
Honours Analysis III
Math 354

Prof. Dmitry Jacobson

Notes Taken By: R. Gibson

Fall 2010

1



Contents

1 Overview 3
1.1 p-adic Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introduction 5
2.1 Normed Linear Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Metric Space Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Completeness 21
3.1 Basics & Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Completion & Density Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 O.D.E. & Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Compactness 30
4.1 Basics & Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Arzela & Compacta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Basic Point-Set Topology 40
5.1 Product Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Conectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Connected Components/ Path Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Banach Space Techniques 46
6.1 Linear Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Baire’s Category Theorem, Banach-Steinhaus Theorem & The Open Mapping Theorem . . . 48
6.3 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.5 Conjugate Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.6 Linear Functionals Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.7 Bernstein Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.8 Inverse & Implicit Function Theorem In Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Linear Operators & The Operator Norm 68
7.1 The Hahn-Banach Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2



Chapter 1

Overview

Definition 1. Let X be a metric space. We define Distance d : X ×X → R to satisfy

(i) ∀x ∈ X, d(x, x) = 0

(ii) ∀x 6= y ∈ X, d(x, y) > 0

(iii) ∀x, y ∈ X, d(x, y) = d(y, x)

(iv) ∀x, y, z ∈ X, d(x, z) + d(z, y) ≥ d(x, y)

Example 1. The following are some of the main examples of metric spaces for this course.

• Spaces of sequences (finite or infinite) - with lp norm.

•

{(x1, . . . , xn), . . .) :

∞∑
k=1

|xk|p <∞}

This leads us to a proposition.
Proposition 1. If x = (x1, x2, . . .), y = (y1, y2, . . .), then

d(x, y) =

( ∞∑
k=1

|xk − yk|p
)1/p

is a distance.

Example 2. If x = 0 and y = (1, 1/2, 1/3, 1/4, . . .), then can we prove that

d(x, y) =

√
1 +

1

4
+

1

9
+ · · ·+ 1

h2
+ · · · =

√
π2

6

...probably not.

Example 3. For p ≥ 1, an example would be continuous functions f, g on [a, b].

Proposition 2. In the space of continuous functions on [a, b],

d(f, g) =

[∫ b

a

|f(x)− g(x)|pdx

]1/p
defines a distance. We recall the Lp norm to be

||f ||p =

(∫ b

a

|f(x)|pdx

)1/p
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We now examine polygons in the plane. There is a problem in the assignment which asks if the difference of
areas defines a distance. So we must prove that

d(P1, P2) = Area(P1 4 P2)

which is the area of
(P1 ∪ P2)\(P1 ∩ P2)

Section 1.1

p-adic Distance

Let p ∈ {2, 3, 5, 7, 11, 13, . . .} = Primes. Let x, y ∈ Q so

x =
a1
b1

y =
a2
b2

Definition 2. The p-adic Norm is defined as follows

x = pk · c
d

where k ∈ Z and
||x||p = p−k

Definition 3. The p-adic Norm is defined to be

dp(x, y) = ||x− y||p

Example 4. Working with p-adic distance. Suppose that

x =
24

49

then we have that

x = 7−2
24

1
=⇒ ||x||7 = 72

x = 31
8

49
=⇒ ||x||3 = 3−1

x = 23
3

49
=⇒ ||x||2 = 2−3

Proposition 3. ||x− y||p defines a p-adic distance on Q.

NB: If x is as above, then
||x||Eucl · ||x||2 · ||x||3 · ||x||7 = 1

Neat, eh?
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Chapter 2

Introduction

Section 2.1

Normed Linear Spaces

Linear means exactly what you would think it means. A good way to show this is

(an)∞n=1 + (bn)∞n=1 = (an + bn)∞n=1

(f + g)(x) = f(x) + g(x) ∀ x ∈ [a, b]

Definition 4. Suppose that X is a linear space, then we say that the Norm of x ∈ X is a map

|| · || : X → R+

such that

(i) ||x|| = 0⇐⇒ x = 0

(ii) ||t · x|| = |t| · ||x||

(iii) ||x+ y|| ≤ ||x||+ ||y||

It is a fact that
d(x, y) = ||x− y||

defines a distance since

d(y, x) = ||y − x|| = || − (x− y)|| = ||x− y|| = d(x, y)

d(x, z) = ||x− z|| = ||(x− y) + (y − z)|| ≤ ||x− y||+ ||y − z|| = d(x, y) + d(y, z)

Section 2.2

Inner Product Spaces

An Inner Product Space is a space together with a map

(·, ·) : X ×X → R

such that

(i) 0 ≤ (x, x)

(ii) (x, y) = 0⇐⇒ x = 0

(iii) (x, αy + βz) = α(x, y) + β(x, z), x, y, z ∈ X,α, β ∈ R

(iv) (γx+ δy, z) = γ(x, z) + δ(y, z)
Example 5. The following are some examples of inner products
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• Dot Product
(x, y) = x · y = x1y1 + · · ·+ xnyn

• Function Space Inner Product

f, g ∈ C([a, b]) =⇒ (f, g) =

∫ b

a

f(x)g(x)dx

and

||f || =

√∫ b

a

[f(x)]2dx

Proposition 4.
||x|| :=

√
(x, x)

always defines a norm.
Proof. We will need a lemma.

Lemma 5. The following identity holds.

(x, y) ≤ ||x|| · ||y||

Proof.

(x+ ty, x+ ty) = (x, x) + 2t(x, y) + t2(y, y)

we know that
||x+ ty||2 ≥ 0

now,
D = 4(x, y)2 − 4(x, x) · (y, y) ≤ 0

(x, y) ≤
√

(x, x) ·
√

(y, y) = ||x|| · ||y||

With this lemma, we can now prove the above proposition. So
Proof.
The triangle inequality states that

||x+ y|| ≤ ||x||+ ||y||
and now we can square both sides to obtain

(||x+ y||)2 ≤ (||x||+ ||y||)2

and now
(x+ y, x+ y) = (x, x) + 2(x, y) + (y, y)

and
||x||2 + 2||x|| · ||y||+ ||y||2 = (x, x) + 2||x|| · ||y||+ (y, y)

by the lemma, and we cancel to obtain

=⇒ (x, y) ≤ ||x|| · ||y||

which yields our result. �
How to guess whether ||x|| comes from (x, x) or not?
The answer is

(x+ y, x+ y) + (x− y, x− y) = (x, x) + 2(x, y) + (y, y) + (x, x)− 2(x, y) + (y, y)

6



then
(∗) ||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2

The norm comes from (·, ·)⇐⇒ (∗) holds for all x, y ∈ X.

Proposition 6. Let (a1, . . . , an, . . .) be such that∑
a2i <∞

and let (b1, . . . , bn, . . .) be such that ∑
b2j <∞

and let

||a|| =

( ∞∑
i=1

a2i

)1/2

Then
∞∑
i=1

aibi ≤ ||a|| · ||b||

and so

(a, b) = a1b1 + · · ·+ anbn ≤

√√√√ n∑
i=1

a2i ·

√√√√ n∑
j=1

b2j → ||a|| · ||b||

as n→∞.
Proof.
To prove convergence,

n+m∑
k=n

aibi ≤
√∑
k=n

a2k ·

√√√√n+m∑
k=n

b2k

the two components on the right converge separately to 0 as n→∞. This is because

∞∑
k=1

a2k <∞

and the same goes for the sum of b2k. Thus, the whole thing converges to 0.
Summarizing, we proved that (C([a, b]), L2-norm) is a metric space, and so is l2. �

Next, we look at Lp-norm which is

||f ||p =

[∫ b

a

|f(x)|pdx

](1/p)
and at lp-space, p 6= 2, we have

||a||lp =

( ∞∑
k=1

|ak|p
)(1/p)

Thus, lp is the space of all a such that
∞∑
k=1

|ak|p <∞

To prove this we need a lemma.
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Lemma 7. Let a > 0, b > 0, and p, q ≥ 1 and such that

1

p
+

1

q
= 1

NB: We say that p, q are Conjugate Exponents. Then

(∗) a · b ≤ ap

p
+
bq

q

Proof.
Let x > 0, then f(x) = log (x) which is a concave function.

f ′(x) =
1

x
f ′′(x) = − 1

x2
< 0

and since f is concave, we can say that

f(αx+ βy) ≥ αf(x) + βf(y)

where α+ β = 1. Also, we know that

log (a · b) = log a+ log b

=
1

p
log (ap) +

1

q
log (bq)

(∗∗) ≤ log

(
1

p
ap +

1

q
bq
)

Theorem 8 (Holder’s Inequality). Let p < 1

n∑
k=1

|akbk| ≤

(
n∑
k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

where
1

p
+

1

q
= 1

Remark. Both sides are homogeneous of degree 1 in (ak), (bk). So WLOG, we can rescale ak − s so that

n∑
k=1

|ak|p = 1

and
n∑
k=1

|bk|q = 1

so we say that
n∑
k=1

|akbk| ≤
n∑
k=1

(
|ak|p

p
+
|bk|q

q

)

=
1

p

(
n∑
k=1

|ak|p
)

+
1

q

(
n∑
k=1

|bk|q
)

=
1

p
+

1

q

= 1
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by our normalization of the sums. Now,

RHS =

(
n∑
k=1

|ak|p
)1/p( n∑

k=1

|bk|q
) 1
q

= 11/p11/q = 1

and so
LHS ≤ RHS

Now, if we let n→∞, then we get Holder for infinite series. The proof is left to the reader as an excercise.

Theorem 9 (Minkowski Inequality). (For Sequences With n <∞)
Recall that for x = (x1, . . . , xn), we have

||x||p =

(
n∑
k=1

|xk|p
)1/p

We want
||x+ y||p ≤ ||x||p + ||y||p

So, we know that

||x+ y||pp =

n∑
k=1

|xk + yk|p

≤
n∑
k=1

(|xk|+ |yk|)p

=

n∑
k=1

[(|xk|+ |yk|)p−1|x|k + (|xk|+ |yk|)p−1|y|k]

and we apply Holder to each inner sum and let

bk = (|xk|+ |yk|), ak = |xk|

≤
(∑

k = 1n|xk|p
)1/p( n∑

k=1

[(|xk|+ |yk|)p−1]q

)1/q

+
(∑

k = 1n|yk|p
)1/p( n∑

k=1

[(|xk|+ |yk|)p−1]q

)1/q

And now,
1

p
+

1

q
= 1 =⇒ 1− 1

p
=

1

q
=⇒ p− 1

p
=

1

q

=⇒ (p− 1)q = p

and so

RHS =

[(∑
k = 1n|xk|p

)1/p
+
(∑

k = 1n|yk|p
)1/p]

·
[∑

k = 1n(|xk|+ |yk|)q
]1/q

and

RHS ≤ LHS =

n∑
k=1

(|xk|+ |yk|)p

=⇒

[
n∑
k=1

(|xk|+ |yk|)p
]1−1/q

≤ ||x||p + ||y||p
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and we can conclude that
||x+ y||p ≤ ||x||p + ||y||p �

Example 6. The unit sphere in

lp(Rn) =

{
x ∈ Rn :

n∑
k=1

|xk|p = 1

}

For n = 2, p = 1, we have
{(x, y) : |x|+ |y| = 1}

For n = 2, p = 2, we have
{(x, y) : |x|2 + |y|2 = 1}

Now we ask what happens when p→∞? We get

[|xk|p + |yk|p]1/p = (|xk|p)1/p ·
(

1 +

(
|yk|
|xk|

)p)1/p

→ x

as p→∞. Now as another example, we have

||(x, y)||p → max{|x|, |y|} = ||(x, y)||∞

as p→∞.

Definition 5. The l∞ norm of x = (x1, . . . , xn) is

||x||∞ =
n

max
k=1
{xk}

and for f ∈ C([a, b]), we get that the l∞ norm of f is

||f ||∞ = max
x∈[a,b]

|f(x)|

and we can show that
||f ||p → ||f ||∞

as p→∞, for any f ∈ C([a, b]).

Section 2.3

Metric Space Techniques

Definition 6. We say that (X, d) is a Metric Space if d(·, ·) defines a distance on the set X.

Definition 7. Let A ⊂ X where X is a metric space. Let x ∈ X (may or may not be in A). If every ball
B(x, r) centred at x of radius r has at least one point from A for any r > 0, then this is equivalent to calling
x a Contact Point. Also, just for notational purposes,

B(x, r) = {y ∈ X : d(x, y) < r}

Remark: Any x ∈ A is a contact point of A.
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Definition 8. If B(x, r) for any r > 0 has infinitely many points from A, then we say that x is a Limit
Point.

Definition 9. If ∀ x ∈ A,∃ r > 0 s.t.

B(x, r) ∩A = {x}

Proposition 10. Let x ∈ X be a contact point. Then, x must be one of the following.

• x is an isolated point x ∈ A

• x is a limit point of A, x ∈ A

• x is a limit point of A, x /∈ A

Also, x is not an isolated point if and only if ∃(xn)∞n=1 ∈ A where the xn are distinct such that xn → x as
n→∞ and thus

lim
n→∞

d(x, xn) = 0

Definition 10. The Closure A of A is the set of all contact points.

A = A ∪ {Limit points of A}

Proposition 11.
A = A

Proof.

Let x ∈ A and let r > 0. We know that ∃ y ∈ A such that

y ∈ B(x1, r1) ⊆ B(x, r)

So, x is a contact point of A, and thus x ∈ A. �

Proposition 12. (i) A1 ⊆ A2 =⇒ A1 ⊆ A2

(ii) A = A1 ∪A2 =⇒ A = A1 ∪A2

Definition 11. A,B ⊂ X. We say that A is Dense in B if

B ⊆ A

and it is also true that A is dense if and only if A is dense in X.

Example 7. Points with rational coordinates are dense in Rk.

Definition 12. We say that X is Separable if X has a countable, dense subset.

Example 8. Let X be the set of all bounded sequences of real numbers. Distance on X can be the l∞
distance.

d(x, y) = sup
n
|xn − yn|

||(x1, . . . , xn, . . .)||∞ = sup
n
|nxn|

11



x = (0.9, 0.99, . . . , 0.99 · · · 99, . . .)

||x||∞ = sup
n

(
9

10
+ · · ·+ 9

10n

)
= 1

Proposition 13. X∞ with l∞ distance is not separable.
Look at A ⊂ X, A = { all infinite sequences of 0’s and 1’s}. A is not countable by the Cantor Diagonalization
Argument.
Proof.
Suppose it is

a1 = (ε11, . . . ε
k
1 , . . .)

a2 = (ε12, . . . ε
k
2 , . . .)

a3 = (ε13, . . . ε
k
3 , . . .)

b = (b1, . . . , bn, . . .)

If ε11 = 1 then b1 = 0. If ε11 = 0 then b1 = 1. If ε22 = 0, then b2 = 1. If ε22 = 1, then b2 = 0.
Claim: Sequence b is different from all ai. This is a contradiction which shows that A is uncountable. A
has cardinality of the continuum.
Claim: If x1, x2 ∈ A, then d∞(x1, x2) = 1.

Lemma 14. A is not separable.
Proof.

∀ x ∈ A,∃ y ∈ B s.t. y ∈ B(x, 1/3)

Suppose that B is a countable dense subset of A.
Claim: If x1 6= x2,∈ A, y1, y2 ∈ B(x1, 1/3), then y1 6= y2. This is a contradiction! �

Let A ⊆ X be uncountable. Let x, y ∈ A, x 6= y and d(x, y) ≥ 1.
We claim that if B ⊂ X is dense in X, then B cannot be countable.
Let (xα)α∈A be our set. Consider

{B(x, 1/3) : x ∈ A}

The set B is dense in X, so ∀α ∈ A, B(xα, 1/3) contains a point yα ∈ B.
Lemma 15. If xα 6= xβ, then B(xα, 1/3)

⋂
B(xβ , 1/3) = ∅.

Proof.
We know that yα ∈ B(xα, 1/3) and yβ ∈ B(xβ , 1/3). Moreover, yα 6= yβ.
It follows that there is a bijection between A and a subset of B. �

Examples Of Countable Dense Sets In C([a, b]) With Various Distances
Suppose that f ∈ Ck([a, b]). The first idea is to approximate by polynomials. Bernstein polynomials
approximate well.

