McGill University Math 354: Honors Analysis 3

Inverse Function theorem in \mathbb{R}^n .

Our exposition follows that in Rudin's book.

Theorem 1 (Inverse Function Theorem). Let $\Omega \subset \mathbb{R}^n$ be an open set, and let $F : \Omega \to \mathbb{R}^n$ be continuously differentiable. Let $a \in \Omega$, let b = F(a), and let the Jacobian DF(a) be invertible. Then (a) there exists open sets U, V with $a \in U$ and $b \in V$ such that F is a bijection of U onto V; and (b) its inverse G defined by $G(F(x)) = x, x \in U$ is continuously differentiable.

Proof of Theorem 1. Let A = DF(a) be the Jacobian an a. Let $\epsilon = 1/(4||A^{-1}||_{op})$; it is finite since A is invertible by assumption. Since $x \to DF(x)$ is continuous, we can choose an open ball U centered at a such that

$$||DF(x) - A||_{op} < 2\epsilon. \tag{1}$$

Let $x \in U, x + h \in U$. Let f(t) = F(x + th) - tAh, where $0 \le t \le 1$. Since U is convex, $x + th \in U$ for all $0 \le t \le 1$. Also,

$$||f'(t)|| = ||f'(x+th)h - Ah|| \le 2\epsilon ||h||.$$

Since

$$2\epsilon ||h|| = 2\epsilon ||A^{-1}Ah|| \le 2\epsilon ||A^{-1}||_{op}||Ah|| = ||Ah||/2,$$

by definition of ϵ . It follows that

$$||f'(t)|| \le (1/2)||Ah||.$$

By the generalization of the Intermediate Value theorem, we find (using the previous bound) that

$$||f(1) - f(0)|| \le (1/2)||Ah||,$$

or

$$||F(x+h) - F(x) - Ah|| \le (1/2)||Ah||.$$

It follows that

$$||F(x+h) - F(x)|| > (1/2)||Ah|| \ge 2\epsilon ||h||.$$
(2)

It follows that F is 1-to-1 on U.

Let $x_0 \in U$, and let r > 0 be such that $\overline{B(x_0, r)} \subset U$. Claim. $B(F(x_0), \epsilon r) \subset F(B(x_0, r))$.

Proof of the Claim. Let $S = \overline{B(x_0, r)}$, and let $||y - F(x_0)|| < \epsilon r$. For $x \in S$, we define $\psi(x)$ to be

$$\psi(x) = ||y - F(x)||^2.$$

The function ψ is a continuous function of x, so it attains a minimum at $x_1 \in S$ (since S is compact). Moreover, ψ is differentiable at x_1 with derivative equal to $DF(x) \cdot (y - F(x))$, therefore by Lemma 132 in Drury we have

$$DF(x_1) \cdot (y - F(x_1)) = 0.$$

But $DF(x_1)$ is invertible by (1), so it follows that $y - F(x_1) = 0$ or $y = F(x_1)$. This finishes the proof of the Claim. QED

We have shown that every point in F(U) is its interior point, so F(U) is open, and if we let V = F(U) we prove part (a) of Theorem 1.

To prove part (b) of Theorem 1, let $y \in V$, and $y + k \in V$. Let G be the inverse map of F, and let x = G(y), h = G(y + k) - G(y). By the choice of V, we have

 $x \in U$ and $x + h \in U$. It then follows from (1) that DF(x) has an inverse map, that we denote B = B(x).

Consider the identity

$$k = F(x+h) - F(x) = DF(x)h + r(h),$$

where $||r(h)||/||h|| \to 0$ as $||h|| \to 0$. Apply B to both sides of the previous identity to get Bk = h + Br(h), or

$$G(y+k) - G(y) = Bk - Br(h).$$
 (3)

It follows from (2) that $2\epsilon ||h|| \leq ||k||$. It follows that $h \to 0$ as $k \to 0$, proving that G is continuous at y. Moreover,

$$\frac{||Br(h)||}{||k||} \le \frac{||B||_{op} \cdot ||r(h)||}{2\epsilon ||h||} \to 0, \qquad as \ k \to 0.$$
(4)

Finally, it follows from (3) and (4) that G is differentiable at y and its derivative is equal to B, i.e.

$$DG(y) = [DF(G(y))]^{-1}$$

for $y \in V$. Moreover, DG is continuous, since it is a composition of three continuous mappings (matrix inverse is continuous in a neighborhood of any invertible matrix, say by Cramer's rule). This finishes the proof of (b) and thus of Theorem 1. QED

Implicit Function theorem in \mathbb{R}^n .

We let $x = (x_1, \ldots, x_n) \in \mathbf{R}^n$, and $y = (y_1, \ldots, y_m) \in \mathbf{R}^m$. We will denote by (x, y) the obvious vector in \mathbf{R}^{n+m} .

Let $M: \mathbf{R}^{n+m} \to \mathbf{R}^n$ be a linear map, represented by an $n \times (n+m)$ matrix, such that

$$M \cdot (h,0)^t = 0 \quad \Leftrightarrow \quad h = 0, \tag{5}$$

where $(h, 0)^t$ is the column vector equal to the transpose of (h, 0). This is equivalent to the statement that the $n \times n$ submatrix of M, consisting of the first n columns of M, is invertible, or that its rows/columns are linearly independent.

