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1 Definitions

Metric Space: A metric space is an ordered pair (X, d) where X is a set and
d : X ×X → R+ a distance such that

1. d(x, y) ≥ 0 , d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. Triangle Inequality: d(x, y) ≤ d(x, z) + d(z, y)

Norm: Let X be a vector space over R or C. A norm is a function ‖.‖ : X → R such that

1. ‖x‖ ≥ 0

2. ‖x‖ = 0 ⇐⇒ x = 0X

3. ‖αx‖ = |α|. ‖x‖

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Definition: `p = {x = (x1, ..., xn, . . . ) |
∑n

k=1 |xk|p <∞}

Definition: `∞ = { bounded sequences } = {x = (x1, ..., xn, . . . ) | ‖x‖∞ = supk |xk| <∞}

* * * * *

Topological Space: A topological space is a set X together with a collection O of
subsets of X, called open sets, such that :

1. The union of any collection of sets in O is in O. i.e. If {Uα}α∈I ⊂ O then
⋃
α∈I Uα ∈ O.

2. The intersection of any finite collection of sets in O is in O. i.e. If U1, . . . , Un are in
O, then so is U1 ∩ · · · ∩ Un

3. Both ∅ and X are in O.

Some other terminologies:

• The collection O of open sets is called a topology on X.

• The collection O of all subsets of X, defines a topology on X called the discrete
topology.

• The set O = {∅, X} defines a topology, the trivial topology.

• If O and O′ define two topologies on X, with every set that is open in O topology is
also open in the O′ topology, i.e. O ⊂ O′, we say that O′ is finer than O an that O
is coarser than O′.
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Closed Set: A subset A of topological space X is closed if its complement X\A is open.

* * * * *

Let X be a topological space, A ⊂ X and x ∈ X. Then only one of the following is true for
x:

1. ∃ an open U in X s.t. x ∈ U ⊂ A

2. ∃ an open V in X s.t. x ∈ V ⊂ X\A

3. None of the above. ∀U open such that x ∈ U , we have U ∩ A 6= ∅ and U ∩X\A 6 ∅

Interior of A := {x ∈ X | (1) holds} = A◦

Interior of X\A := {x ∈ X | (2) holds}

Boundary of A := {x ∈ X | (3) holds} = ∂A

Closure of A := A ∪ ∂A

Limit points of A := {x ∈ X | (1) or (3) hold}

Dense: If Ā = X then A is dense in X.

Separable Space: A topological space X is separable if it contains a countable dense
subset. i.e. ∃A ⊂ X such that A is countable and Ā = X. Or equivalently, there exists a
sequence (xn)n∈N of elements of X such that every non-empty open subset of X contains at
least one element of the sequence.

Limit: Let x1, x2, x3, . . . be a sequence of points in X. Then limn→∞ xn = y ⇐⇒ ∀ open
sets U such that y ∈ U , ∃N > 0 such that xn ∈ U ∀n > N .

* * * * *

Basis for a Topology: A collection B of open sets in a topological space X is called a
basis for the topology iff every open set in X is a union of sets in B.

Neighbourhood of x: Any set A such that there exists an open U such that x ∈ U and
U ⊂ A.

Subspace Topology: If Y ⊂ X then open sets in Y = open sets in X ∩ Y

* * * * *
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Continuous Functions: Let f : X → Y where X, Y are topological spaces. Then f is
continuous iff ∀ open sets U in Y , f−1(U) = {x ∈ X | f(x) ∈ U} is open in X.

Contact Point: Let A ⊂ X where X is a metric space. Let x ∈ X (may or may not
be in A). If every ball B(x, r) centred at x of radius r has at least one point from A for
any r > 0, then this is equivalent to calling x a Contact Point. Also, just for notational
purposes,
B(x, r) = {y ∈ X | d(x, y) < r}
Remark: Any x ∈ A is a contact point of A.

Dense sets in metric spaces: Suppose S ⊂ T in the metric space X. Then S is dense
in T if for any x ∈ T and all ε > 0, there exists y ∈ S such that d(x, y) < ε.

