Analysis III Definitions

Rob Gibson

October 24, 2010

Definition 1. Let X be a metric space. We define **Distance** $d: X \times X \to \mathbb{R}$ to satisfy

 $\begin{array}{ll} (i) \ \forall x \in X, \quad d(x,x) = 0 \\ (ii) \ \forall x \neq y \in X, \quad d(x,y) > 0 \\ (iii) \ \forall x,y \in X, \quad d(x,y) = d(y,x) \\ (iv) \ \forall x,y,z \in X, \quad d(x,z) + d(z,y) \geq d(x,y) \end{array}$

Definition 2. The *p*-adic Norm is defined as follows

$$x = p^k \cdot \frac{c}{d}$$

where $k \in \mathbb{Z}$ and

$$||x||_p = p^{-k}$$

Definition 3. The p-adic Norm is defined to be

$$d_p(x,y) = ||x-y||_p$$

Definition 4. Suppose that X is a linear space, then we say that the **Norm** of $x \in X$ is a map

$$\|\cdot\|:X\to\mathbb{R}_+$$

such that

- (i) $||x|| = 0 \iff x = 0$
- (*ii*) $||t \cdot x|| = |t| \cdot ||x||$
- (*iii*) $||x + y|| \le ||x|| + ||y||$

Definition 5. Let $A \subset X$ where X is a metric space. Let $x \in X$ (may or may not be in A). If every ball B(x,r) centred at x of radius r has at least one point from A for any r > 0, then this is equivalent to calling x a **Contact Point**. Also, just for notational purposes,

$$B(x, r) = \{ y \in X : d(x, y) < r \}$$

Definition 6. If B(x,r) for any r > 0 has infinitely many points from A, then we say that x is a *Limit Point*.

Definition 7. If $\forall x \in A, \exists r > 0 \ s.t.$

$$B(x,r) \cap A = \{x\}$$

Definition 8. The Closure \overline{A} of A is the set of all contact points.

 $\overline{A} = A \cup \{Limit \text{ points of } A\}$

Definition 9. $A, B \subset X$. We say that A is **Dense** in B if

 $B \subset \overline{A}$

and it is also true that A is dense if and only if A is dense in X.

Definition 10. We say that X is **Separable** if X has a countable, dense subset.

Definition 11. The distance from a point x to a set A is equivalent to

$$d(x,A) = \inf_{a \in A} d(x,a)$$

Definition 12. Let $A \subset X$. We say that A is **Closed** if $\overline{A} = A$.

Definition 13. We say that x is an **Interior Point** of A if and only if

 $\exists r > 0 \ s.t. \quad B(x,r) \subset A$

Definition 14. We say that A is **Open** if every point in A is an interior point.

Definition 15. A collection A_{α} , for $\alpha \in I$ of open sets is called a **Basis** (of all open sets) if and only if any open set in X is a union of a sub-collection of A_{α} .

Definition 16. X is called **Second Countable** if and only if there is a countable basis of open sets of X.

Definition 17. We say that X is **Connected** if and only if any subset $A \subset X$ that is both open and closed is either \emptyset or X.

Definition 18. Let d_1, d_2 be two distances on X. We say that d_1 and d_2 are **Equivalent** precisely if there are two constants $0 < c_1 < c_2 < \infty$ such that

$$c_1 < \frac{d_1(x,y)}{d_2(x,y)} < c_2$$

This implies that for $r_2 < r_1 < r_3$, we have

$$B_{d_2}(x, r_2) \subset B_{d_1}(x, r_1) \subset B_{d_2}(x, r_3)$$

Definition 19. Let X be a set and let $\{A_{\alpha}\}_{\alpha \in I}$ be a collection of open sets. A **Topological Space** satisfies

(i) \emptyset, X are both open.

(ii)

(iii)

is open.

Definition 20. (More General Definition)

X is a **Contact Point** of $A \subset X$ where X is a topological space if every neighbourhood of x contains a point in A.

Definition 21. We say that a space X is **Hausdorff** if for any $x, y \in X$ such that $x \neq y$, there exists r_1, r_2 such that

$$B(x,r_1) \cap B(y,r_2) = \emptyset$$

OR

For any $x \neq y$, there exists open sets U containing x and V containing y such that

$$U \cap V = \emptyset$$

Definition 22. We say that a topological space X is **Metrizable** if there exists a metric d on X such that open sets defined by d give the same topology on X.

