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Baire’s Category Theorem and Uniform Boundedness Principle

I. Baire’s Category Theorem.
Theorem 1 (Baire’s Category Theorem). (Drury, Theorem 61). Let X be a complete metric
space, and let Ay be a closed subset of X with empty interior. Then X \ (UyAg) is dense in X, and
in particular X # UgAg.
Proof of Theorem 1. Suppose for contradiction that X\ (Ux Ag) is not dense, so there exists zg € X
with U(xg,r) C UgAg for some r > 0; we let tg = r/2. We construct a sequence z,, as follows: since
U(xo, to) ¢ Ay (otherwise A; would have a nonempty interior), there exists x1 € (X \ A1)NU (zg, to)-
Next, let t1 = min{to/2, dist(x1, 41)/4} > 0. We next find x2 € (X \ A2) N U(x1,t1) (again
such a point exists since Ay has empty interior). Let to = min{¢1/2,dist(z2, A2)/4} > 0. Find
zg € (X \ A3) NU(x2,12), etc. We let ¢, = min{t,—1/2,dist(z,, A,)/4} > 0, and we let z,,41 €
(X\Ap) NU(xp,tn).
Since t,, < to/2", it is easy to see that x,-s form a Cauchy sequence, so z,, — x for some x € X
as n — oo. We next show that = ¢ Ay, for all k. This holds since

o0 oo oo d. t A
d(z,2x) <Y d(@ngr,20) < Yty < dist(ag, Ag) Y 272 = W
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Finally, we see that

o) o) o)
d(ﬂ]‘,ﬂ]‘o) < Z d(x77,7x77,+1) < Ztn < TZ 2717“ =T,
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so x € U(xg,r) which is assumed to lie in U Ag. Contradiction finishes the proof.

II. Uniform Boundedness Principle.

Let X,Y be Banach (i.e. complete normed linear) spaces (in fact, ¥ need not be complete). Let
F, : X — Y be a continuous linear map for each n.
Theorem 2: Uniform Boundedness Principle or Banach-Steinhaus Theorem. Assume
that the set {F,,(x)} is a bounded subset of Y for every fixed € X. Then there exists a constant
C < oo such that ||F,||op < C for all n.
Proof of Theorem 2. Define Aj, to be the set

{z € X [|Fu(2)]] < k,Vn > 1} (1)
It is easy to show that
i) Ay is closed: it is equal to N, F; 1 (U(0y, k)) and so is an intersection of closed sets.
ii) Ay is convex: this follows easily from the definition and linearity of F,,-s.

By the assumption of Theorem 2, we have X = UiA,. X is complete, so by Theorem 1 one
of the sets A has a nonempty interior. This means that there exists z € X and r > 0 such that
U(z,r) C Ay or, equivalently, for any x € U(z,r) we have

[[Fn(2)]] < K, Vn € N.



Since ||Fy(z)|| = ||Fn(—2)]|, we see that U(—z,7) C Ay as well.

Next, let © € X with ||z|| < r. Then z = ((2+z)+(—z+x))/2. Now, both z+z and z—z belong
to A, and since Ay is convex, we have U(0x,r/2) C U(Ox,r) C Ag. Tt follows that ||F,(z)|| < k
for ||z|| <, thus ||F,||op < 2k/r for all n. This finishes the proof of the Theorem 2.

III. Operator Norm.

Let X and Y be Banach (i.e. complete normed linear) spaces, and let F' : X — Y be a continuous
linear map. Recall that an operator norm ||F|[,p is defined to be sup|, <, [[F'(z)||. By Problem 5
in Assignment 3, this defines a norm on the space CL(X,Y") of continuous linear functionals from
XtoY.

Theorem 3. The space CL(X,Y) is complete with respect to the operator norm.
Proof of Theorem 3. Let F,, be a Cauchy sequence in CL(X,Y), i.e. for any € > 0 there exists
N > 0 such that ||F,, — Fullop < € for any m,n > N. Then for any x € X, we have

[ Em (2) = Fn(@)[] < e || (2)

so {F,(z)} is a Cauchy sequence in Y. Since Y is complete, the sequence F,, (z) converges to a limit
as n — oo, which we shall call F(z). It suffices to show that + — F'(z) defines a bounded linear
functional and that ||F),, — F||op — 0 as n — oo.

We first show linearity. By linearity of F,,, we get F,,(t1 -« + ta - y) = t1 - Fr(x) + ta - Fi,(y).
Passing to the limit as n — oo, we get F'(t1 - +t2-y) =t1 - F(x) + t2 - F(y), proving the linearity.

Next, let ||x|| < 1. Then by passing to the limit in (2) we find that ||F,, () — F(z)|| < €||z|| for
m > N, which shows that ||F,, — F||op < €. Since € was arbitrary, we find that ||F,, — F||op — 0 as
n — o0o.

Finally, to prove continuity of F' it suffices to show that F' is bounded. To do that, let z € X
with ||z|| < 1. Choose N such that ||F,, — Fp||op < 1 for m,n > N. Since Fy is bounded, we have
[|Fn(2)]] < C for some C < co. By passing to the limit in (2), we find that

IE @) < [[En @) + ||(Fy = F)(@)]] < C +1,

which shows that ||F||op < C + 1 and so F is bounded. This finishes the proof of Theorem 3.