Pn(x) = anx
n + · · ·+ a0

where aj ∈ R and
Qn(x) = bnx

n + · · ·+ b0

where bj ∈ Q. Those polynomials are dense in C([a, b]) with both Lp and L∞.

dp(f, g) =

[∫ b

a

|f(x)− g(x)|pdx

]1/p
d∞(f, g) = sup

x∈[a,b]
|f(x)− g(x)|

12



N∑
k=−N

ak sin (kx) + bk cos (kx)

Definition 13. The distance from a point x to a set A is equivalent to

d(x,A) = inf
a∈A

d(x, a)

For example, d(x,A) = 0 if and only if x is a contact point of A.

d(A,B) = inf
x∈A,y∈B

{d(x, y)}

Another example is that if A ∩ B 6= 0, then we can take x = y ∈ A ∩ B. Hence d(A,B) = 0. It’s not true
both ways. We can have A ∩B 6= 0 but d(A,B) = 0.
Definition 14. Let A ⊂ X. We say that A is Closed if A = A.

Example 9. Some examples of closed sets are

• [a, b] ⊂ R

• {y ∈ X : d(y, x0) ≤ R > 0} or {f ∈ C([a, b]) : |f(x)| ≤ R} for all x ∈ [a, b].

If f(x) = 0 on [a, b], then
d(0, g) = sup

x∈[a,b]
|g(x)|

and
{g : d(0, g) ≤ R}

which is exactly the second item on the list above.
Proposition 16. Let (Aα)α∈I be a collection of closed sets. Then

B =
⋂
α∈I

Aα

is also closed.
Proof.

B =
⋂
α

Aα =⇒ B = B
⋃
{Limit Points of B}

And B = B ⇐⇒ every limit point x of B belongs to B. So, suppose that x is a limit point of B = ∩αAα.
Let r > 0, then B(x, r) contains infinitely many points of

B =
⋂
α

Aα

If y ∈ B, then y ∈ Aα for all α. This means that x is a limit point of Aα for all α ∈ I. Aα is closed, and
so every limit point is contained in Aα. Thus, x ∈ Aα for all α ∈ I.

=⇒ x ∈
⋂
α∈I

Aα = B �
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Proposition 17. Let A1, . . . , An be closed. Then

B =

n⋃
i=1

Ai

is closed.
Proof.

B =

n⋃
i=1

Ai

Let x ∈ B. We shall show that x cannot be a limit point of B. if

x /∈
n⋃
i=1

Ai

then x /∈ Ai for all i = {1, . . . , n}. All the Ai are closed, so x cannot be a limit point of Ai for any i. This
implies that ∃ r > 0 such that x /∈ A. Let

r = min
k
d(x, yk)

then
B(x, r)

⋂
A = ∅

for any 1 ≤ i ≤ n. Now ∃ ri such that

B(x, ri)
⋂
Ai = ∅

Let
r = min

1≤i≤n
ri

then
B(x, r)

⋂
Ai = ∅

for each i. Thus, x is not a limit point of
n⋃
i=1

Ai �

Definition 15. We say that x is an Interior Point of A if and only if

∃ r > 0 s.t. B(x, r) ⊂ A

Definition 16. We say that A is Open if every point in A is an interior point.

Proposition 18. A is open if and only if X\A is closed.
Proof.
Suppose that A is open, and that x ∈ A, then B(x, r) ⊂ A and

B(x, r)
⋂
AC = ∅

Hence, x is not a contact point of AC . So, (AC) ⊆ AC =⇒ AC is closed.
If AC is closed, then x ∈ A =⇒ x is not a contact point of AC . This means that ∃ r > 0 such that

B(x, r)
⋂
AC = ∅

=⇒ B(x, r) ⊂ A
=⇒ x is an interior point of A. �
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Proposition 19. If Aα is open for any α ∈ I, then

B =
⋃
α∈I

Aα

is also open.
Proof.
Aα is open and so equivalently, we have that ACα is closed(⋃

α∈I
Aα

)C
=
⋂
α∈I

ACα

is closed. So, BC is closed which is equivalent to B being open. Now we invoke Proposition 17. �

Proposition 20. A finite intersection of open sets is also open. That is, if Ai is open for i = 0, . . . , n,
then

n⋂
i=1

Ai

is also open. Beware, however, that this is not necessarily true for the infinite case. An example of this
would be that if

An =

(
− 1

n
, 1 +

1

n

)
⊂ R

which is clearly open for any n, then

B =

∞⋂
n=1

An = [0, 1]

which is closed.

Definition 17. A collection Aα, for α ∈ I of open sets is called a Basis (of all open sets) if and only if
any open set in X is a union of a sub-collection of Aα.

Definition 18. X is called Second Countable if and only if there is a countable basis of open sets of
X.

Lemma 21. {Gα} forms a basis if and only if for any open set A, and for any x ∈ A, there exists α such
that

x ∈ Gα ⊂ A

Proposition 22. Let X be a metric space. We claim that X is second countable if and only if X is
separable.
Proof.
Idea is to let {y1, y1, . . . , yn, . . .} be countable, dense subset of X. Then,

{B(yj , rj) : rj ∈ Q}

is a basis of all open sets in X.
(=⇒) Let G1, . . . , Gn be a countable basis. Choose xn ∈ Gn. We claim that the set {xn} is dense in X.
To prove this, we let x ∈ X, r > 0 and we consider B(x, r) which is an open set. Now, by the lemma above,
we know that there exists m such that x ∈ Gm ⊂ B(x, r). It follows that xm ∈ Gm ⊂ B(x, r).
(⇐=) Let {xn} be a countable dense subset of X. It suffices to show that{

B

(
xn,

1

k

)
: n, k ∈ N

}

15



forms a countable basis. To show this , we let A be an open subset of X and we pick x ∈ A. Choose m > 0,
such that

B

(
x,

1

m

)
⊂ A

Next, we choose k such that

d(x, xk) <
1

3m
We now claim that

x ∈ B
(
xk,

1

2m

)
⊂ B

(
x,

1

m

)
⊂ A

1

2m
+

1

3m
=

5

6m
<

1

m
This claim implies the previous claim by the lemma. �

Fact: ∅, X are both open and closed. By X, we mean the entire metric space.

Definition 19. We say that X is Connected if and only if any subset A ⊂ X that is both open and
closed is either ∅ or X.

Example 10. R is connected, but R− {0} is not.

Definition 20. Let d1, d2 be two distances on X. We say that d1 and d2 are Equivalent precisely if
there are two constants 0 < c1 < c2 <∞ such that

c1 <
d1(x, y)

d2(x, y)
< c2

This implies that for r2 < r1 < r3, we have

Bd2(x, r2) ⊂ Bd1(x, r1) ⊂ Bd2(x, r3)

EXCERCISE: Express r1, r3 if we know c1, c2.
Finally, if d1, d2 are equivalent, then they define the same open and closed sets.
These constants are

r1 = r, r2 =
r

C
, r3 = r · C

and

c1 =
1

C
, c2 = C

for C > 1.
Corollary 23. Open sets with respect to d1, d2 are the same.

Corollary 24. The topologies (space X together with a collection of open sets) defined by d1, d2 are the
same.

Definition 21. Let X be a set and let {Aα}α∈I be a collection of open sets. A Topological Space
satisfies

(i) ∅, X are both open.

(ii) ⋃
α∈J

Aα

is open.

16



(iii)
n⋂
i=1

Ai

is open.

Proposition 25. Distances in Rn defined by

dp(x, y) =

 n∑
j=1

|xi − yi|p
1/p

for p ≥ 1
d∞(x, y) = max

1≤j≤n
|xi − yi|

are equivalent.

Definition 22 (More General Definition). We say that x is a Contact Point of A ⊂ X where X is a
topological space if every neighbourhood of x contains a point in A.

A sequence (xn)∞n=1 → x if and only if for any neighbourhood U of x, there exists N > 0 such that xn ∈ U
for n ≥ N .
Metric Spaces are Hausdorfff.
Definition 23. We say that a space X is Hausdorff if for any x, y ∈ X such that x 6= y, there exists
r1, r2 such that

B(x, r1) ∩B(y, r2) = ∅

OR
For any x 6= y, there exists open sets U containing x and V containing y such that

U ∩ V = ∅

Definition 24. We say that a topological space X is Metrizable if there exists a metric d on X such
that open sets defined by d give the same topology on X.

Corollary 26. If a topological space is not Hausdorff, then it is not metrizable.

Definition 25. Let f : X → Y . We say that f is Continuous at x ∈ X, if

∀ε > 0,∃δ > 0 s.t. ∀y ∈ X, dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε

and we say that a f is a Continuous Function if it is continuous ∀x ∈ X.
OR

∀(xn)∞n=1 → x ( lim
n→∞

xn = x), lim
n→∞

f(xn) = f(x)

Proposition 27. f : X → Y is continuous at every point x ∈ X if and only if for every open set U in Y ,

f−1(U) ⊂ X

is also open. Moreover, this is also equivalent to saying that for every closed set B in Y ,

f−1(B) ⊂ X

17



is also closed. Another way to say this is

X − f−1(B) = f−1(Y −B)

Proof.
(=⇒) Let B ⊂ Y be closed and let f : X → Y be continuous. Now let f−1(B) = A ⊆ X. We want A to be
closed. It suffices to show that all limit points of A lie in A. We know that there exists (xn) ∈ A such that
xn → x as n→∞, and that f is continuous at x. By the definition of continuity, we have that

f(xn)→ f(x)

Now, f(xn) ∈ B, and B is closed. Thus f(x) ∈ B, but then x ∈ f−1(B) = A. � (⇐=) Let x ∈ X,
y = f(x) and let U be an open set, and y ∈ U . Then Y − U is closed. Therefore, f−1(Y − U) = f−1(A) is
closed. Moreover, x /∈ A. So there exists an open set V where x ∈ V ⊂ X − A. Therefore, f(V ) ⊂ U . For
any sequence xn → x, xn ∈ V for n ≥ N . Then f(xn) ∈ U , and so

f(xn)→ f(x) as n→∞

Claim: Let K be the Cantor set. We claim that K is uncountable.
The idea for the proof is that points in K are like real numbers with only 0’s and 2’s in expansion (base 3).
If x ∈ [0, 1], then for a Decimal Expansion, we have

x =
a1
10

+ · · ·+ an
10n

+ · · ·

for aj ∈ {0, 1 . . . , 9}. We can also use base 2 for a Binary Expansion

x =
a1
2

+ · · ·+ an
2n

+ · · ·

for aj ∈ {0, 1}. For the Cantor set, we would use a Ternary Expansion

x =
a1
3

+ · · ·+ an
3n

+ · · ·

for aj ∈ {0, 1, 2}.
Proposition 28. Points in K are in one to one correspondence with

∞∑
j=1

aj
3j

such that aj ∈ {0, 2}.
Proof.
The cantor set K is self similar. To show this we define a map

f : K
⋂[

0,
1

3

]
→ K

where f(x) = 3x. If we look at a ternary expansion in ”decimal notation” (i.e. 0.22222 ≈ 0.100000),
then multiplying the ternary expansion of a number is just the same as multiplying a decimal expansion by
10. �

We now examine how to prove that a set A ∈ X is dense in B ∈ X. Assume for simplicity that A ⊂ B. We
need to show that

∀x ∈ B, ∀ε > 0, ∃ y ∈ B(x, ε) ∩A

18



Now, if we construct the cantor set by letting [0, 1] = I01 and letting the following two intervals to be I11 , I
1
2

where the superscript means the step and the subscript means the enumeration of the interval within the
set. Thus, at step n, there are 2n intervals written as

In1 , I
n
2 , . . . , I

n
2n

each of which has length

|Inj | =
1

3n

Now, every x ∈ K can be written as

x =

∞⋂
k=1

Ikmk

We also make the claim that K has length 0. The sum of the intervals that we remove is

1

3
+ 2

1

9
+ 4

1

33
+ · · ·+ 2n

3n+1
+ · · ·

which is a geometric progression

1

3

∞∑
i=0

(
2

3

)i
=

1/3

1− 2/3
= 1 = |[0, 1]|

And thus, this set has length 0.

Theorem 29. If f : X → Y is continuous, and g : Y → Z is continuous, then

g ◦ f : X → Z

is also continuous
Proof.
Let U ⊂ Z to be an open set. Then

(g ◦ f)−1(U) = f−1(g−1(U))

Now, we know that g−1(U) is open, and thus f−1(g−1(U)) is also open which completes the proof. �

Definition 26. Let X,Y be metric spaces. The map f : X → Y is called an Isometry if for all
x1, x2 ∈ X, we have

dX(x1, x2) = dY (f(x1), f(x2))

Example 11. Parseval’s Identity
If we take f ∈ C([0, 2π]) and we define

a0 = 0, an =
1

2π

∫ 2π

0

f(x) sin(nx)dx

bn =
1

2π

∫ 2π

0

f(x) cos(nx)dx

then ∫ 2π

0

|f(x)|2 dx = ||f ||22 = C ·

( ∞∑
n=0

a2n +

∞∑
n=1

b2n

)
f → {a = (a0, . . . , an, . . .), b = (b1 . . . , bn, . . .)}
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or we could write
1

2π

∫ 2π

0

f(x)[cos(nx) + i sin(nx)]dx

or
1

2π

∫ 2π

0

f(x)einx dx

for
f → {(a0, a1 + ib1, . . . , an + ibn, . . .}

and so
||f ||22 = C · (||a||2l2 + ||b||2l2)

Thus, we have

||(a, b|| = ||f ||L2 =

√
||a||22 + ||b||22√

C

Definition 27. Let X,Y be topological spaces. The map f : X → Y is a Homeomorphism if

(i) f is bijective.

(ii) Both f : X → Y and f−1 : Y → X are continuous funcitons.

We say that X,Y are Homeomorphic if and only if there exists a homeomorphism f : X → Y . Then
open/closed sets, closure, limit points and boundary are all the same for X and Y . Also, continuous functions
on X,Y are the same.
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Chapter 3

Completeness

Section 3.1

Basics & Definitions

Definition 28. A sequence (xn) in a metric space X is a Cauchy Sequence if for any ε > 0, there
exists N ∈ N such that if m,n > N , then

d(xn, xm) < ε

Definition 29. We say that a metric space X is Complete if and only if every Cauchy sequence is
convergent. That is, if (xn) is Cauchy, then there exists z ∈ X such that

d(z, xn)→ 0

as n→∞.