Cauchy Sequence: {xn}∞n=1 is cauchy ⇐⇒ ∀ε > 0 ,∃N ∈ N such that ∀m,n > N
d(x, y) < ε.

Completeness in a metric space : A metric space X is complete ⇐⇒ every Cauchy
sequence in X converges to a limit in X. (∃y ∈ X such that d(xn, y)→ 0 as n→∞)

Cauchy sequences in a Topological Space: In a topological space X, {xn}∞n=1 is a
Cauchy sequence ⇐⇒ for all open sets U ⊂ X, ∃N ∈ N such that ∀m,n > N if xn ∈ U
then xm ∈ U .

Pointwise Convergence: A sequence of functions fn on [a, b] converges pointwise to a
function f , if given x ∈ [a, b], then ∀ε > 0 ∃N > 0 such that ∀n > N ,t |fn(x)− f(x)| < ε.

Uniform Convergence: Consider C([a, b], sup(`∞)). Convergence for the sup distance is
also called uniform convergence ⇐⇒ fn → g uniformly in [a, b] ⇐⇒ ∀ε > 0 ∃N ∈ N
such that ∀n > N ∀x ∈ [a, b], |fn(x)− g(x)| < ε.( supx∈[a,b] |fn(x)− g(x)| < ε).

Contraction Map: Let X be a metric space. A : X → X is a contraction mapping if
∃0 < α < 1 such that d(A(x), A(y)) < αd(x, y) ∀x, y ∈ X.

Lipschitz f : [0, 1]→ R is Lipschitz if ∃K > 0 such that |f(y)− f(x)| ≤ |y − x|

* * * * *

Compactness: A topological space X is called compact if every open cover of X has a
finite subcover. That is for any collection of open sets {Uα}α∈I such that X =

⋃
α∈I Uα,

there exists a finite set of indices α1, . . . , αn ∈ I such that X =
⋃n
i=1 Uαi

.
A subset K ⊂ X is compact if K ⊂

⋃
α∈I Uα then ∃α1, . . . , αn ∈ I such that K ⊂

⋃n
i=1 Uαi
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Sequentially Compact Let X be a metric space. Then A ⊂ X is sequentially compact
⇐⇒ (xn) a sequence in A, then ∃y ∈ X such that xnk

→ y as n → ∞ where (xnk
) is a

subsequence of (xn). That is every infinite sequence has a convergent subsequence.

Product Space: Let X and Y be topological spaces. Then open sets in X × Y are
generated by U × V where U is open in X and V is open in Y . This is called product
topology in Y .

Hausdorff Space: A topological space X is Hausdorff iff ∀x1 6= x2 ∈ X, there exists two
disjoint open sets U1, U2 such that x1 ∈ U1 and x2 ∈ U2.

* * * * *

Let F = {φ(x)} be a family of continuous functions on a finite interval [a, b] ⊂ R.

Uniformly Bounded: ∃M > 0 such that ∀φ ∈ F , |φ(x)| ≤M ∀x ∈ [a, b].

Uniformly Equicontinuous: ∀ε > 0, ∃δ > 0 such that ∀x1, x2 ∈ [a, b] with |x1−x2| < δ,
|φ(x1)− φ(x2)| < ε is true ∀φ ∈ F .

ε-net : A ⊂ X is called an ε-net if for each x ∈ X, there exists a y ∈ A such that
d(x, y) < ε.
If M ⊂ X, an ε-net for M is a subset S ⊂M such that:

M ⊆
⋃
x∈S

B(x, ε)

where B(x, ε) is an open ball centred at x with radius ε.