In that case, by standard results in linear algebra, $h \to M(h, 0)^t : \mathbf{R}^n \to \mathbf{R}^n$ is a bijection. Also, for any fixed $k \in \mathbf{R}^n$ and $b \in \mathbf{R}^n$, the equation $M \cdot (x, k)^t = b$ has a unique solution. Indeed, letting $d = b - M \cdot (0, k)^t$, there exists x such that $M \cdot (x, 0)^t = d$, or $M \cdot (x, k)^t = b$, and uniqueness of x follows easily from (5).

Theorem 2 (Implicit Function Theorem). Let $E \subset \mathbb{R}^{n+m}$ be an open set, and let $F : E \to \mathbb{R}^n$ be continuously differentiable. Let $(a, b) \in E, F(a, b) = 0$, let M = DF((a, b)), and let M satisfy the condition (5). Then there exists a neighborhood $W \subset \mathbb{R}^m$ of the point b, and a unique function $G : W \to \mathbb{R}^n$ such that G(b) = a and F(G(y), y) = 0 for all $y \in W$. Moreover, G is continuously differentiable.

Remark. Denote by $D_x F$, the matrix $\partial(F_1, \ldots, F_n)/\partial(x_1, \ldots, x_n)$. Theorem 2 assumes that the matrix $D_x F$, is invertible at a. If we denote by $D_y F$ the matrix $\partial(F_1, \ldots, F_n)/\partial(y_1, \ldots, y_m)$, then it follows from Theorem 2 and the Chain rule that

$$\frac{\partial(x_1,\ldots,x_n)}{\partial(y_1,\ldots,y_m)} = -(D_x F)^{-1}(D_y F).$$
Proof of Theorem 2. Define $H: E \subset \mathbf{R}^{n+m} \to \mathbf{R}^{n+m}, H(x,y) = (z,w)$ by

$$z = F(x, y), w = y.$$
(6)

Then F is a continuously differentiable on E. Since F(a, b) = 0, we have

$$F(a+h,b+k) = A \cdot (h,k)^t + r(h,k),$$

where r(h,k) is little o norm at (a,b) and A is a linear operator represented by an $n \times (n+m)$ matrix $(D_x F | D_y F)$. Since

$$H(a + h, b + k) - H(a, b) = (F(a + h, b + k), k),$$

we find that

$$DH(a,b) = \begin{pmatrix} D_x F(a,b) & D_y F(a,b) \\ 0 & Id \end{pmatrix}$$

where 0 and Id denote the $m \times n$ zero matrix and the $m \times m$ identity matrix respectively.

Since $D_x F(a, b)$ is invertible by assumption, it follows from the standard properties of matrices that DH(a, b) is invertible, and so we can apply Theorem 1 to the function H. Thus, there exist two open sets: U containing (a, b) and V containing (0, b) such that $H : U \to V$ is a bijection, and has a continuously differentiable inverse $H^{-1}: V \to U$.

It follows from (6) that $H^{-1}:(z,w)\to (x,y)$ has the form

$$x = \Phi(z, w), y = w, \tag{7}$$

where $\Phi \in C^1(V)$, or

$$F(\Phi(z,w),w) = z, \qquad (z,w) \in V.$$
(8)

Now, let W be a neighborhood of b such that $(0, w) \in V, \forall w \in W$. We define $G(y) = \Phi((0, y))$ for $y \in W$. Substituting into (8), we get F(G(y), y) = 0, which is the formula claimed in Theorem 2. Since $\Phi(0, b) = a$, we have G(b) = a, and uniqueness follows easily from the fact that H is one-to-one. This finishes the proof of Theorem 2.

QED

Example. Let (u, v, x, y) satisfy

$$\begin{cases} u^3 + xv - y = 0; \\ v^3 + yu - x = 0. \end{cases}$$
(9)

Prove that u, v are continuously differentiable functions of x, y near x = 0, y = 1, u = 1, v = -1, and compute $\partial u / \partial x$ and $\partial v / \partial x$.

Solution: We denote by $F_1(x, y, u, v)$ the left-hand side of the 1st equation in (9); and by $F_2(x, y, u, v)$ the left-hand side of the 2nd equation in (9). Then

$$\frac{\partial(F_1,F_2)}{\partial(u,v)}\Big|_{(0,1,1,-1)} = \left(\begin{array}{cc} 3u^2 & x \\ y & 3v^2 \end{array}\right)_{(0,1,1,-1)} = \left(\begin{array}{cc} 3 & 0 \\ 1 & 3 \end{array}\right)$$

and is thus invertible, so by Implicit Function theorem, (u, v) are C^1 functions of (x, y). To compute the x-derivatives, we differentiate (9) with respect to x and use the Chain rule; note that $\partial F_1/\partial x = v = -1$ at (0, 1, 1, -1), and $\partial F_2/\partial x = -1$ at the same point. We get:

$$\begin{cases} (F_1)_u \cdot u_x + (F_1)_v \cdot v_x + (F_1)_x = 3u_x - 1 = 0; \\ (F_2)_u \cdot u_x + (F_2)_v \cdot v_x + (F_2)_x = u_x + 3v_x - 1 = 0. \end{cases}$$

The solution is $u_x = 1/3, v_x = 2/9.$