Example 12. Examples of Complete Metric Spaces

• The space l2. Now, l2 is the space of sequences. Let x1, . . . , xk, . . . ∈ l2 where

xk = (xk1 , . . . , x
k
n, . . .) ∈ l2

and such that ∑
(xkj )2 <∞

Now, suppose that the sequence (xk) is Cauchy in l2 which is equivalent to

||xn − xm||2 → 0

as m,n→∞. We want to find
y = (y1, . . . , yn, . . .) ∈ l2

such that ||xk − y||22 → 0 as k →∞.
We know that

||xk − xl||22 =

∞∑
j=1

(xkj − xlj)2 ≥ (xkm − xlm)2

For each m, (xkm) is cauchy in R. Now there exists ym ∈ R such that xkm → ym as k → ∞. The
sequence yj is forced upon us. So, let

y = (y1, . . . , yn, . . .)

and we claim now that y ∈ l2. We let ε > 0 and let N1 be such that ||xn− xm||22 < ε if m,n > N1, and
we get

∞∑
j=1

(xmj − xnj )2 =

N2∑
j=1

(xmj − xnj )2 +

∞∑
j=N2+1

(xmj − xnj )2
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and the first sum is ≤ ε and the second sum is ≤ ε. Fix n, and let m → ∞. As m → ∞, xmj → yj.
This implies that

N2∑
j=1

(yj − xnj )2 ≤ ε

M − 2 is any natural number. let M2 →∞. This gives

∞∑
j=1

(yj − xnj ) <∞

Now, if (xn) ∈ l2, we have that d2(y, xn) ≤ ε and thus y ∈ l2. Now√∑
y2j ≤

√∑
x2j +

√∑
(xnj − bj)2 ≤

√
ε

and so

lim
n→∞

∞∑
j=1

(xnj − bj)2 → 0

which follows from the inequality
∞∑
j=1

(xnj − yj)2 ≤ ε

provided that n > M1 and the fact that ε is arbitrary yields our claim. �

Excercise. Show that lp is complete.
Let’s examine C([a, b]) with d∞ distance

d∞(f, g) = ||f − g||∞ = max
x∈[a,b]

|f(x)− g(x)|

Theorem 30. The space (C([a, b]), d∞) is complete.
Proof.
Let f1(x), . . . , fn(x), . . . be a Cauchy sequence in C([a, b]). Fix x0 ∈ [a, b]. Then (fn(x0)) is a Cauchy
sequence.

|fi(x0)− fj(x0)| ≤ max
x∈[a,b]

|fi(x)− fj(x)| → 0

as i, j simultaneously approach ∞. Therefore, (fn(x0)) converges to a limit that we call g(x0). It is clear
that

d∞(fi(x), g(x))→ 0

as i→∞.
Let ε > 0, let N ∈ N be such that

d∞(fn, fm) < ε

for n,m > N .
=⇒ ∀ x ∈ [a, b], d(fn(x), fm(x)) < ε

Let m→∞, then fm(x)→ g(x). Now, passing to the limit, we get that

=⇒ |fn(x)− g(x)| ≤ ε

if n > N , then
d∞(fn, g) ≤ ε
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It now remains to show that g(x) is continuous. Fix ε > 0 and choose N > 0 such that

d∞(fn, fm) <
ε

2

for each m ≥ N . Now, let fN (x) be uniformly continuous on [a, b] (we can do this since [a, b] is a compact
subset of R). Let δ > 0 be such that if x, y ∈ [a, b] and |x− y| < δ, then

|f(x)− f(y)| < ε

2

Let m > N . Suppose that fm(x)→ g(x). As before, let |x− y| < δ, then

|g(y)− g(x)| ≤ |g(y)− fN (y)|+ |fN (y)− fN (x)|+ |fN (x)− g(x)| < 3ε

2
�

Theorem 31. Let 1 ≤ p <∞. Then (C([a, b]), dp) is not complete.
Proof.
We shall define a Cauchy sequence

fn(x)→ g(x) =

{
0, x ∈ [−1, 0]

1, x ∈ (0, 1]

Let

fn(t) =

{
nt, t ∈

[
0, 1

n

]
1, t > 1 1

n

Now, ∫ 1/n

0

fn(t)dt =

∫ 1/n

0

nt dt =

[
nt2

2

]1/n
0

=
1

2n
→ 0

as n→∞. We prove now for p = 1. Let

fn(x) =


0, x ∈

[
−1, 1

2n

]
2n
(
x− 1

2n

)
, x ∈

[
1

2n+1 ,
1
2n

]
1, x ∈

[
1
2n , 1

]
so then, for m > n

fm(x)− fn(x) =


0, x ≤ 1

2m+1

2m
(
x− 1

2m+1

)
, x ∈

[
1

2m+1 ,
1
2m

]
1, x ∈

[
1
2m ,

1
2n+1

]
1− 2n

(
x− 1

2n+1

)
, x ∈

[
1

2n+1 ,
1
2n

]
Now,

d1(fm, fn) =

∫ 1/2n

1/2m+1

|fm(x)− fn(x)|dx ≤
(

1

2n
− 1

2m+1

)
· 1→ 0

as m,n→∞ �.

Exercise. Let

hn,p(x) =


0, x ∈ [−1, 0]

(nx)1/p, x ∈
[
0, 1

n

]
1, x ∈

[
1
n , 1
]
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and [∫ 1/n

0

|hn,p(x)|pdx

]1/p
=

[∫ 1/n

0

(|nx|1/p)pdx

]1/p
=

[∫ 1/n

0

(nx)dx

]1/p
=

(
1

2n

)1/p

→ 0

as n→∞. Use hn,p(x) to modify the construction for p = 1.

Theorem 32. The space X is complete if and only if for every sequence of nested closed balls

· · · ⊂ B(xn, rn) ⊂ · · · ⊂ B(x1, r1)

such that rn → 0 as n→∞. We then have a nonempty intersection.
Proof.
(=⇒) Let (xn) be a sequence of centres of the balls. Then, (xn) is a Cauchy sequence. Indeed,

d(xn, xm) ≤ max(rn, rm)→ 0

as n,m→∞. X is complete, so xn → y ∈ X as n→∞. We want to show that

y ∈
1⋂
i=n

B(xi, ri)

We know that
y = lim

n→∞
xn

for xm ∈ B(xn, rn), m > n, we get

lim
n→∞

d(xm, xn) ≤ rn =⇒ d(y, xn) ≤ rn

(⇐=) We must prove now that if X is not complete, then ∃ a sequence of balls

· · · ⊂ B(xn, rn) ⊂ · · · ⊂ B(x1, r1)

such that rn ↓ 0 and
∞⋂
n=1

B(xn, rn) = ∅

Suppose now that X is not complete. Then there exists a Cauchy sequence (xn) such that xn doesn’t have a
limit in X. Also, there exists n1 such that

d(xm, xn1
) <

1

2

for m ≥ n1. Now, let B1 = B(xn1 , 1), then there exists n2 > n1 such that

d(xm, xn2
) <

1

22
=

1

4

for each m ≥ n2. Now let B2 = B(xn2 , 1/2). We claim that B2 ⊂ B1.
The induction step is that there exists nk > nk−1 such that

d(xm, xnk) <
1

2k

for all m ≥ nk. Now, let

Bk = B

(
xnk ,

1

2k

)
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Now, we claim that Bk ⊂ Bk−1.
We know that

· · · ⊂ B2 ⊂ B1

where

rk =
1

2k
→ 0

as k →∞. Any point lying in
∞⋂
k=1

Bk

must be a limit of (xk). We assumed that (xk) doesn’t converge. Thus

∞⋂
k=1

Bk = ∅

and this contradiction completes the (⇐=) direction of the proof. �

In general, there exist complete metric spaces, and there exists rn that doesn’t converge to zero such
that

· · · ⊂ B(x2, r2) ⊂ B(x1, r1)

but that
∞⋂
k=1

B(xk, rk) = ∅

Hint (Problem 5(ii), Assignment 1): Prove that

{All 3-adic rationals in [0, 2]} ⊂ K +K

and then a/3n is dense in [0, 2] where 0 ≤ a ≤ 2 · 3n.

Section 3.2

Completion & Density Revisited

Definition 30. The Completion of an incomplete metric space X is a metric space Y such that

f : X → Y

is a function that satisfies

• f is 1-to-1, with
d(f(x1), f(x2)) = d(x1, x2)

[f is an isometry from X to f(X)]

• f(X) as dense in Y

• Y is complete

Proposition 33. Every incomplete metric space has a completion that is unique up to isometry.
Proof (Idea). Let Z be the set of all Cauchy Sequences x = (x1, . . . , xn, . . .) in X.
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Definition 31. We say that two Cauchy sequences (xn) and (yn) are Equivalent if and only if

d(xn, yn)→ 0

as n→∞.

Proposition 34. Equivalence is an equivalence relation.
Proof.
The only non-trivial part of this part is transitivity. Thus, if (xn) ∼ (yn) and (yn) ∼ (zn), then we know
that for n > n1,

d(xn, yn) <
ε

2
and for n > n2,

d(yn, zn) <
ε

2
and thus

d(xn, zn) < ε

for n > N = max{n1, n2}. �

Definition 32. If we let Y denote the set of all equivalence classes in Z with respect to ∼, then for
(xn), (yn) Cauchy sequences in X, we define

d
(

(xn), (yn)
)

= lim
n→∞

dX(xn, yn)

Proposition 35.
d = 0⇐⇒ (xn) ∼ (yn)

Proof.
So, if (xn) ∼ (x′n), then

lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, yn)

We have
f : X → Y

such that f(x) = {x, x, x, . . .}. It remains to show that

• f(X) is dense in Y

• Y is complete

For the first part, let (x1n), (x2n), . . . , (xkn) be Caucy sequences. We know that

dY ((xk1n ), (xk2n ))→ 0

as k1, k2 → infty. Now, let y ∈ Y . y is an equivalence class of the sequence (xn). Let ε > 0, and let N be
such that

d(xn, xm) < ε

for all n,m > N . Choose, n > N , and we get

dY (y, f(xn)) = dY (y, (xn, xn, . . . , xn, . . .)) ≤ ε

where f(xn) ∈ f(X). This implies that f(X) is dense in Y .
For the second part, let y1, . . . , yn be Cauchy in Y . Choose{

xn : dX(f(xn), yn) <
1

n

}
We claim that (xn) is a Cauchy sequence in X. If z = (xn), then yn → z in Y .
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We now ask the question: Why are complete metric spaces cool?
A possible answer would involve the Contraction Mapping Principle.

Section 3.3

O.D.E. & Contraction

Definition 33. If X is a metric space and A : X → X, then we say that A is a Contraction Mapping
if there exists 0 < α < 1 such that

d(A(x), A(y)) < α · d(x, y)

for any x, y ∈ X. It is a fact that if A is a contraction mapping, then A is continuous.

Theorem 36 (Contraction Mapping Principle). If X is complete, and A is a contraction mapping, then
there exists a unique point x0 ∈ X such that A(x0) = x0 is a fixed point of A. Moreover, for any x ∈ X,
An(x)→ x0 as n→∞.
Proof.
Let x ∈ X and consider

{x,A(x), . . . , An(x), . . .} = {x0, . . . , xn, . . .}

We claim that (xn) is a Cauchy sequence. To this end, we begin with

d(Am(x), Am+k(x)) = d(Am(x), Am(Ak(x))) ≤ αmd(x,Ak(x))

By induction on m, we see

d(A2(x), A2(y)) ≤ αd(A(x), A(y)) ≤ α2d(x, y) ≤ · · ·

and so if m→∞, then αm → 0.
Now, we know that An(x) → x0 as n → ∞, since X is complete. We now want an a priori bound on
d(x,Ak(x)) for each k.

d(x,A(x)) = b

d(x,Ak(x)) ≤ d(x,A(x)) + d(A(x), A2(x)) + · · ·+ d(Ak−1(x), Ak(x))

Where
d(Ai(x), Ai−1(x)) ≤ αib

and so

d(x,Ak(x)) ≤ b(1 + α+ · · ·+ αk−1) ≤ b

1− α
which is the bound we need. We also know that

An+1(x)→ A(An(x))→ A(x0)

as n→∞. And thus A(x0) = x0 which means that x0 is a fixed point of A. A cannot have two fixed points
since if x0, y0 are fixd, then

Ax0 = x0 A(y0) = y0

then
d(A(x0), A(y0)) = d(x0, y0)

which is a contradiction that completes the proof. �
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Remark. Alternatively to our original proof, we let our sequence be xn = Axn−1 so that xn = Anx0 and
since A is continuous, and since xn → x∗, we get that

Ax∗ = A lim
n→∞

xn = lim
n→∞

Axn = x∗

which shows existence of a fixed point.

Definition 34. We say that a map f is Lipschitz, denoted f ∈ LipK if

|f(x)− f(y)| < K · |x− y|

and if K < 1 then f is a contraction mapping.

Example 13. 1. Suppose that f : [a, b] → R and that f is Lipschitz with K > 0. If K < 1 then we
know that f is a contraction mapping from [a, b]→ [a, b]. Hence if

x0, x1 = f(x1), x2 = f(f(x0)), . . .

then fn(x)→ y such that f(y) = y. Sufficient condition is that if f ∈ C1([a, b]),

|f ′(t)| ≤ K < 1

for all t ∈ [a, b].
f(y)− f(x) = (y − x) · f ′(t)

for some t ∈ [x, y] ⊂ [a, b]. So ∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ = |f ′(t)| ≤ K < 1

2. Solving ODE’s.
d

dx
y = f(x, y) y(x0) = y0

Now, suppose that
|f(x, y1)− f(x, y2)| ≤M · |y1 − y2|

for M fixed, then f ∈ LipM in y. We assume that f is continuous on some rectangle R ⊂ R2 such
that (x0, y0) ∈ R. Then, on some small interval

|x− x0| ≤ d

there exists a unique solution to the ODE satisfying the initial condition y(x0) = y0.
Proof.
Solving the ODE above is equivalent to solving an integral equation

ϕ(x) = y0 +

∫ x

x0

f(t, ϕ(t)) dt ϕ(x0) = y0

and we note that
ϕ′(x) = f(x, ϕ(x))

f is continuous on R and so
|f(x, y)| ≤ K

for all points (x, y) ∈ R1 where R1 contains (x0, y0). Now we choose d > 0 so that if

• |x− x0| ≤ d and |y − y0| ≤ Kd, and
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• Md < 1

then (x, y) ∈ R1.
Let C be the space of continuous functions ϕ on [x0 − d, x0 + d] such that

|x− y0| ≤ K · d

Let d∞ be the sup distance

d(ϕ1, ϕ2) = sup
x∈[x0−d,x0+d]

|ϕ1(x)− ϕ2(x)|

then C is complete. Now we need to define a contraction mapping and so let

Aϕ = ψ(x) = y0 +

∫ x

x0

f(t, ϕ(t)) dt

So we claim that A is a contraction map from C → C. If this claim is true, then there exists a
unique fixed point ϕ of A such that Aϕ = ϕ which means that this unique ϕ solves the integral equation
uniquely and thus solves the ODE uniquely.
Now, to prove the claim, we define a starter function ϕ ∈ C such that

|x− x0| ≤ d

and we have that

|ψ(x)− y0| = |A(ϕ(x))− y0| =
∣∣∣∣∫ x

x0

f(ϕ(t), t) dt

∣∣∣∣
≤ max
t∈[x0,x]

|f(ϕ(t), t)| · |x− x0|

≤ Kd

Now, for the contraction (with respect to the sup norm)

|A(ϕ1(x))−A(ϕ2(x))| =
∣∣∣∣y0 +

∫ x

x0

f(t, ϕ1(t)) dt− y0 −
∫ x

x0

f(t, ϕ2(t)) dt

∣∣∣∣
=

∣∣∣∣∫ x

x0

[f(t, ϕ1(t))− f(t, ϕ2(t))] dt

∣∣∣∣
≤
∫ x

x0

|f(t, ϕ1(t))− f(t, ϕ2(t))| dt

≤
∫ x

x0

M · |ϕ1(t)− ϕ2(t)| dt

≤M · |x− x0| · max
t∈[x0,x]

|ϕ1(t)− ϕ2(t)|

≤M · d · d∞(ϕ1, ϕ2)

Thus,
d∞(A(ϕ1), A(ϕ2)) ≤M · d · d∞(ϕ1, ϕ2)

remember that M · d < 1 and M = α.

Fact. Let X be a complete metric space. If An is a contraction map from X. Then A(x) = x also has a
unique solution.
We will leave the proof of this until when we need to use it.
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Chapter 4

Compactness

Section 4.1

Basics & Definitions

Definition 35. Let A ⊂ X where X is a metric space. We say that A is Sequentially Compact if
every sequence in A has a subsequence which converges to some x ∈ X (x /∈ A is possible).

Definition 36. A ⊂ X is called an ε-net if for each x ∈ X, there exists y ∈ A such that

d(x, y) ≤ ε

Definition 37. X is Totally Bounded if for each ε > 0, there exists a finite ε-net in X.
OR
X is Totally Bounded if for any ε > 0, there exists a finite set x1, . . . , xn such that

X ⊂ B(x1, ε)
⋃
B(x2, ε)

⋃
· · ·
⋃
B(xn, ε)

where n = n(ε).

Other problems where knowing what n(ε) is useful include

• Coding

• Complexity

We note first that a totally bounded space is bounded. That is,

d(x1, x2) ≤ 2ε+ max
y1,y2∈ε−net A

d(y1, y2) = 2ε+ diam(ε− net A)

Fact. If B ⊂ X is totally bounded, then B ⊂ X is also totally bounded.