Totally Bounded: X is totally bounded if for each ε > 0, there exists a finite ε-net in X.
In other words, X is totally bounded if for any ε > 0, there exists a finite set x1, . . . , xn such
that

X ⊂ B(x1, ε)
⋃

. . .
⋃

B(xn, ε)

where B(x, ε) is the closed ball centred at x with radius ε.
A set S ⊂ X is totally bounded if for each ε > 0 there exists a finite ε-net in S. i.e., S is
totally bounded if for every ε > 0 , there exists a finite subset {s1, . . . , sn} of S such that

S ⊂ B(s1, ε)
⋃

. . .
⋃

B(sn, ε)

* * * * *
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Connected Sets: A topological space X is connected ⇐⇒ X 6= U ∪ V where U and V
are open/closed, non-empty and such that U ∩ V = ∅ .

Not Connected Set: X can be written as X = U∪V where U and V are open, non-empty
with U ∩ V = ∅.

Path Connected: A topological space X is path connected, if ∀x1, x2 ∈ X, there exists a
function f : [a, b]→ X such that f(a) = x1, f(b) = x2 and f is continuous.

Path Component: P (x) = {y ∈ X | y can be connected to x by a continuous path}

* * * * *

Rectangle: A (closed) rectangle R in Rd is given by the product of d one-dimensional
closed and bounded intervals

R = [a1, b1]× · · · × [ad, bd]

The volume of rectangle R is denoted by |R| and given by

|R| := (b1 − a1)(b2 − a2) . . . (bd − ad)

Cube A cube is a rectangle with sides of equal length. So if Q ⊂ Rd is a cube of common
side length `, then |Q| = `d.

Almost Disjoint: A union of rectangles is said to be almost disjoint if the interiors of
the rectangles are disjoint.

Exterior Measure: If E is any subset of Rd, the exterior measure of E is

m∗(E) = inf⋃∞
j=1Qj⊃E

∞∑
j=1

|Qj|

Measurable Set/ Lebesgue Measurable: A subset E of Rd is Lebesgue measurable
or simply measurable, if for any ε > 0 there exists an open set O with E ⊂ O and

m∗(O − E) ≤ ε

If E is measurable, we define its Lebesgue measure or measure by

m(E) := m∗(E)
(

= inf
O⊃E

m∗(O)
)
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Definition: If E1, E2, . . . is a countable collection of subsets of Rd that increases to E in
the sense that E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ . . . , and E =

⋃∞
k=1Ek, then we write Ek ↗ E.

Definition: If E1, E2, . . . is a countable collection of subsets of Rd that decreases to E in
the sense that E1 ⊃ E2 ⊃ · · · ⊃ Ek ⊃ . . . , and E =

⋂∞
k=1Ek, then we write Ek ↘ E.

Symmetric Difference: E4F = (E − F ) ∪ (F − E)

σ-algebra : of sets is a collection of subsets of Rd that is closed under countable unions,
countable intersections and, complements. For example, collection of all subsets in Rd or the
set of all measurable sets in Rd, i.e. (σ-algebra of measurable sets).

Borel σ-algebra : Denoted by B it is the smallest σ-algebra that contains all open sets.
Elements of this σ-algebra are called Borel sets. It is the smallest in the sense that if S is
any other σ-algebra that contains all open sets in Rd, then necessarily B ⊂ S. In particular,
since open sets are measurable, B ⊂ of the σ-algebra of measurable sets.

Gδ: countable intersection of open sets, i.e. Gδ =
⋂∞
j=1Oj.

Fδ: countable union of closed sets. Fδ =
⋃∞
j=1 Fj.

* * * * *

Characteristic Function: The characteristic function of a set E is defined by

χE(x) =

{
1 if x ∈ E
0 if x 6∈ E

Step Function: are defined as:

f =
N∑
k=1

akχRk

where each Rk is a rectangle in Rd and ak are constants.

Simple Function:

f =
N∑
k=1

akχEk

where each Ek is a measurable set of finite measure, and the ak are constants.
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Defintion: A real valued function f is finite valued if −∞ < f(x) <∞ for all x.

Measurable Function: A real-valued function f defined on a measurable subset E of Rd

is measurable if for all a ∈ R, the set

f−1([−∞, a)) = {x ∈ E | f(x) < a}

is measurable. For simplification, we denote {f < a} = {x ∈ E | f(x) < a}.