 $\bigcup_{\alpha \in J} A_{\alpha}$

Definition 23. Let $f: X \to Y$. We say that f is **Continuous** at $x \in X$, if

$$\forall \epsilon > 0, \exists \delta > 0 \ s.t. \ \forall y \in X, d_X(x, y) < \delta \Longrightarrow d_Y(f(x), f(y)) < \epsilon$$

and we say that a f is a **Continuous Function** if it is continuous $\forall x \in X$. OR

$$\forall (x_n)_{n=1}^{\infty} \to x \ (\lim_{n \to \infty} x_n = x), \lim_{n \to \infty} f(x_n) = f(x)$$

Definition 24. Let X, Y be metric spaces. The map $f : X \to Y$ is called an **Isometry** if for all $x_1, x_2 \in X$, we have

$$d_X(x_1, x_2) = d_Y(f(x_1), f(x_2))$$

Definition 25. Let X, Y be topological spaces. The map $f : X \to Y$ is a **Homeomorphism** if

(i) f is bijective.

(ii) Both $f: X \to Y$ and $f^{-1}: Y \to X$ are continuous functions.

We say that X, Y are **Homeomorphic** if and only if there exists a homeomorphism $f : X \to Y$. Then open/closed sets, closure, limit points and boundary are all the same for X and Y. Also, continuous functions on X, Y are the same.

Definition 26. A sequence (x_n) in a metric space X is a **Cauchy Sequence** if for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that if m, n > N, then

 $d(x_n, x_m) < \epsilon$

Definition 27. We say that a metric space X is **Complete** if and only if every Cauchy sequence is convergent. That is, if (x_n) is Cauchy, then there exists $z \in X$ such that

$$d(z, x_n) \to 0$$

as $n \to \infty$.

Definition 28. We say that two Cauchy sequences (x_n) and (y_n) are **Equivalent** if and only if

$$d(x_n, y_n) \to 0$$

as $n \to \infty$.

Definition 29. If we let Y denote the set of all equivalence classes in Z with respect to \sim , then for $(x_n), (y_n)$ Cauchy sequences in X, we define

$$d\left(\overline{(x_n)},\overline{(y_n)}\right) = \lim_{n \to \infty} d_X(x_n,y_n)$$

Definition 30. If X is a metric space and $A : X \to X$, then we say that A is a **Contraction** Mapping if there exists $0 < \alpha < 1$ such that

$$d(A(x), A(y)) < \alpha \cdot d(x, y)$$

for any $x, y \in X$. It is a fact that if A is a contraction mapping, then A is continuous.

Definition 31. We say that a map f is **Lipschitz**, denoted $f \in Lip_K$ if

$$|f(x) - f(y)| < K \cdot |x - y|$$

and if K < 1 then f is a contraction mapping.

Definition 32. Let $A \subset X$ where X is a metric space. We say that A is **Sequentially Compact** if every sequence in A has a subsequence which converges to some $x \in X$ ($x \notin A$ is possible).

Definition 33. $A \subset X$ is called an ϵ -net if for each $x \in X$, there exists $y \in A$ such that

$$d(x,y) \le \epsilon$$

Definition 34. X is **Totally Bounded** if for each $\epsilon > 0$, there exists a finite ϵ -net in X. **OR**

X is **Totally Bounded** if for any $\epsilon > 0$, there exists a finite set x_1, \ldots, x_n such that

$$X \subset B(x_1, \epsilon) \bigcap B(x_2, \epsilon) \bigcap \cdots \bigcap B(x_n, \epsilon)$$

where $n = n(\epsilon)$.

Definition 35. Let $\mathcal{F} = \{\varphi(x)\}$ be a family (collection) of functions on [a, b]. We say that \mathcal{F} is **Uniformly Bounded** if there exists M > 0 such that

$$|\varphi(x)| \le M, \ \forall x \in [a, b], \ \forall \varphi \in \mathcal{F}$$

Definition 36. We say that the family \mathcal{F} is **Equicontinuous** if for every $\epsilon > 0$, there exists $\delta > 0$ such that $\forall x_1, x_2 \in [a, b]$, with $|x_1 - x_2| < \delta$, and $\forall \varphi \in \mathcal{F}$, we get

$$|\varphi(x_1) - \varphi(x_2)| < \epsilon$$

Definition 37. A subset $A \subseteq X$ is **Sequentially Compact In Itself** if and only if any sequence $(x_n) \in A$ has a convergent subsequence that converges in A.

Definition 38. A sequentially compact metric space is called **Compactum**.