We now ask the question: What is the minimal number of points in an ε-net? [0, 1]n,

least number of points ≈
(

1

ε
+ 1

)n
Hint: We can use without proof the fact that all norms in R2 are equivalent. This implies that we can

use our favourite norm in Rn to define the operator norm, namely

||Ax||p
||x||p

or
||Ax||∞
||x||∞
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Now, suppose that C1 < C2, so if
1

C1
≤ d1(x, y)

d2(x, y)
< C1

then
1

C2
≤ d1(x, y)

d2(x, y)
< C2

Example 14. Examples of totally bounded sets.

• In Rn, a set is totally bounded iff the set is bounded (n is fixed).

• In l2, take the set

A =

{
x = (x1, . . . , xn, . . .) : |x1| ≤ 1, |x2| ≤

1

2
, · · · |xn| ≤

1

2n

}
We claim that A is totally bounded.
Proof.
Let ε > 0 and choose m such that

1

2m
<
ε

2

Now, let
C1 = {x = (x1, . . . , xm, 0, 0, . . . , 0, . . .) : x ∈ A}

First, we claim that C1 is totally bounded. C1 can be covered by N(ε) < ε−m balls of radius ε.
Now we claim that the whole set C lies in an ε-neighbourhood of C1. It suffices to show that for any
x ∈ C, there exists y ∈ C1 such that

d(x, y) ≤ ε

To this end, take x = (x1, . . . , xm, xm+1, . . .) ∈ C and y = (x1, . . . , xm, 0, . . . , 0, . . .) ∈ C1. Now,

d2(x, y) =

∞∑
k=m+1

|x2k ≤
1

(2m+1)2
+

1

(2m+2)2
+ · · ·

=
1

4m

(
1 +

1

4
+

1

16
+ · · ·

)
=

1

4m
1

1− 1/4
=

1

3 · 4m−1
< ε2

Now, the ε-net in C1 is also a finite (2ε)-net in C. So since, ε is arbitrary, we conclude that C is
totally bounded.
We remark that the same construction would work if

|xk| ≤ ak s.t.

∞∑
k=1

a2k <∞

• We claim that the whole of l2 is not totally bounded. To this end, define

x1 = (1, 0, 0, 0, . . .)

x2 = (0, 1, 0, 0, . . .)

x3 = (0, 0, 1, 0, . . .)
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A = {x1, x2, . . .}
We know that

d2(xm, xn) = 12 + 12 = 2

for any m,n. So, for any ε <
√

2/2, A cannot be covered by a finite ε-net.

Theorem 37. Let X be complete, and suppose that A ⊂ X. A is sequentially compact if and only if A is
totally bounded.
Proof.
(=⇒) Suppose that A is not totally bounded. There exists an ε > 0 such that A doesn’t have a finite ε-net.
Choose x1 ∈ A, then there exists x2 ∈ A such that

d(x1, x2) ≥ ε

and there exists x3 such that
d(x3, x1) ≥ ε d(x3, x2) ≥ ε

and continuing this way, we see that there exists xk such that for any j < k,

d(xk, xj) ≥ ε

Now, we claim that xj cannot have a convergent subsequence. To yield this claim, we simply say that any
subsequence is not Cauchy.
(⇐=) Suppose that X is complete and A is totally bounded. Let (xa) be a sequence of points in A. Let

ε1, ε2 =
1

2
, . . . , εk =

1

k

For any k, there exists a finite set ak1 , a
k
2 , . . . , a

k
nk

such that

n⋃
i=1

B(aki , εk) = A

One of B(a1j , 1) has infinitely many xk’s. In a ball Bi of radius 1, there is an infinite subsequence of xk’s

x
(1)
1 , . . . , x(1)n , . . .

Also, one of the balls

B

(
a2j ,

1

2

)
has infinitely many x

(1)
j . Call it B2. Call the corresponding subsequence

x
(2)
1 , . . . , x(2)n , . . .

One of

B

(
akj ,

1

k

)
has infinitely many points of

x
(k−1)
1 , . . . , x(k−1)n , . . .

Call it Bk. Elements lying in Bk for a subsequence

x
(k)
1 , . . . , x(k)n , . . .

Now, let yk = x
(k)
k . yk is a subsequence of xk’s.

yk is Cauchy. For m ≥ 1,

d(yk, yk+m) ≤ diam
(
B

(
akj ,

1

k

))
≤ 2

k

X is complete. yk → z ∈ X. �
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Section 4.2

Arzela & Compacta

Proposition 38. X is complete, and A ⊆ X is compact if and only if for all ε > 0, there exists in X a
sequentially compact ε-net that covers A.

Definition 38. Let F = {ϕ(x)} be a family (collection) of functions on [a, b]. We say that F is Uni-
formly Bounded if there exists M > 0 such that

|ϕ(x)| ≤M, ∀ x ∈ [a, b], ∀ ϕ ∈ F

Definition 39. We say that the family F is Equicontinuous if for every ε > 0, there exists δ > 0 such
that ∀ x1, x2 ∈ [a, b], with |x1 − x2| < δ, and ∀ ϕ ∈ F , we get

|ϕ(x1)− ϕ(x2)| < ε

Remark. Both of the above definitions work for any metric space X.

Theorem 39 (Arzela). Let F be a family of continuous functions on [a, b]. Then F is sequentially compact
in (C([a, b]), d∞) (which is complete by Theorem 30) if and only if F is uniformly bounded and equicontinuous.
Proof.
(=⇒) It is true that F is sequentially compact in (C([a, b]), d∞) if and only if F is totally bounded in C([a, b])
by Theorem 36.
Now, let ε > 0, then F can be covered by a finite (ε/3)-net. There exists ϕ1, . . . , ϕk ∈ C([a, b]) such that for
any ϕ ∈ C([a, b]), we have

d∞(ϕ,ϕj) <
ε

3

for some 1 ≤ j ≤ k. Now, |ϕj(x)| ≤Mj for all x ∈ [a, b]. Take

M = max{Mj}+
ε

3

and for any x ∈ [a, b] and for any ϕ ∈ F , there exists 1 ≤ j ≤ k such that

|ϕ(x)− ϕj(x)| ≤ ε

3

Now, for all x,

|ϕ(x)| ≤ |ϕj(x)|+ ε

3
≤Mj +

ε

3
≤M

and since
d∞(ϕ,ϕj) ≤

ε

3

which means that F is uniformly bounded.
Each ϕ(x) ∈ C([a, b]) is uniformly continuous, so there exists δj such that

|x1 − x2| < δj =⇒ |ϕj(x1)− ϕj(x2)| < ε

3

and let δ = min{δj}. Let x1, x2 ∈ [a, b] such that |x1 − x2| < δ. Let ϕ ∈ F and choose 1 ≤ j ≤ k so that

d∞(ϕ,ϕj) <
ε

3
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and now
|ϕ(x1)− ϕ(x2)| ≤ |ϕ(x2)− ϕj(x1)|+ |ϕj(x1)− ϕj(x2)|+ |ϕj(x2)− ϕ(x2)|

≤ ε

3
+
ε

3
+
ε

3
= ε

(⇐=) We know that (C([a, b]), d∞) is complete and hence it is sequentially compact if and only if it is totally
bounded. We claim that F is totally bounded. Let ε > 0. By uniform boundedness, we get that

|ϕ(x)| ≤M

Now, let δ > 0, then for any x1, x2 ∈ [a, b], we have that

|x1 − x2| < δ =⇒ |ϕ(x1)− ϕ(x2)| < ε

5

for any ϕ ∈ F . Now, let
b− a
N

< δ

and let

x0 = a x1 = a+
b− a
N

x2 = a+ 2
b− a
N

· · · xN−1 = a+ (N − 1)
b− a
N

xN = b

Now we let m > 0 and
2M

m
<
ε

5

and y0 = −M and ym = M so that the points yk subdivide the interval [−M,M ] into m equal parts. Now,
we take any continuous function ϕ ∈ F . We look at values {ϕ(x0), ϕ(x1), . . . , ϕ(xN )} and for each j, we
choose yj such that

|ϕ(xj)− yj | ≤
ε

5

Now let ψ be a piecewise-linear function such that ψ(xj) = yj. The set of all possible ψ (call it A) is finite
and

|A| ≤ (M + 1)n+1

Furthermore, since we know that the slope is between −3 and 3, it follows that the number of functions

|A| ≤ (M + 1) · 7n

Now we claim that the set A of possible ψ form an ε-net in F . To this end, we first note that for any
0 ≤ k ≤ n,

|ϕ(xk)− ψ(xk)| < ε

5

and
|ϕ(xk+1)− ψ(xk+1)| < ε

5

by our choice of ψ. Also, by uniform continuity, we get

|ϕ(xk)− ϕ(xk+1)| < ε

5

=⇒ |ψ(xk)− ψ(xk+1)| < 3ε

5

Now, for any x ∈ [xk, xk+1], we have by linearity that

|ψ(x)− ϕ(xk)| ≤ 3ε

5
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Then
|ϕ(x)− ψ(x)| ≤ |ϕ(x)− ϕ(xk)|+ |ϕ(xk)− ψ(xk)|+ |ψ(xk)− ψ(x)| = α+ β + γ

We know that α < ε/5 by uniform continuity, and β < ε/5 by construction of ψ and γ < 3ε/5. Thus

|ϕ(x)− ψ(x)| < ε

for any x ∈ [a, b] which completes the proof. �.

Recall that A ⊆ X is sequentially compact if and only if any sequence (xn) ∈ A has a subsequence that
converges in X.

Definition 40. A subset A ⊆ X is Sequentially Compact In Itself if and only if any sequence (xn) ∈ A
has a convergent subsequence that converges in A.

Example 15. If B = Q ∩ [0, 1] then B is sequentially compact but not in itself.

Example 16. If A = X then sequential compactness is equivalent to sequential compactness in itself.

Definition 41. A sequentially compact metric space is called Compactum.

Proposition 40. Let A ⊆ X. If A is sequentially compact, then A is sequentially compact in itself if and
only if A is as a closed subset of X.

Corollary 41. Any closed bounded subset of Rn is sequentially compact in itself.

Proposition 42. Let X be a metric space. X is a compactum if and only if X is complete and totally
bounded.
Proof.
EXCERCISE

Proposition 43. Every compactum has a countable dense subset.

Theorem 44. The following are equivalent:

(i) X is a compactum.

(ii) An arbitrary open cover {Uα}α∈I of X has a finite subcover. That is there exists α1, . . . , αn ∈ I such
that

X ⊆
n⋃
i=1

Uαi

(iii) (Finite Intersection Property)
A family {F}α∈I of closed subsets of X such that every finite collection of Fn’s has a nonempty
intersection has ⋂

α∈I
Fα 6= ∅

Proof.
((i) ⇐⇒ (ii)) Suppose that X is sequentially compact in itself. Let εn = 1/n and take a finite εn-net; with
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centres a
(n)
k for each n so that

X ⊆
⋃
B

(
a
(n)
k ,

1

n

)
We proceed by contradiction. Assume that there exists an open cover {Uα} without a finite subcover and
choose one of

B

(
a
(n)
k ,

1

n

)
that cannot be covered by a finitely many Uα’s. Now, say

B

(
a
(n)
k0(n)

,
1

n

)
Let xn = {x(n)k0(n)

}. Now, X is a compactum, so a subsequence xnj → y ∈ X. y ∈ Uβ, for some β ∈ I. Uβ is

open and so
B(y, ε) ⊆ Oβ

for some ε > 0. Now choose n so that
1

n
<
ε

2

and then
d(y, a

(n)
k0(n)

) <
ε

2

Now, we claim that

B

(
a
(n)
k0(n)

,
1

n

)
⊆ B(y, ε) ⊆ Oβ

which is trivially true. But this is a contradiction which completes this part of the proof.
((ii) =⇒ (i)) Suppose that any open cover of X has a finite subcover. Then we claim that X is complete,
and that X is totally bounded. To show total boundedness, we let ε > 0 and then

X ⊆
⋂
x∈X

B(x, ε = Ux)

has a finite subcover. Thus, there exists x1, . . . , xn(ε) such that

X ⊆
n(ε)⋂
k=1

B(xk, ε)

is a finite ε-net and ε is arbitrary, so total boundedness follows.
To show completeness, we let

· · · ⊆ Bk ⊆ · · · ⊆ B1

be a sequence of closed, nested spheres of radius rk → 0 as k →∞. Now, suppose, for a contradiction, that

∞⋂
k=1

Bk = ∅

Now, ⋃
k∈N

(X\Bk)

is an open cover of X. It cannot have a finite subcover, otherwise Bj = ∅ for j > N which is a contradiction
that completes the final portion of the proof. �
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Remark. Open cover property is usually taken as a definition of compactness for general topological spaces.
To get a ”sequential” definition for general topological spaces, one should generalize the notion of sequence
to ”nets.”

Theorem 45. If X is compact, and f : X → Y is continuous, then f(X) is compact.
Proof.
Let

f(X) ⊆
⋃
α∈I

Vα

Then, for any α, define f−1(Vα) = Uα which is open and {Uα}α∈I is an open cover of X which is compact.
Then there exists a finite subcover

X ⊆ Uα1 ∪ Uα2 ∪ · · · ∪ Uαn
which implies that

f(X) ⊆ Vα1
∪ · · · ∪ Vαn

is a finite subcover of f(X) which yields our claim. �

Theorem 46. If X is compact and f : X → Y is continuous, one-to-one and onto, then f−1 is also
continuous and hence f is also a homeomorphism.
Proof.
Define Y = f(X) to be compact. Let B ⊆ X be closed. Then B is compact since closed subsets of compact
metric spaces are compact. Now, f(B) = C is closed in Y which completes the proof. �

If we let X,Y be compact metric spaces and if C(X,Y ) is the set of continuous functions from X to Y .
Now, let f, g ∈ C(X,Y ) and define

d∞(f, g) = sup
x∈X

dY (f(x), g(x))

Theorem 47. Let D ⊆ C(X,Y ) where X,Y are compact. Then D is compact in C(X,Y ) if and only if
for every ε > 0, there exists δ > 0 such that for every x1, x2 ∈ X,

dX(x1, x2) < δ =⇒ dY (f(x1), f(x2)) < ε

for every f ∈ D.
Proof. (Sketch)
Let MX,Y be the space of all mappings (not necessarily continuous) from X to Y . Define d∞ as before. Now,
C(X,Y ) is a closed subset of MX,Y . Also, if fn : X → Y converges uniformly with respect to d∞ then the
limit function is continuous.

Theorem 48. A closed subset Y of a compact set X is compact.
Proof.
Let (Uα) be a cover of Y . (Uα) ∪ (x\Y ) is an open cover of X which is compact. This implies that a finite
subcover Uα1

, . . . Uαk , (X\Y ) possibly of X. Hence, the subcover covers Y. �

Proposition 49. Let X be a metric space. Then Y is sequentially compact in X if and only if Y is
compact in itself.

