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Baire’s Category Theorem and Uniform Boundedness Principle

I. Baire’s Category Theorem.
Theorem 1 (Baire’s Category Theorem). (Drury, Theorem 61). Let X be a complete metric
space, and let Ak be a closed subset of X with empty interior. Then X \ (∪kAk) is dense in X , and
in particular X 6= ∪kAk.
Proof of Theorem 1. Suppose for contradiction that X\(∪kAk) is not dense, so there exists x0 ∈ X
with U(x0, r) ⊂ ∪kAk for some r > 0; we let t0 = r/2. We construct a sequence xn as follows: since
U(x0, t0) 6⊂ A1 (otherwise A1 would have a nonempty interior), there exists x1 ∈ (X \A1)∩U(x0, t0).

Next, let t1 = min{t0/2, dist(x1, A1)/4} > 0. We next find x2 ∈ (X \ A2) ∩ U(x1, t1) (again
such a point exists since A2 has empty interior). Let t2 = min{t1/2, dist(x2, A2)/4} > 0. Find
x3 ∈ (X \ A3) ∩ U(x2, t2), etc. We let tn = min{tn−1/2, dist(xn, An)/4} > 0, and we let xn+1 ∈
(X \ An) ∩ U(xn, tn).

Since tn < t0/2n, it is easy to see that xn-s form a Cauchy sequence, so xn → x for some x ∈ X
as n → ∞. We next show that x /∈ Ak for all k. This holds since

d(x, xk) ≤

∞∑

n=k

d(xn+1, xn) ≤

∞∑

n=k

tn ≤ dist(xk, Ak)

∞∑

n=k

2−2−n+k =
dist(xk , Ak)

2
.

Finally, we see that

d(x, x0) ≤

∞∑

n=0

d(xn, xn+1) <

∞∑

n=0

tn ≤ r

∞∑

n=0

2−1−n = r,

so x ∈ U(x0, r) which is assumed to lie in ∪kAk. Contradiction finishes the proof.

II. Uniform Boundedness Principle.
Let X, Y be Banach (i.e. complete normed linear) spaces (in fact, Y need not be complete). Let

Fn : X → Y be a continuous linear map for each n.
Theorem 2: Uniform Boundedness Principle or Banach-Steinhaus Theorem. Assume
that the set {Fn(x)} is a bounded subset of Y for every fixed x ∈ X . Then there exists a constant
C < ∞ such that ||Fn||op ≤ C for all n.
Proof of Theorem 2. Define Ak to be the set

{x ∈ X : ||Fn(x)|| ≤ k, ∀n ≥ 1}. (1)

It is easy to show that

i) Ak is closed: it is equal to ∩nF−1
n (Ū(0Y , k)) and so is an intersection of closed sets.

ii) Ak is convex: this follows easily from the definition and linearity of Fn-s.

By the assumption of Theorem 2, we have X = ∪kAk. X is complete, so by Theorem 1 one
of the sets Ak has a nonempty interior. This means that there exists z ∈ X and r > 0 such that
U(z, r) ⊂ Ak or, equivalently, for any x ∈ U(z, r) we have

||Fn(x)|| ≤ k, ∀n ∈ N.



Since ||Fn(x)|| = ||Fn(−x)||, we see that U(−z, r) ⊂ Ak as well.
Next, let x ∈ X with ||x|| ≤ r. Then x = ((z+x)+(−z+x))/2. Now, both z+x and z−x belong

to Ak, and since Ak is convex, we have Ū(0X , r/2) ⊂ U(0X , r) ⊂ Ak. It follows that ||Fn(x)|| ≤ k
for ||x|| ≤ r, thus ||Fn||op ≤ 2k/r for all n. This finishes the proof of the Theorem 2.

III. Operator Norm.
Let X and Y be Banach (i.e. complete normed linear) spaces, and let F : X → Y be a continuous

linear map. Recall that an operator norm ||F ||op is defined to be sup||x||≤1 ||F (x)||. By Problem 5
in Assignment 3, this defines a norm on the space CL(X, Y ) of continuous linear functionals from
X to Y .
Theorem 3. The space CL(X, Y ) is complete with respect to the operator norm.
Proof of Theorem 3. Let Fn be a Cauchy sequence in CL(X, Y ), i.e. for any ε > 0 there exists
N > 0 such that ||Fm − Fn||op ≤ ε for any m, n ≥ N . Then for any x ∈ X , we have

||Fm(x) − Fn(x)|| ≤ ε · ||x|| (2)

so {Fn(x)} is a Cauchy sequence in Y . Since Y is complete, the sequence Fn(x) converges to a limit
as n → ∞, which we shall call F (x). It suffices to show that x → F (x) defines a bounded linear
functional and that ||Fn − F ||op → 0 as n → ∞.

We first show linearity. By linearity of Fn, we get Fn(t1 · x + t2 · y) = t1 · Fn(x) + t2 · Fn(y).
Passing to the limit as n → ∞, we get F (t1 · x + t2 · y) = t1 · F (x) + t2 · F (y), proving the linearity.

Next, let ||x|| ≤ 1. Then by passing to the limit in (2) we find that ||Fm(x) − F (x)|| ≤ ε||x|| for
m ≥ N , which shows that ||Fm − F ||op ≤ ε. Since ε was arbitrary, we find that ||Fn − F ||op → 0 as
n → ∞.

Finally, to prove continuity of F it suffices to show that F is bounded. To do that, let x ∈ X
with ||x|| ≤ 1. Choose N such that ||Fn − Fm||op ≤ 1 for m, n ≥ N . Since FN is bounded, we have
||FN (x)|| ≤ C for some C < ∞. By passing to the limit in (2), we find that

||F (x)|| ≤ ||FN (x)|| + ||(FN − F )(x)|| ≤ C + 1,

which shows that ||F ||op ≤ C + 1 and so F is bounded. This finishes the proof of Theorem 3.


