continuous function $\sqrt{}$ is also continuous on D. The component functions of the mapping F are thus continuous functions, hence F itself is continuous on D. The continuous function F maps the set D into N. The set D is a ball in \mathbb{R}^2 and so is convex, path connected and connected. Therefore, its image under a continuous function is also connected. The function f takes the value e > 2 at $(0,0,1) \in N$, and the value $\cos 1 < 2$ at $(0,1,0) \in N$, so by the intermediate value theorem f attains the value 2 on N.

Problem 12. Prove that the *shift map* F of the spaces of sequences is continuous with respect to the l_1 distance d_1 :

$$F: (x_1, x_2, x_3, \dots, x_n, x_{n+1}, \dots) \to (x_2, x_3, x_4, \dots, x_{n+1}, x_{n+2}, \dots),$$

i.e. all coordinates are shifted by 1 to the left. Recall that

$$d_1[(x_1, x_2, \ldots), (y_1, y_2, \ldots)] = \sum_{j=1}^{\infty} |x_j - y_j|.$$

Solution: It suffices to show that $d_1(F(x), F(y)) \leq d_1(x, y)$ for infinite sequences $x, y \in l_1$. By definition of the shift map we have

$$d_1(F(x), F(y)) = \sum_{k=2}^{\infty} |x_k - y_k| \le \sum_{k=1}^{\infty} |x_k - y_k| = d_1(x, y).$$

The proves that F is continuous.