Proposition 50. Any function that is continuous on a compact metric space X is uniformly continuous.
Proof.
Suppse, for a contradiction that there exists ε > 0 such that there exists (xn), (x′n) in X such that

d(xn, x
′
n) <

1

n
=⇒ |f(xn)− f(x′n)| ≥ ε
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Now, X is compact, so there exists xnk → y ∈ X. Then x′nk → y. f is continuous and so f(xnk), f(x′nk)→
f(y). This contradicts our assumption and the proof is complete. �

Proposition 51. If X is compact, then f : X → R attains a least upper bound U and greatest lower
bound L.
Proof.
Suppose, for a contradiction, that U is not attained. Then, for each n, there exists xn ∈ X such that

U > f(xn) ≥ U − 1

n

by sequential compactness, xnk → y ∈ X. Now, by continuity, f(xnk) → f(y). Thus, f(y) = U which
contradicts our assumption and completes the proof for attaining the supremum. For the infimum, it is
symmetric. We just replace f by −f . �

Theorem 52. (General Arzela)
Let D ⊆ C(X,Y ) where X,Y are compact metric spaces. Then D is sequentially compact in C(X,Y ) (which
is equivalent to D is compact in C(X,Y )) if and only if for every ε > 0, there exists δ > 0 such that for
every x1, x2 ∈ X,

d(x1, x2) < δ =⇒ dY (f(x1), f(x2)) < ε

for every f ∈ D.
Proof.
We remarked that it suffices to show that it suffices to show that D is totally bounded in M(X,Y ) with respect
to

d∞(f, g) = sup
x∈X

dY (f(x), g(x))

where M(X,Y ) is the space of all maps from X to Y (not necessarily continuous). Also, it was proven that
C(X,Y ) is closed in M(X,Y )
To prove that D is totally bounded, we shall be approximating functions in D by piecewise constant (but
discontinuous) functions.
Now, let ε > 0, and in the definition of equicontinuity, choose δ > 0 such that

dX(x1, x2) < δ =⇒ dY (f(x1), f(x2)) < ε

for all f ∈ D. Let {x1, . . . , xn} be a (δ/2)-net in X. Then let

A1 = B

(
x1,

δ

2

)
; A2 = B

(
x2,

δ

2

)
\A1; A3 = B

(
x3,

δ

2

)
\(A1 ∪A2)

so that

Ak = B

(
xk,

δ

2

)
\(A1 ∪ · · · ∪Ak−1)

Now, A1 ∪ · · · ∪An = X. The Aj are disjoint. Also, if x1, x2 ∈ Ai, then

dX(x1, x2) < δ

Now, if Y is compact, then there exists a finite (ε/2)-net {y1, . . . , ym} ⊆ Y . We shall approximate functions
in D by the set of mappings that are constant on Aj’s and take values in {y1, . . . , ym}. This is a finite set
and the number of functions is less than or equal to mn.
We call this set Φ and we claim that for every f ∈ D, there exists ϕ ∈ Φ such that d∞(f, ϕ) ≤ 2ε.
To this end, for all 1 ≤ i ≤ n, there exists 1 ≤ j ≤ m such that

dY (f(xi), yj) < ε
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Now, let ϕ ∈ Φ be defined by letting ϕ(xi) = yj, then

dY (f(x), ϕ(x)) ≤ dY (f(x), f(xi)) + dY (f(xi), ϕ(xi)) + dY (ϕ(x), ϕ(xi))

The first two terms are less than ε and the last term is 0. Thus,

dY (f(x), ϕ(x)) < 2ε

and the proof is complete. �

Example 17. Let fn(x) = xn and we wish to show that {fn} ⊆ C([0, 1]) is uniformly bounded and
uniformly equicontinuous.
Clearly, it is uniformly bounded by 1. For uniform equicontinuity, we have

f ′n(x) = nxn−1

and so
f ′n(1) = n

We suppose for a contradiction that for every ε > 0, there exists δ > 0 such that for each x, y ∈ X,

|x− y| < δ =⇒ |fn(x)− fn(y)| < ε

for each n ∈ N. By Taylor’s theorem, we get

|fn(x)− fn(y)| = |f ′n(x)| · |x− y|

the rest is provided in a note online.
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Chapter 5

Basic Point-Set Topology

Section 5.1

Product Topology

U1 × · · · × Un × · · ·

The basis of open sets are the sets where

(i) Uj ’s are open in Xj ’s

(ii) Uj = Xj except for finitely many j’s
Proposition 53. Let

f : Y → X =

∞∏
i=1

Xi

be a function. Then f is continuous (with respect to the product topology) if and only if

f(y) = [f1(y), · · · , fn(y), · · · ]

where the fi(y) are continuous for each i.
Proof.
It suffices to show that f−1(Basis element of the product topology) is open in Y . Let

U = U1 × Un ×Xn+1 ×Xn+2 × · · ·

and so
f−1(U) = f−11 (U1) ∩ · · · ∩ f−1n (Un) ∩ Y ∩ Y ∩ · · · = V

is open, as we disregard the intersections with Y and also since each f−1i (Ui) is open. �

Example 18. If we let
f : R→ R∞

be such that
x 7→ (x, · · · , x)

then we can see that f is not continuous in the box topology.

Theorem 54. (Easy Version Of Tikhov Theorem)
Suppose that Xj is compact for each j, then

X =

∞∏
i=1

Xi

with the product topology is also compact.
Proof.
Suppose that X has an open cover O that has no finite subcover. We first claim that there exists x1 ∈ X1

such that no basis set of the form
U1 × U2 × · · ·
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is overed by finitely many open sets O. To show that this claim holds, we will suppose, for a contradiction
that for any x1, there exists U1 containing x1 such that

U1(x1)×X2 × · · ·

is covered by finitely many sets in O. Then the sets

{U(x1) : x1 ∈ X1}

are open covers of X. If X1 is compact, then

X1 ⊆ U1(x1) ∪ · · · ∪ U1(xk)

and each Uj ×X2 × · · · ×Xn × · · · is covered by finitely many open sets in O. Thus

X1 × · · · ×Xn × · · ·

is covered by finitely many sets in O which contradicts our assumption proving the claim.
Now, by induction, there exists X2 ∈ X2 such that no basis set of the form

U1 × U2 ×X3 × · · · ×Xn × · · ·

such that (x1, x2) ∈ U1 ×U2 can be covered by finitely many open sets in O. This is step 2 in the induction.
This is proven using the compactness of X2. Now, for step k, we have that for each k ∈ N, there exists
xk ∈ Xk such that no element of the form

U1 × · · · × Uk ×Xk+1 × · · ·

can be covered by finitely many open sets in O. Now, consider

x = (x1, · · · , xn, · · · ) ∈ X1 × · · · ×Xk × · · ·

and so there exists v ∈ O, such that x ∈ V . So there exists a basis element

U = U1 × · · · × Um ×Xm+1 × · · ·

which contradicts step m of the induction. �

Suppose now that X is a metric space. Is the product topology metrizable? The answer is yes. We wish to

put a metric on
∞∏
j=1

Xj

Step 1. Let dj be the metric on Xj . Replace dj by

d̃j(x, y) =
dj(x, y)

1 + dj(x, y)
≤ 1

It is a fact that d̃j preserves topology on Xj .
Step 2. Let

x = (x1, · · · , xn, · · · ) y = (y1, · · · , yn, · · · )
and we say that

D(x, y) =

∞∑
k=1

d̃j(xk, yk)

2k

and we’re done!
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Example 19. We recall that the rational numbers can be completed to p-adic rational numbers, so

Q→ Qp =


∞∑

j=−m
ajp

j : m ∈ N finite, 0 ≤ aj ≤ p− 1


Section 5.2

Conectedness

Definition 42. Let A ⊆ X and we say that ∂A is the Boundary of A if ∂A is the set of points x ∈ X
such that ∃xn ∈ A such that xn → x and ∃yn ∈ AC such that yn → x also.

Proposition 55. Let X be a metric space and let A ⊆ X. Then, ∂A is closed, and also ∂(A ∪ B) ⊆
∂A ∪ ∂B. We can also find an example where ∂(A ∪B) 6= ∂A ∪ ∂B.
Proof.
Excercise.

Definition 43. Let X be a topological space. We say that X is Connected if and only if we have for
subsets A,B ⊆ X either both open or both closed with A ∩B = ∅ that

X = A ∪B =⇒

{
A = ∅, B = X or

A = X,B = ∅

If X is not connected, then X is called Disconnected.

We make the remark that if X = A ∪B, then A,B are both closed and so.

Proposition 56. X is connected if and only if we have that the only subsets that are both open and closed
are ∅ and X.

Example 20. Any set with discrete topology with greater than 2 elements is disconnected.

Proposition 57. The interval [a, b] is connected.
Proof.
Suppose that [a, b] = A∪B where A,B are both open in [a, b] and A∩B = ∅ with A,B 6= ∅ (so, we’re looking
for a contradiction). Suppose that a ∈ A, then [a, a + ε) ⊆ A for some ε > 0 which must happen since A is
open. Let

C = {c ∈ (a, b] : [a, c] ⊆ A}
Clearly, b /∈ C. Let L = supC, then either L ∈ A or L ∈ B.
If L ∈ A which is open, then we can find ε1 > 0 such that

(L− ε1, L+ ε1) ⊆ A

Then [
a, L+

ε

2

]
⊆ A

so L cannot be an upper bound which contradicts our assumption.
If L ∈ B, then we can find ε2 > 0 such that

(L− ε2, L+ ε2) ⊆ B

and so L cannot be the least upper bound which is also a contradiction to our assumption. �

42



Definition 44. X is called Path Connected if for each x, y ∈ X there exists a continuous map f :
[a, b]→ X such that

f(a) = x f(b) = y

Proposition 58. If X is path connected, then X is connected.
Proof.
Suppose for a contradiction that X is disconnected. Thus X = A ∪ B where A,B are open and A ∩ B = ∅.
Then, U = f−1(A) is open in [a, b] and V = f−1(B) is open in [a, b]. Now, U ∪ V = [a, b] since [a, b] is
connected and we have a contradiction which completes the proof. �

Corollary 59. All open and half open intervals are connected.

Corollary 60. Convex sets are connected.

Definition 45. If X is a linear space, then A ⊆ X is Convex if for every x, y ∈ A, we have

{tx+ (1− t)y; t ∈ [0, 1]} ⊆ A}

That is, there is a line segment connecting every x, y ∈ A.

Corollary 61. Any star like set B in Rn is connected.

Proposition 62. Let f : X → Y be continuous and surjective. Then

(i) If X is connected, then Y is connected.

(ii) If X is path connected, then Y is path connected.

Proof.

(i) Suppose for a contradiction that Y is disconnected, then Y = A∪B where A,B are open with A∩B = ∅.
Now, U = f−1(A) and V = f−1(B) are both open, with U ∩V = ∅ and also, U ∪V = ∅ and U ∪V = X.

(ii) Let y1, y2 ∈ Y and let x1 ∈ f−1({y1}) and x2 ∈ f−1({y2}). We know that X is path connected, so
there exists a continuous map h : [a, b]→ X such that h(a) = x1 and h(b) = x2. Now, f ◦h : [a, b]→ Y
is also continuous since both f and h are continuous, so

(f ◦ h)(a) = f(x1) = y1

(f ◦ h)(b) = f(x2) = y2

so Y is path connected. �

Theorem 63 (Intermediate Value Theorem). Let X be connected, and let f : X → R be a continuous map
and also, let a < b. If there exists x1 ∈ X such that f(x1) = a and there exists x2 ∈ X such that f(x2) = b,
then for any c ∈ (a, b), there exists y ∈ X such that f(y) = c.
Proof.
Suppose for a contradiction that there exists c ∈ (a, b) such that f(y) 6= c for each y ∈ X. Then f(X) cannot
be connected. This is because

f(X) ⊆ (−∞, c) ∪ (c,+∞)

and so if we let U = f−1((−∞, c)) and V = f−1((c,∞)), then U ∩ V = ∅ and U ∪ V = X. Also, U, V 6= ∅
with x1 ∈ U, x2 ∈ V which explains the impossibility of connectedness in this case which contradicts our
assumption. �
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Corollary 64. There exists two antipodal points x,−x on earth such that T (x) = −T (−x).
Proof.
Let f : S2 → R where f(x) = T (x) − T (−x). If f(y) = 0, then we’re done. Thus, we suppose for a
contradiction that f(y) = C 6= 0, so f(−y) = −C. S2 is path-connected which implies that it’s continuous.
Now, 0 ∈ (−c, c). By the intermediate value theorem. �

Section 5.3

Connected Components/ Path Components

Suppose that X is not path connected and let x ∈ X, then we define

P (x) = {y ∈ X : ∃ a continuous x→ y path}
= {y ∈ X : ∃ f : [a, b]→ X s.t. f(a) = x, f(b) = y}

Proposition 65. P (x) is path connected. Proof.
Follow that path from y1 to x then from x to y2.

Proposition 66. If x ∼ y is defined to be the relation where y ∈ P (x), then it is an equivalence relation.
Proof.

1. x ∼ x

2. x ∼ y implies y ∼ x

3. x ∼ y and y ∼ z implies x ∼ z.

Path components are equivalence classes of ∼. If y /∈ P (x), then P (x) ∩ P (y) = ∅.

Proposition 67. Let A ⊆ X if A is connected, then A is also connected.
Proof.
Suppose for a contradiction that A is connected but A is disconnected. Then Cl(A) = B ∪ C where both B
and C are closed in A and hence also in X. Now, we know that a closed set B in A have the form B̃ ∩ A
where B̃ is closed in X. So

A = (B ∩A) ∪ (C ∩A)

where B and C are closed in X (by our remark above) and so if we let

B ∩A = B1 C ∩A = C1

and then
A = B1 ∪ C1

where B1, C1 are both closed in A. A is connected, so one of B1 and C1 must be empty. Suppose that C1 = ∅,
then B ∩A = A and thus B ∩A = A and so C = ∅ which contradicts our assumption that A is disconnected,
and completes the proof. �

Lemma 68. Let A ⊆ X where A is both open and closed and let C ⊆ X be connected. Then if C ∩ A 6= ∅
then C ⊆ A.
Proof.
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Let A be both open and closed in X. Thus, A ∩ C is both oen and closed in C. C is connected, so if C 6= ∅,
then we know that

A ∩ C =

{
C

∅

but by what we just said above, we’re done and A ∩ C is forced to be equal to C. �

Proposition 69. Let (Cα)α∈I be a family of connected subspaces of X. Suppose that for any α, β ∈ I,
we have Cα ∩ Cβ 6= ∅. Then ⋃

α∈I
Cα

is connected.
Proof.
We use the lemma for this proof. The details are left to the reader as an excercise.

An application of this would be if Cα is the collection of all connected subsets Y ⊆ X such that x ∈ X. By
the above proposition, ⋃

α∈I
Cα

is connected.

Definition 46. Let x ∈ X and let (Cα)α∈I be the collection of all connected subsets Y ⊆ X containing
x. Then we say that

C(x) =
⋃
α∈I

Cα

is the Connected Component of x.

Proposition 70. If y /∈ C(x) then C(x) ∩ C(y) = ∅.

Proposition 71. If each point in X has a neighbourhood that is path connected, then path components in
X are connected components.
x ∼ y if y ∈ C(x) is an equivalence relation.

Example 21. Open subsets of Rn. Open sets of a normed linear space.
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Chapter 6

Banach Space Techniques

Definition 47. A complex vector space X is said to be Normed if there exists a function || · || : X → C
such that

(i) ||x|| ≥ 0 ∀ x ∈ X

(ii) ||x|| = 0⇐⇒ x = 0

(iii) ||αx|| = |α| ||x|| ∀ x ∈ X,α ∈ C

(iv) ||x+ y|| ≤ ||x||+ ||y|| ∀ x, y ∈ X

Proposition 72. The space (X, d) where d(x, y) = ||x− y|| always defines a metric space.
Proof.
Simply check the four axioms of a distance. The only non-trivial part is the triangle inequality, so for any
x, y, z ∈ X, we have

d(x, y) = ||x− y|| = ||x− z + z − y|| ≤ ||x− z||+ ||z − y|| = d(x, z) + d(z, y) �

Definition 48. A normed vector space (X, || · ||) is said to be a Banach Space if it is complete with
respect to the metric induced by || · ||.

Example 22. (a) Consider the space

X = C0([a, b]) = {f : [a, b]→ C : f is continuous}

with norm
||f ||∞ = sup

x∈[a,b]
|f(x)|

this is a Banach space.

(b) Consider

X = l2 =

{
x : N→ C :

∞∑
i=1

|xi|2 <∞

}
with norm

||x|| =
√

(x, x)

and this space is a Hilbert space which implies that it is Banach.

Section 6.1

Linear Functionals

Definition 49. A map A : X → Y between vector spaces X,Y is said to be Linear if

A(αx+ βy) = αAx+ βAy

for any x, y ∈ X and α, β ∈ C.
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Definition 50. If a linear map A : X → Y between normed vector spaces X,Y has norm

||A|| = sup{||Ax||Y : x ∈ X, ||x||x ≤ 1}

and saitisfies ||A|| <∞, then we say that A is a Bounded Linear Map.

Proposition 73. If A is bounded, then the following are true.

(i)
||A|| = inf{K > 0 : ||Ax||Y ≤ K||x||X} = sup{||Ax|| : ||x|| = 1}

(ii)
||Ax||Y ≤ ||A|| ||x||X

(iii) A maps BX1 (0) = {x : ||x|| ≤ 1} into BY||A||(0) = {y : ||y|| ≤ ||A||}.

Definition 51. If Y = C, then the linear map A : X → C is said to be a Linear Functional (not
necessarily bounded).

Theorem 74. Let A : X → Y be linear and X,Y be normed linear spaces. The following are equivalent.

(i) A is bounded.

(ii) A is continuous.

(iii) A is continuous at some x0 ∈ X.

Proof.
(i)⇒ (ii)

||Ax1 −Ax2|| = ||A(x1 − x2)||Y ≤ ||A|| ||x1 − x2||X
and continuity follows by taking ε > 0 and

0 < δ <
ε

||A||
(ii)⇒ (iii) Trivial.
(iii)⇒ (i) Let A be continuous at x0 ∈ X. Take ε > 0, and there exists δ > 0 such that for any x ∈ X,

||x− x0|| < δ =⇒ ||A(x− x0)|| < ε

Let ||h|| ≤ δ so that

||x0 + h− x0|| < δ =⇒ ||A(x0 + h)−Ax0|| =
||Ah||
δ

<
ε

δ

Then, if ||x|| ≤ 1, then

||Ax||| ≤ ε

δ
=⇒ ||A|| ≤ ε

δ

and then A is bounded. �

Example 23. Let A : C0([a, b])→ C0([a, b]) and K : [a, b]2 → C be continuous, then

(Af)(t) =

∫ b

a

K(t, s)f(s)ds

is bounded.
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Section 6.2

Baire’s Category Theorem, Banach-Steinhaus Theorem & The Open Mapping Theorem

Theorem 75 (Baire’s Category Theorem). If (X, d) is a complete metric space, then the intersection
of every countable collection of dense open subsets of X is dense in X. In particular, the intersection is
nonempty.
Proof.
Let V1, . . . , vn, . . . ⊆ X be open and dense. So, for any i, V i = X and V is open. Let x0 ∈ X and look at

BX(x0, ε) = {x ∈ X : d(x, x0) < ε}

We want to show that

BX(x0, ε) ∩

( ∞⋂
n=1

Vn

)
6= ∅

First, we notice that since V1 is dense, we have that BX(x0, ε) ∩ V1 6= ∅ so there exists x1 ∈ BX(x0, ε) ∩ V1
and there exists r1 > 0 such that

BX(x1, r1) ⊆ BX(x0, ε) ∩ V1
and continuing after n steps, BX(xn−1, rn−1) ∩ Vn 6= ∅ so there exists xn ∈ BX(xn−1, rn−1) ∩ Vn and

0 < rn <
1

n

so that
BX(xn, rn) ⊆ BX(xn−1, rn−1) ∩ Vn

So this is in fact a sequence of nested balls BX(xn, rn) ⊆ · · · ⊆ BX(x0, ε) with the sequence (xn)∞n=1 and

d(xn+k, xn+m) ≤ 2rn ≤
2

n
→ 0

as n→∞ so this sequence is Cauchy. Thus, by completeness, there exists x∗ such that

xn → x∗

as n→∞. Now, x∗ ∈ BX(xn, rn) ∈ Vn for every n and thus

x∗ ∈
∞⋂
n=1

Vn

and x∗ ∈ BX(x0, ε), and finally

x∗ ∈ BX(x0, ε) ∩

( ∞⋂
n=1

Vn

)
6= ∅

and this completes the proof.

Corollary 76. If (X, d) is complete then any countable intersection of Gδ supersets of X is again Gδ
dense.
Proof.

Gδ =
∞⋂
i=1

Ui
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for Ui open in X. If Gδ is dense, then so are the Ui and we have

∞⋂
i=1

Giδ =

∞⋂
i=1

∞⋂
j=1

U ji =

∞⋂
i,j=1

U ji

which by Baire’s Category Thoeorem is dense and E ⊆ X is nowhere dense if E contains no nonempty open
subsets of X so X\E is open and dense. �

Definition 52. We say that the set F is First Category where

F =

∞⋂
i=1

Ei

and Ei is nowhere dense if everything else is second countable.

Theorem 77. Let (X,D) be complete, then X is not first category.

Theorem 78 (Banach Steinhaus). Let X be Banach, and let Y be a normed vector space and let (Aα)α∈a
be a collection of bounded linear maps Aα : X → Y , then either

• There exists M <∞ such that ‖Aα‖ ≤M for each α ∈ a or

•
sup
α∈a
‖Aαx‖ =∞

for all x ∈ F , where F is Gδ dense.

Proof.
Let ϕα(x) = ‖Aαx‖Y and let

ϕα = sup
α
ϕα(x) = sup

α
‖Aαx‖

and ϕ,ϕα : X → R where ϕ is a function and ϕα is continuous. Now, let

V nα = ϕ−1α (n,+∞) = {x ∈ X : ϕα(x) > n}

and let
V n = ϕ−1(n,+∞) = {x ∈ X : ϕ(x) > n}

and we can see that
V n =

⋃
α∈a

V nα

So

(i)
x ∈ ∪αV nα =⇒ x ∈ V nα0

=⇒ n < ϕα0(x) ≤ ϕ(x)

=⇒ X ∈ V n

(ii)
x ∈ V n =⇒ sup

α
ϕα(x) > n

assuming that for each α, ϕα(x) ≤ n, but then

sup
α
ϕα(x) ≤ n
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which is a contradiction and so there exists α0 such that ϕα(x) > n which implies that

x ∈ V nα0
⊆
⋃
α

V nα

and V n is then open because each V nα is open.

Case 1. There exists n0 ∈ N such that V n0 is not dense, and so there exists x0 ∈ X, δ > 0 such that

B(x0, δ0) ∩ V n0 = ∅

and if ‖x‖X ≤ δ then x0 + x /∈ V n0 but x0 + x ∈ B(x0, δ0) and so

ϕ(x+ x0) ≤ n0

if and only if for each α ∈ a, we have

‖Aαx0‖ ≤ n0 ‖Aα(x+ x0)‖ ≤ n0

now let x = (x+ x0)− x0 such that ‖x‖ ≤ δ, then

‖Aαx‖Y = ‖Aα(x+ x0)−Aαx0‖ ≤ ‖Aα(x+ x0)‖+ ‖Aαx0‖ ≤ 2n0

and we can say that for any

x̂ =
x

δ0

we have
‖x̂‖ ≤ 1

and so

‖Aαx̂‖ ≤
2n0
δ0

for every α ∈ a, and finally

sup
α
‖Aα‖ ≤

2n0
δ0

= M

Case 2. Every V n is dense in X. By Baire’s theorem,

∞⋂
n=1

V ni

is Gδ dense in X so for every

x ∈
∞⋂
n=0

V n

and ϕ(x) =∞ and we’re done. �

This theorem can be interpreted as if X is Banach and Y is normed linear with our collection of A, then
either there exists BY (0,M) ⊆ Y such that for every α ∈ a, we have

Aα(BX(0, 1)) ⊆ BY (0,M)

or Aα maps F to Aαx.
Now, before we continue, we first define for a Banach space X,

BX(x0, r) = {x ∈ X : ‖x− x0‖ < r}

50



Theorem 79 (Open Mapping Theorem). Let X,Y be Banach spaces and let A : X → Y be a bounded
linear map such that A(X) = Y (i.e. A is onto), then there exists δ > 0 such that

BY (0, δ) ⊆ A(BX(0, 1))

An alternative way of stating this theorem is: For each y with ‖y‖ < δ, there exists an x such that ‖x‖ < 1
such that Ax = y.
Proof.
Given y ∈ Y , there exists x ∈ X such that Ax = y. If ‖x‖ < k, then it follows that y ∈ A(kBX(0, 1)). Thus,
Y is the union of the sets A(kBX(0, 1)) for k = 1, 2, . . .. Now, since Y is complete, the Baire Category
Theorem implies that there exists a nonempty open set W in the closure of some A(kBX(0, 1)). This means
that every point of W is the limit of a sequence Axn, where xn ∈ kBX(0, 1). Now we fix k and W .
Choose y0 ∈W an choose η > 0 so that y0 + y ∈W for any ‖y‖ < η. For any such y, there exist sequences
(x′n), (x′′n) in kBX(0, 1) such that

Ax′n → y0 Ax′′n → y0 + y

as n→∞. Setting xn = x′′n − x′n, we get that ‖xn‖ < 2k and thus Axn → y as n→∞. Since this holds for
each y with ‖y‖ < η, we get from the linearity of A that for every y ∈ Y and for all ε > 0 there exists an
x ∈ X such that

(∗) ‖x‖ ≤ δ−1‖y‖ & ‖y −Ax‖ < ε

when we simply put δ = η
2k .

We’re almost there, we just need ε = 0.
First, take y ∈ δBY (0, 1) and let ε > 0. By (∗), we have that there exists x1 with ‖x1‖ < 1 and

‖y −Ax1‖ <
1

2
δε

Now, suppose that x1, . . . , xn are chosen so that

‖y −Ax1 − · · · −Axn‖ < 2−nδε

then using (∗) with y replaced by the vector on the left hand side of the above inequality, we obtain xn+1 so
that the above holds with n+ 1 in place of n, and

‖xn+1‖ < 2−nε

for n = 1, 2, . . .. Now, if we set sn = x1 + . . . + xn, then we get that (sn) is a Cauchy sequence in X, and
thus by completeness, there exists x ∈ X such that sn → x. Then since ‖x‖ < 1, we use the above and get
that ‖x‖ < 1 + ε, and since A is continuous, Asn → Ax. Now, by (∗), Asn → y and thus Ax = y. We have
now that

δBY (0, 1) ⊆ A((1 + ε)BX(0, 1))

or

A(BX(0, 1)) ⊆ 1

1 + ε
δBY (0, 1)

for every ε > 0. The union of the sets on the left, taken over each ε > 0 is precisely δBY (0, 1) which
completes the proof. �

Theorem 80. Let X and Y be Banach spaces and let A be a bounded linear functional from X → Y which
is one to one, then there exists δ > 0 such that for each x ∈ X

‖Ax‖ ≥ δ‖x‖

That is, A−1 : Y → X is also a bounded linear functional.
Proof.
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If we choose δ as we chose in the Open Mapping Theorem, then the conclusion of that theorem, combined
with the fact that A is now one to one shows that

‖Ax‖ < δ =⇒ ‖x‖ < 1

Thus, ‖x‖ ≥ 1 implies that ‖Ax‖ ≥ δ and so ‖Ax‖ ≥ δ‖x‖, as needed.
The functional A−1 is defined on Y by the requirement that A−1y = x if y = Ax. A trivial verification then
shows that A−1 is linear and

‖A−1‖ ≤ 1

δ

follows from the fact that ‖Ax‖ ≥ δ‖x‖. �

Definition 53. A Linear Manifold L in a Banach space X is a set such that for any x, y ∈ L and for
any α, β ∈ R, we have

αx+ βy ∈ L

A linear manifold L is called a Subspace if and only if it is a closed subset of X.

Example 24. Consider R∞ = X. Let

L = {(x1, . . . , xn, . . .) : xk = 0 ∀ k > N}

Then, L is a linear submanifold of X. L is not closed. If we have

xn =

(
1,

1

2
, . . . ,

1

2n
, 0, 0, . . .

)
→ x =

(
1,

1

2
, . . . ,

1

2n
,

1

2n+1
, . . .

)
and x /∈ L.

Proposition 81. Let X be Banach with z1, . . . , zn, . . . ∈ X. Consider

M =

∑
j

αjzj : αj 6= 0 only for finitely many j


then M is a linear submanifold of X. Let M be the closure of M . Then M is a linear subspace of X.
Proof.
First, we note that M is closed. We want to prove that M is a linear submanifold of X. Let x, y ∈M . Fix
ε > 0, then there exists x1, y1 ∈M such that

‖x1 − x‖ < ε ‖y1 − y‖ < ε

Let α, β ∈ R. and we examine

‖αx1 + βy1 − αx1 − βy1‖ ≤ ‖αx− αx1‖+ ‖βy − βy1‖
≤ |α| · ‖x− x1‖+ |β| · ‖y − y1‖
≤ (|α|+ |β|)ε

and ε is arbitrary, and (αx1 + βy1) ∈M is close to αx+ βy which implies that αx+ βy ∈M as required.
In the statement of this proposition, M is a subspace generated by z1, . . . , zn, . . .). �
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Section 6.3

Convex Sets

Definition 54. Let A ⊆ X be a linear space. A is said to be a Convex Set if for every x, y ∈ A, we
have that

αx+ βy ∈ A

where α, β ∈ [0, 1] and α+ β = 1.
We say that A is a Convex Body if A is convex and A has an interior point (that is, it contains some ball).

Example 25. Let X = l2. Let

Φ =

{
(ξ1, . . . , ξn, . . .) :

∞∑
n=1

n2ξ2n <∞

}

we claim that Φ is convex but does not contain any ball in l2 (that is, it’s not a convex body).
Proof.
Let ξ = (ξ1, . . . , ξn, . . .) ∈ Φ, let η = (η1, . . . , ηn, . . .) ∈ Φ. Let t ∈ (0, 1). We have to show that

tξ + (1− t)η ∈ Φ

so
∞∑
n=1

n2(tξn + (1− t)ηn)2 = −t2
∞∑
n=1

n2ξ2n + 2t(1− t)
∞∑
n=1

ξnηn + (1− t)2
∞∑
n=1

n2η2n

≤ t2
∞∑
n=1

n2ξ2n + 2t(1− t)

( ∞∑
n=1

n2ξ2n

)1/2( ∞∑
n=1

n2η2n

)1/2

+ (1− t)2
∞∑
n=1

n2η2n

=

t( ∞∑
n=1

n2ξ2n

)1/2

+ (1− t)

( ∞∑
n=1

n2η2n

)1/2
2

≤ [t · 1 + (1− t) · 1]2 = 1

and thus we have that Φ is convex.
Now we suppose for a contradiction that Φ contains some ball. Φ is symmetric (that is, if ξ ∈ Φ, then
−ξ ∈ Φ). Φ will contain all

{z = tx+ (1− t)y : x ∈ B1, y ∈ −B1}

It is left as an excercise to show that if the radius of B1 is r, then Φ will contain B(0, r) and so Φ should
contain a segment of every line passing through 0. Then let

l = t

(
1,

1

2
, . . . ,

1

n
, . . .

)
Then l ∩ Φ = {0}.
Suppose that A ⊆ X, where A is convex, symmetric. Suppose further that

B(x, r) ⊆ A

Then
B(0, r) ⊆ A
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To prove this, we first notice that
B(x, r) = {x+ y : ‖y‖ ≤ r}

B(−x, r) = {−x+ y : ‖y‖ ≤ r}

So, let y ∈ X such that ‖y‖ ≤ r and we write

y =
1

2
[(x+ y) + (−x+ y)]

where the first term is in B(x, r) and the second term is in B(−x, r). Now we claim that if we take a line l
in the direction (

1,
1

2
, . . . ,

1

n
, . . .

)
Then

l ∩

{
x = (x1, . . . , xn, . . .) :

∞∑
n=1

n2x2 <∞

}
= (0, . . . , 0, . . .)

To this end, suppose that A ∩ l 6= 0, then there exists t 6= 0 such that

z =

(
t,
t

2
, . . . ,

t

n
, . . .

)
∈ A

and consider
∞∑
n=1

n2
t2

n2
=

∞∑
n=1

t2 =∞

and so z /∈ A which is a contradiction and which yields our claim.

Lemma 82. If Im(αj) > 0, Im(z) < 0, we have

n∑
j=1

1

z − αj
6= 0

Theorem 83 (Gauss-Lucas). Let P (z) be a complex polynomial defined as

P (z) = a0 + a1z + · · ·+ anz
n

then
P ′(z) = a1 + 2a2z + · · ·+ nanz

n−1

and the roots of P ′(z) lie inside a Convex Hull of the roots of P (z).
Proof.
We first note that

CH(z1, . . . , zn) =
⋂

Bα half−planez1,...,zn∈Bα

Bα

WLOG, assume that P (z) has simple roots

P (z) = (z − α1) · · · (z − αn)

then
P ′(z)

P (z)
=

(z − α2) · · · (z − αn)

P (z)
+ · · ·+ (z − α1) · · · (z − αn−1)

P (z)

=
1

z − α1
+ · · ·+ 1

z − αn
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by the extended product rule applied to the factored polynomial P (z). Now, the set of roots of P ′(z) is defined
as {

z :
1

z − α1
+ · · ·+ 1

z − αn
= 0

}
and applying the lemma yields our result.

Theorem 84. If A is convex, then A is also convex.
Proof.
Let x, y ∈ A. For every ε > 0, there exists x1, y1 ∈ A such that

‖x− x1‖ ≤ ε ‖y − y1‖ ≤ ε

Now, let t ∈ (0, 1) and we want that
tx+ (1− t)y ∈ A

We know that
tx1 + (1− t)y1 ∈ A

and
‖tx+ (1− t)y − tx1 − (1− t)y1‖ ≤ ‖tx− tx1‖+ ‖(1− t)y − (1− t)y1‖

≤ t‖x− x1‖+ (1− t)‖y − y1‖
≤ tε+ (1− t)ε = ε

as required.

Theorem 85. Suppose that Mα is convex for each α ∈ I, then⋂
α∈I

Mα

is also convex.
Proof.
If

x, y ∈
⋂
α∈I

Mα

then, x, y ∈Mα for all α ∈ I. Then tx+ (1− t)y ∈Mα for t ∈ (0, 1). Thus

[tx+ (1− t)y] ∈
⋂
α∈I

Mα

Now, if x1, . . . , xn+1 are in general position, then CH(x1, . . . , xn+1) is a simplex with vertices at x1, . . . , xn+1.
If no 3 points lie on the same straight line, then no 4 points lie in the same plane, and so on. If xj is not
in the subspace containing all x1, . . . , xj−1, xj+1, . . . , xn+1.

We note that if A : X → R is a bounded, continuous linear functional, then the norm of A is defined
by

‖A‖ = sup
x∈X:‖x‖=1

|Ax|

Example 26. Consider f ∈ C[a, b], and let

Af =

∫ b

a

f(x)dx
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is a linear functional. To compute the norm, we let ‖f‖ ≤ 1 so that

sup
x
|f(x)| ≤ 1

then ∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤ ‖f‖ · |b− a|
=⇒ ‖A‖ ≤ |b− a|

so if
f = χ[a,b] ⇒ ‖f‖ = 1

and thus ∫ b

a

1dx = b− a

=⇒ ‖A‖ = |b− a|

Now consider g ∈ C[a, b], and define

A1f =

∫ b

a

f(x)g(x)dx

and let
sup
x∈[a,b]

|g(x)| = M

then ∣∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| · |g(x)|dx ≤ ‖f‖
∫ b

a

|g(x)|dx

and so

‖A1‖ ≤
∫ b

a

|g(x)|dx

One can show that

‖A1‖ =

∫ b

a

|g(x)|dx

Proof. (Sketch)
If g(x) ≥ 0, then this is easy. Just take f ≡ 1 on [a, b]. Then

A1f =

∫ b

a

1 · g(x)dx =

∫ b

a

|g(x)|dx

But if g(x) crosses zero at some point in [a, b], then the idea is to take a piecewise continuous function f
defined by

f(x) =

{
1 g ≥ 0

−1 g < 0

and approximate sgn(g(x)) by continous functions.
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Section 6.4

Kernel

Definition 55. The Kernel of a continuous linear functional A is defined as

ker(A) = {x ∈ X : Ax = 0}

Proposition 86. Let L = ker(A), then L is a linear submanifold (closed linear subspace) of X.
Proof.
Suppose that x1, x2 ∈ L. Then

A(t1x1 + t2x2) = t1Ax1 + t2Ax2 = 0

If xj ∈ L, and xj → y, then 0 = Axj → Ay = 0 and so

y ∈ L

and we’re done. �

Definition 56. Let L be a linear subspace of a Banach space X. Then we say that L has Index k if and
only if

(i) There exists k linearly independent vectors x1, . . . , xk ∈ X such that for every x ∈ X, there exists
t1, . . . , tk ∈ R and y ∈ L such that

(∗) x = y + t1x1 + · · ·+ tkxk

(ii) There is no set of (k − 1) elements x̃1, . . . , x̃k−1 such that (∗) holds.

Theorem 87. Let A 6= 0 be a continuous linear functional on X. Then L(A) (i.e. the kernel of A) has
index k = 1. That is, there exists x0 /∈ L such that for any y ∈ X, there exists λ ∈ R and x ∈ L such that

y = x+ λx0

Proof.
Since A 6= 0, there exists x0 ∈ X such that Ax0 6= 0. Let y ∈ X, let

λ =
Ay

Ax0

Now we want x ∈ ker(A) = L so let

x = y − x0
Ay

Ax0

=⇒ Ax = Ay − Ay

Ax0
(Ax0) = 0

and so x ∈ ker(A). Now we claim that if x0 is fixed, then there is only one way to write y = λx0 + x. To
this end, we suppose for a contradiction that

y = λ1x0 + x1

Now, if λ = λ1, then x = x1, so λ 6= λ1, so

(λ1 − λ)x0 = x− x1
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=⇒ x0 =
x− x1
λ1 − λ

now x, x1 ∈ L and so x− x1 ∈ L by linearity, and also

x− x1
λ1 − λ

∈ L

but we assumed that x0 /∈ L. This contradiction yields the result.
Conversely, if L is a subspace of X of index k = 1, then there exists a linear functional A such that
L = ker(A). Consider the set

L1 = {x ∈ X : Ax = 1}

If x0 ∈ X such that Ax0 = 1 then
L1 = x0 + ker(A)

so if Ax0 = Ax̃0 = 1, then
A(x0 − x̃0) = 0

since both x0, x̃0 ∈ ker(A). Now, we want to compute

d(L1, 0) = inf{‖x‖ : Ax = 1}

We claim that d(L1, 0) = 1/‖A‖. To show this, we suppose that x ∈ L1 so that

|Ax| = 1 ≤ ‖A‖ · ‖x‖

=⇒ ‖x‖ ≥ 1

‖A‖
and so

d ≥ 1

‖A‖
and the other direction follows by the definition of ‖A‖.

Section 6.5

Conjugate Space

Suppose that X is a normed linear space and that A1, A2 are continuous functionals on X, then so is
t1A1 + t2A2 for tj ∈ R.
‖A‖ defines a distance on the space X∗ of all continuous linear functionals on X and we say that X∗ is
Conjugate Space. We also note that

‖A1 +A2‖ ≤ ‖A1‖+ ‖A2‖

Theorem 88. X∗ is always complete whether X is complete or not.
Proof.
Let An : X → R be a cauchy sequence of linear functionals. Consider a sequence of real numbers (Anx).
This is a Cauchy sequence in R. Now, let x ∈ X and so

|Anx−Amx| ≤ ‖An −Am‖op · ‖x‖

where the norm of the difference fo the functionals tends to zero as m,n → ∞ and where the norm of x is
fixed. Thus

Anx→ Bx
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as n→∞. Now, since Anx→ Bx, Any → By, we have

An(t1x+ t2y)→ t1Bx+ t2By

Let N be such that
‖An −An+p‖ < 1

for n ≥ N , p ≥ 0. Therefore,
‖An+p‖ ≤ ‖An‖+ 1

So,
|An+px| ≤ (‖An‖+ 1)‖x‖

and as p→∞, we get
|Bx| ≤ (‖An‖+ 1)‖x‖

and so B is bounded since

‖B‖op = sup
‖x‖=1

|Bx|
‖x‖

≤ (‖An‖+ 1)‖x‖ <∞

It remains now to show that ‖An−B‖op → 0 as n→∞. To this end, let ε > 0, then there exists x = xε ∈ X
such that

‖An −B‖ ≤
|Anxε −Bxε|
‖xε‖

+
ε

2

=

∣∣∣∣An( xε
‖xε‖

)
−B

(
xε
‖xε‖

)∣∣∣∣+
ε

2

and we let
y =

xε
‖xε‖

We know that
By = lim

n→∞
Any

So, there exists n0 = n0(ε) such that for any n > n0, we have

|Any −By| <
ε

2

Thus
‖An −B‖op ≤

ε

2
+
ε

2
= ε

for any n > n0. Thus, X∗ is in fact complete.

Remark. We can replace An : X → R by Tn : X → Y , where Y is a linear normed space and complete.
Then it follows that X∗ is Banach. So, Anx = yn ∈ Y will be a Cauchy sequence and Y is Complete, so
yn → z = Bx, and the rest of the proof is virtually identical.
We have thus shown that the space of all bounded linear operators T : X → Y where Y is Banach is complete
and moreover it is Banach.

Example 27. Look at the space of sequences

Y = {x = (x1, . . . , xn, . . .) : xn → 0 as n→∞}

Now, let a = (a1, . . . , an, . . .) ∈ l1 have
∞∑
j=1

|aj | <∞
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and let

Ax =

∞∑
j=1

ajxj

we know that |xj | < ε for j ≥ N and so

∞∑
j=N

|ajxj | ≤ ε
∞∑
j=N

|aj | → 0

as N →∞.

Proposition 89.

‖A‖ = ‖a‖1 =

∞∑
j=1

|aj |

Proof.
Let Y ⊆ l∞ and let x ∈ Y . Now,

‖x‖ =
∞

sup
j=1
|xj |

and so let ‖xj‖ < 1. Then

|Ax| =

∣∣∣∣∣∣
∞∑
j=1

ajxj

∣∣∣∣∣∣ ≤ ∞
sup
j=1
|xj |

∞∑
j=1

|aj | = ‖a1‖1

and so
‖A‖op ≤ ‖a‖1

For the converse, fix ε > 0 and suppose that

N∑
j=1

|aj | ≥ ‖a‖1 − ε

Then, let

xj =


1 aj ≥ 0, j ≤ N
−1 aj < 0, j ≤ N
0 j > N

and let x = (x1, . . . , xN , 0, 0, . . .). Then ‖x‖ = 1 and we have

∞∑
j=1

ajxj =

N∑
j=1

|aj | ≥ ‖a‖ − ε

as required. �

Section 6.6

Linear Functionals Revisited

Proposition 90. Let
C = {x = (x1, . . . , xn, . . .) : xn → 0}
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and define the linear functional

Ax =

∞∑
j=1

ajxj

where
∞∑
j=1

|aj | <∞

Then, C∗ = l1.
Proof.
Let ej = (0, . . . , 0, 1, 0, . . .) ∈ C where there is a 1 at the jth index and zeros everywhere else. Now, let A be
a bounded linear functional on C, then

Aej = aj ∀ aj
If x = (x1, . . . , xn, 0, . . . , 0, . . .), then we have that

x = x1e1 + · · ·+ xnen

so that
Ax = x1a1 + x2a2 + · · ·+ xnan

Now we claim that
∞∑
j=1

|aj | <∞

To this end, we suppose, for a contradiction that

∞∑
j=1

|aj | =∞

but that ‖A‖op < M where M > 0. Thus, there exists N ∈ N such that

N∑
j=1

|aj | > M

Now let

xj =


1 j < N, aj > 0

−1 j ≤ N, aj < 0

0 j > N, ‖x‖∞ = 1

then

Ax =

N∑
j=1

aj · sgn(aj) =

N∑
j=1

|aj | > M

but then M > M which contradicts our assumption and completes the proof. �

Example 28. Consider l2 and let x = (x1, . . . , xn, . . .) such that∑
j=1

|xj |2

and let a = (a1, . . . , an, . . .) such that ∑
j=1

|aj |2
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and define the linear functional

Ax =

∞∑
j=1

ajxj

and we claim that Ax <∞. To this end we write

|(a, x)| =

∣∣∣∣∣∣
∞∑
j=1

ajxj

∣∣∣∣∣∣ ≤ ‖a‖2‖x‖2
so that

‖A‖op = sup
‖x‖6=0

|Ax|
‖x‖

= (a, x) ≤ ‖a‖2 = (a21 + · · ·+ a2n + · · · ) 1
2

now take x = a so that
Ax

‖x‖
=

(a, a)

‖a‖
=
‖a‖2

‖a‖
= ‖a‖

and thus
‖A‖op = ‖a‖

Every bounded linear functional on l2 is obtained like this.

Proposition 91. (l2)∗ = l2.
Proof.
The proof for this is similar to the proof of the above proposition. Let x = (x1, . . . , xn, . . .) ∈ lp so that

∞∑
j=1

|xj |p <∞

then let a = (a1, . . . , an, . . .) ∈ lq where
1

p
+

1

q
= 1

So,

Ax =

∞∑
j=1

ajxj ≤ ‖a‖q‖x‖p

by Hölder’s inequality. Thus,
‖A‖op = ‖a‖q

and all bounded linear operators on lp, p ∈ (1,∞) will have this form and thus,

(lp)
∗ = lq

for all p, q ∈ (1,∞) such that
1

p
+

1

q
= 1

and we have proven something stronger than what we set out to prove! Bonus! �

Example 29. Let x = (x1, . . . , xn, . . .) ∈ l1 so that

∞∑
j=1

|xj | <∞
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and let a = (a1, . . . , an, . . .) ∈ l∞ so that
∞

sup
j=1
|aj | ≤ T <∞

Then
∞∑
j=1

ajxj <∞

and so
∞∑
j=1

|aj | <∞

and thus
‖A‖op =

∞
sup
j=1
|aj |

and thus (l1)∗ = l∞.

We now know that C∗ = l1 and that (l1)∗ = l∞, however (l∞)∗ = A where A is the space of horrible
nightmares. The main point here though, is that C, l1, l∞ are not reflexive.

Theorem 92. X ⊆ (X∗)∗, and X ∼= { a linear subspace of (X∗)∗}.
Proof (Idea).
Let A be a bounded linear functional on X and let z ∈ X. Now, define lz(A) = Az (δ function at z). If
A1, A2 ∈ X∗ then

lz(t1A1 + t2A2) = t1A1z + t2A2z = t1lz(A) + t2lz(A)

Now, if ‖A‖ < 1, then
|Az| ≤ ‖A‖op · ‖z‖X

and thus
‖lz‖ ≤ ‖z‖X

and now we claim that ‖lop,X∗∗ = ‖z‖X which follows directly from the Hahn-Banach Theorem.

Section 6.7

Bernstein Polynomials

Lemma 93. We claim that

[x+ (1− y)]n =

n∑
k=0

xk
(
n
k

)
(1− y)n−k

Proof.
First, (

x
d

dx

)
: nx[x+ (1− y)]n−1 =

n∑
k=0

kxk
(
n
k

)
(1− y)n−k

x2
(
d

dx

)2

: n(n− 1)x2[x+ (1− y)]n−2 =

n∑
k=0

k(k − 1)

(
n
k

)
(1− y)n−k

Now evaluate both at y = x so that

1 =

n∑
k=0

(
n
k

)
xk(1− x)n−k
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nx =

n∑
k=0

kxk
(
n
k

)
(1− x)n−k

n(n− 1)x2 =

n∑
k=0

k(k − 1)xk
(
n
k

)
(1− x)n−k

Now, adding the above three identities together yields our result.

Theorem 94 (Bernstein Approximation Theorem). Let f ∈ C([0, 1]) and define the nth Bernstein Poly-
nomial of f by

Bn(f ;x) =

n∑
k=0

f

(
k

n

)(
n
k

)
xk(1− x)n−k

where (
n
k

)
=
n(n− 1) · · · (n− k + 1)

1 · 2 · · · k
then

sup
x∈[0,1]

|f(x)−Bn(f ;x)| → 0

as n→∞.
Proof.
We consider

n∑
k=0

(
x− k

n

)2(
n
k

)
xk(1− x)n−k

=

n∑
k=0

(
x2 − 2k

n
x+

k2 − k
n2

+
k

n

)(
n
k

)
xk(1− x)n−k

= x2
n∑
k=0

(
n
k

)
xk(1− x)n−k − 2x

n

n∑
k=0

k

(
n
k

)
xk(1− x)n−k

+
1

n2

n∑
k=0

k(k − 1)

(
n
k

)
xk(1− x)n−k +

1

n2

n∑
k=0

k

(
n
k

)
xk(1− x)n−k

= x2 · 1− 2x

n
· nx+

1

n2
n(n− 1)x2 +

1

n2

=
x(1− x)

n
=
x− x2

n

by applying the three identities from Lemma 88. Now, let δ > 0 and fix x ∈ [0, 1] and look at

n∑
k=0

(
x− k

n

)2(
n
k

)
xk(1− x)n−k ≥

∑
k:|x−k/n|>δ

δ2
(
n
k

)
xk(1− x)n−k

Now, since f ∈ C([0, 1]), we can say that f is uniformly continuous on [0, 1] and so

|f(x)−Bn(f ;x)| =

∣∣∣∣∣f(x)

n∑
k=0

(
n
k

)
xk(1− x)n−k −

n∑
k=0

f

(
k

n

)(
n
k

)
xk(1− x)n−k

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k

= S1 + S2
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We wish to construct S1 and S2 so that S1 sums over all k such that∣∣∣∣x− k

n

∣∣∣∣ > δ

and so that S2 sums over the rest of k between 0 and n. That is∣∣∣∣x− k

n

∣∣∣∣ ≤ δ
Now, to bound S1, we have ∣∣∣∣f(x)− f

(
k

n

)∣∣∣∣ ≤ 2 · ‖f‖∞ = 2 sup
x∈[0,1]

|f(x)|

and so

S1 ≤ 2‖f‖∞
x(1− x)

nδ2

≤ ‖f‖∞
2nδ

by the fact that x(1− x) has maximum value 1/4. Now, to bound S2 we choose ε > 0 and there exists δ > 0
such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε

2

Now, in the second sum we know that∣∣∣∣x− k

n

∣∣∣∣ < δ =⇒
∣∣∣∣f(x)− f

(
k

n

)∣∣∣∣ < ε

2

so that

S2 ≤
ε

2

n∑
k=0

(
n
k

)
xk(1− x)n−k =

ε

2

Then

S1 + S2 <
ε

2
+
‖f‖∞
2nδ2

Finally, let n be large so that
‖f‖∞
2nδ2

<
ε

2

which gives that

S1 + S2 <
ε

2
+
ε

2
= ε

Section 6.8

Inverse & Implicit Function Theorem In Rn

Theorem 95 (Inverse Function Theorem). Let Ω ⊆ Rn and let F : Ω→ Rn be such that F ∈ C1(Ω) where
F = [F1, . . . , Fn] and Fi ∈ C1(Ω) for each 1 ≤ i ≤ n. Let a ∈ Ω and let DF (a) be invertible where

(DF )ij =
∂Fi
∂xj

and if we let F (a) = b ∈ Rn, then

(i) There exists open sets U, V ⊆ Ω such that a ∈ U, b ∈ V and F : U → V is a bijection.
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(ii) The inverse function G = F−1 defined by G(F (x)) = x is contained in C1(V ).

Proof.
Part (i).
Let A = DF (a) and let

ε =
1

4‖A−1‖op
and x 7→ DF (x) is a continuous map from Ω→Matn×n(R). There exists an open ball U containing a such
that

‖DF (x)−A‖op < 2ε

for any x ∈ U . So let x, x+ h ∈ U and let f(t) = F (x+ th)− t ·Ah for t ∈ [0, 1]. Also, bear in mind that x
and h are both vectors. Now we look at

‖f ′(t)‖ = ‖DF (x+ th) · h−Ah‖| ≤ 2ε · ‖h‖

and now

2ε‖h‖ = 2ε‖A−1 ·A · h‖ ≤ 2ε‖A−1‖op · ‖Ah‖ =
‖Ah‖

2

by our definition of ε. Now, we have

‖f ′(t)‖ ≤ 1

2
‖Ah‖

and by the Generalized Intermediate Value Theorem we get

‖f(1)− f(0)‖ ≤ 1

2
‖Ah‖

and by our definition of f , this is the same as

‖F (x+ h)− F (x)−Ah‖ ≤ 1

2
‖Ah‖

and so by the Triangle Inequality,

‖F (x+ h)− F (x)‖ ≥ ‖Ah‖
(

1− 1

2

)
=
‖Ah‖

2

and since

‖Ah‖ =
1

4ε

and since by the computation of 2ε‖h‖ which gives

‖h‖ ≤ ‖Ah‖
4ε

=⇒ ‖Ah‖ ≥ 4ε‖h‖

we get
‖F (x+ h)− F (x)‖ ≥ 2ε‖h‖

and this implies that F is 1-to-1 on U .
We now claim that if x0 ∈ U and r > 0 is such that B(x0, r) ⊆ U then

B(F (x0), εr) ⊆ F (B(x0, r))

to this end, let S = B(x0, r) and let
‖y − F (x0)‖ < εr

For x ∈ S, define
ψ(x) = ‖y − F (x)‖2

66



It suffices to show (for the claim) that ψ(x) = 0 for some x ∈ S. First, ψ is continuous since F is continuous
and y is fixed and S is compact, so ψ takes a minimum and a maximum on S and in particular, ψ takes a
minimum at say x = x1. Second, ψ is differentiable particularly at x1 and

ψ′(x) = DF (x) · (y − F (x))

noticing that 0 denotes the zero vector ~0 and at the minimum,

ψ′(x1) = 0 = DF (x1) · (y − F (x1))

and since DF (x1) is invertible, we must have that y = F (x1) and so ψ(x1) = 0 as required.
We have just shown that every point in F (U) is an interior point. Since B(F (x), εr) ⊆ F (U), take V = F (U)
and we have yielded (i) of the theorem. Part (ii).

Define G = F−1 by G(F (x)) = x. Then G ∈ C1(V ). Let y, y + k ∈ V . Now, let x = G(y) ∈ U and let
h = G(y + k)−G(y) so that x+ h = G(x+ k). Then x+ h ∈ U . Now, DF (x) is invertible. Also,

‖DF (x)−A‖op < 2ε

on U , so let B(x) = [DF (x)]−1. Now

(∗) k = F (x+ h)− F (x) = DF (x) · h+ r(h)

where
‖r(h)‖
‖h‖

→ 0

as ‖h‖ → 0. Apply B = B(x) to both sides of (∗) so that

Bk = [B(x) ·DF (x)] · h+B · r(h) = h+B · r(h)

since B ·DF (x) = Id. Then
h = G(y + k)−G(y) = B · k −B · r(h)

We’ve already proven that

‖F (x+ h)− F (x)‖ > 1

2
‖Ah‖ ≥ 2ε‖h‖

which implied that the map is 1-to-1. This now becomes

‖k‖ ≥ 2ε‖h‖

if ‖k‖ → 0, then ‖h‖ → 0 since ε is fixed. Therefore, the map G is continuous at y since we’ve shown that

lim
‖k‖→0

G(y + k) = G(y)

Now, to show that G is differentiable, we look at

‖B · r(h)‖
‖k‖

≤ ‖B‖op · ‖r(h)‖
2ε‖h‖

=
‖B‖op

2ε
· ‖r(h)‖
‖h‖

→ 0

as ‖k‖ → 0, since
‖r(h)‖
‖h‖

→ 0

by definition of remainder. Thus, G is differentiable at y and its derivative is

DG(y) = [DF (G(y))]−1 �
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Theorem 96 (Implicit Function Theorem). Let x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , ym) ∈ Rm and let
E ⊆ Rn+m and F : E → Rn be such that F ∈ C1(E). Now, let (a, b) ∈ E be such that F (a, b) = 0 and let
M = DF (a, b) where M is an n× (n+m) matrix so write

DF = (DxF | DyF )

where DxF is n× n and DyF is n×m. Also,

(DxF )ij =

(
∂Fi
∂xj

)
(DyF )ij =

(
∂Fi
∂yj

)
Now suppose that DxF is invertible, then there exists an open set W ⊆ Rn containing b and a unique
function G : W → Rn such that G(b) = a and

F (G(y), y) ≡ 0

where G(y) = x is then dependent and y is independent. Moreover, G ∈ C1(W ).

Corollary 97. We have
∂(x1, . . . , xn)

∂(y1, . . . , ym)
= [−DxF ]−1 · [DyF ]

Chapter 7

Linear Operators & The Operator Norm

Section 7.1

The Hahn-Banach Theorem

Theorem 98 (Hahn-Banach Theorem). Let L be a linear subspace of a normed linear space X. Let f(x)
be a linear functional defined on L. Then f(x) can be extended to a linear functional F on X such that

‖F‖op,X = ‖f‖op,L

Note that extended means that F |L = f . That is, for any x ∈ L, F (x) = f(x).
Proof.
We shall give a proof in case X is separable (contains a countable dense subset). Let x0 ∈ X,x0 /∈ L and let

L1 = {x1 + tx0 : t ∈ R, x1 ∈ L}

Now, let y ∈ L1 which implies that
y = tx0 + x x ∈ L, t ∈ R

So,
F (y) = tF (x0) + f(x)

and let F (x0) = −C which gives
F (y) = f(x)− Ct
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We want to show that
‖F‖op,X ≤ ‖f‖op,L

We should then have that

|F (y)| = |f(x)− Ct| ≤ ‖f‖ · ‖x+ tx0‖ = ‖f‖ · |t| ·
∥∥∥x0 +

x

t

∥∥∥
assuming t 6= 0, so let z = x

t . Then we rewrite

|F (y)| = t
∣∣∣f (x

t

)
− c
∣∣∣ = t · |f(z)− c|

so that
|f(z)− c| ≤ ‖f‖ · ‖z + x0‖

then
−f(z)− ‖f‖ · ‖z + x0‖ ≤ f(z)− C ≤ ‖f‖op · ‖z + x0‖X − f(z)

which implies that

(∗) f(z)− ‖f‖op · ‖z + x0‖X ≤ C ≤ f(z) + ‖f‖op · ‖z + x0‖X

Now, if (∗) holds, then
‖F‖op,X ≤ ‖f‖op,L

and we can do an induction step so that (∗) should hold for any z ∈ L. We now want to show that

sup
z∈L

(f(z)− ‖f‖op · ‖z + x0‖X) ≤ inf
z∈L

(f(z) + ‖f‖op · ‖z + x0‖X)

so we claim that if z1, z2 ∈ L, then

f(z2) + ‖f‖ · ‖z2 + x0‖ ≥ f(z1)− ‖f‖ · ‖z1 + x0‖

To this end, we write

f(z1)− f(z2) ≤ f(z1 − z2) ≤ ‖f‖op · ‖z2 − z2‖ = ‖f‖ · ‖(z1 + x0)− (z2 + x0)‖
≤ ‖f‖(‖(z1 + x0)‖+ ‖(z2 + x0)‖)

and our claim follows. So, we can now extend f to

{L+ tx0 : t ∈ R}

such that ‖F‖L1
≤ ‖f‖L. Let us take a countable dense subset x1, . . . , xn ∈ X where the xi’s are linearly

independent and not in L. First, extend f to F1 on L+ 〈x1〉 = L1. Then extend to F2 on L1 + 〈x2〉 = L2,
and continue until we obtain Fn defined on Ln−1 + 〈xn〉 = Ln. At each step, we have that

‖F‖op,X = ‖f‖op,L

This way, we obtain a bounded linear functional F , defined on a dense subset of X such that ‖F‖ = ‖f‖.
It is now left as an excercise to show that on the rest of X, we can define F by continuity, so that xn → z
gives

F (z) = lim
n→∞

F (xn)

and
|F (xn)− f(xm)| ≤ ‖f‖ · ‖xn − xm‖

where |F (xn)− f(xm)|, ‖xn − xm‖ → 0. This will define a bounded linear functional F on X.
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Corollary 99. Let x0 ∈ X, where x0 6= 0 and let M > 0, then there exists f ∈ X∗ where f is a bounded
linear functional on X such that

‖f‖op = M

and
f(x0) = M · ‖x0‖ = ‖f‖op · ‖x0‖X

Proof.
Define f on 〈x0〉 by F (tx0) = M · t · ‖x0‖ and the rest follows from Hahn Banach.

We recall that for any x0 6= 0, x0 ∈ X, there exists a linear functional A ∈ X∗, such that

|Ax0| = ‖A‖op · ‖x0‖X

and if X is a normed linear space, then so is X∗. Also, we can define a linear functional on X∗ by
A ∈ X∗,

fx0
(A) = Ax0

with
(λ1A1 + λ2A2)(x0) = λ1A1x0 + λ2A2x0

This way, X can be realized as a linear submanifold of X∗∗. So on X∗, we have

‖Lx0
‖op = sup

A∈X∗

|Ax0|
‖A‖op

≤ ‖x0‖X

and
|Lx0

A| = |Ax0|
with ‖A‖op 6= 0. Now, Hahn-Banach implies what we just recalled. This shows that

‖Lx0
‖op = ‖x0‖X

So, X can be isometrically embedded in X∗∗.

Section 7.2

Examples

Also recall that if X is reflexive if X∗∗ = X.
Example 30. We now consider the norms of some linear operators.

(i) Let X = C([0, 1]) and take
(Tf)(x) = g(x)f(x)

and we ask for which g is T continuous. The answer to this is continuous g. To find ‖T‖op, we let
g ∈ C([0, 1]) and let f ≡ 1 so that Tf = T1 = g ∈ C([0, 1]). Then

‖T‖op = ‖g‖∞ = sup
x
|g(x)|

Now we claim that since

‖T‖op = sup
|Tf |
‖f‖

and so
sup
x
|f(x)g(x)| ≤ sup

x
|f(x)| sup

x
|g(x)| = ‖f‖∞ · sup

x
|g(x)|

Now, find f(x) such that sup |f · g| = sup |f | sup |g|. Just take f ≡ 1!
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(ii) Let X = l2 and take
Tx = (α1x1, . . . , αnxn, . . .)

and we ask for which α = (α1, . . . , αn, . . .) is T a bounded linear operator. Now, T is bounded if and
only if supk |αk| ≤M <∞. This is true since if αj ≤M for each j, then

∞∑
k=1

|αkxk|2 ≤M2
∞∑
k=1

|xk|2

and so
‖Tx‖2l2 ≤M

2‖x‖2l2
Now, suppose that supk |αk| =∞, then take k1 < · · · < kn < · · · such that |αkn | > n then let

x =

(
0, . . . , 0, 1, 0, . . . , 0,

1

2
, 0, . . . , 0,

1

n
, 0, . . .

)
where terms only appear at the kj index and zeros everywhere else. Then

‖x‖22 =

∞∑
k=1

1

n2
<∞

now,

Tx =
(

0, . . . , 0, αk1 , 0, . . . , 0,
αk2
2
, 0, . . . , 0,

αkn
n
, 0, . . .

)
/∈ l2

so T is not well defined since
|αkn | ≥ 1

and it is left as an excercise to show that

‖T‖op = sup
k
|αk|

and note that we have already proven ”≤”. Take a sequence of ”test vectors” x(j) ∈ l2 such that

‖Tx(j)‖2
‖x(j)‖2

→ sup
k
|ak|

Suppose taht αj 6= 0 for all j, then

T−1x =

(
x1
α1
, . . . ,

xn
αn

, . . .

)
and whe ask when T, T−1 are both continuous. So

0 < m < |αj | ≤M <∞

for any j and so
1

|αj |
< M2 <∞

(iii) Consider the shift operator
Tx = (0, x1, . . . , xn, . . .)

that shifts to the left so that the inverse is the right shift operator S. Then we define the left inverse to
be S such that T ◦ S = Id and we define the right inverse to be S such that S ◦ T = Id. Now, if we let

Sx = (x2, . . . , xn, . . .)

then, S is a left inverse, but T has no right inverse since we ”lose” the x1 term after applying S. Thus,
T ◦ S 6= Id since T is not onto l2.
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(iv) Let Y = C1([0, 1]) and let
‖f‖C1 = sup

x
|f(x)|+ sup

x
|f ′(x)|

and let T : C1 → C0 where
(Tf)(x) = f ′(x)

Then T is bounded for ‖Top‖ ≤ 1. Now, let

Sf(x) =

∫ x

0

f(s)ds

where S : C0 → C1 then T (S(f)) = f so that S is the right inverse of T . However, it is left as an
excercise to show that T has no left inverse. But, let Y ⊆ C1 defined by

Y = {f ∈ C1 : f(0) = 0}

then, S is a left inverse on Y .

Fin.
Good Luck On The Final!
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