Almost Everywhere Equality: Two functions f and g defined on a set E are equal
almost everywhere denoted by

f(x) = g(x) a.e. x ∈ E

if the set {x ∈ E | f(x) 6= g(x)} has measure 0. More generally, a property or statement is
said to hold almost everywhere (a.e.) if it is true except on a set of measure 0.

Decomposition of a function into two non-negative functions: Given the real-
valued function f , we can decompose it in the following way:

f(x) = f+(x)− f−(x)

where

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)

* * * * *

Canonical from of a simple function: Suppose

φ(x) =
N∑
k=1

akχEk
(x)

The Canonical form of φ is the unique decomposition where the numbers ak are distinct
and non-zero, and the sets Ek are disjoint. Finding the canonical form of φ is straight-
forward. Since φ can only take finitely many distinct non-zero values c1, c2, . . . , cM , we may
set Fk = {x | φ(x) = ck}, and note that the sets Fk are disjoint. Therefore, φ =

∑M
k=1 ckχFk

is the desired canonical form of φ.
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Lebesgue Integral: If φ is a simple function with canonical form φ(x) =
∑M

k=1 ckχFk
(x),

then we define the Lebesgue Integral of φ by∫
Rd

φ(x)dx =
M∑
k=1

ckm(Fk)

If E is a measurable subset of Rd with finite measure, then φ(x)χE(x) is also a simple
function and we define ∫

E

φ(x)dx =

∫
Rd

φ(x)χE(x)dx

We sometimes represent the Lebesgue integral by:∫
Rd

φ(x)dm(x) =

∫
φ(x) =

∫
φ

Support: The support of a measurable function f is defined to be the set of all points
where f does not vanish.

supp(f) = {x | f(x) 6= 0}

We shall also say that f is supported on a set E, if f(x) = 0, whenever x 6∈ E.

Lebesgue Integral of a bounded function with m(supp(f)) < ∞: Suppose f is
bounded function that is supperted on a set of finite measure. We define its Lebesgue
Integral by ∫

f = lim
n→∞

∫
φn

where {φn}∞n=1 is any sequence of simple functions satisfying: |φn| < M , each φn is supported
on the support of f , and φn(x)→ f(x) for a.e. x as n tends to infinity.
If E is a subset of Rd with finite measure, and f is bounded with m(supp(f)) <∞, then it
is natural to define: ∫

E

f(x)dx =

∫
Rd

f(x)χE(x)dx
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Lebesgue Integral of Non-Negative functions: Let f be a non-negative measurable
function which is not necessarily bounded. f is allowed to be extended valued. We define
its Lebesgue integral by ∫

f(x)dx := sup
g

∫
g(x)dx

where the supremum is taken over all measurable functions g such that 0 ≤ g ≤ f , and
where g is supported and bounded on a set of finite measure. With the above definition,
there are two possible cases; the supremum is either finite, or infinite. In the first case, when∫
f(x)dx <∞, we shall say that f is Lebesgue integrable of simple integrable.

If E is any measurable subset of Rd, and f ≥ 0, then fχE is also positive, and we define:∫
E

f(x)dx =

∫
f(x)χE(x)dx

Definition: We write

fn ↗ f

whenever {fn}∞n=1 is a sequence of measurable functions that satisfies

fn(x) ≤ fn+1(x) a.e. x, all n ≥ 1 and lim
n→∞

fn(x) = f(x) a.e. x

and write

fn ↘ f

whenever {fn}∞n=1 is a sequence of measurable functions that satisfies

fn(x) ≥ fn+1(x) a.e. x, all n ≥ 1 and lim
n→∞

fn(x) = f(x) a.e. x

Lebesgue Integral of general functions: If f is any real-valued measurable function
on Rd, we say that f is Lebesgue Integrable if the non-negative measurable function |f |
is integrable in the sense of Lebesgue integrability of non-negative functions. We define the
Lebesgue integral of f by ∫

f =

∫
f+ −

∫
f−

where

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)

It can be shown that the integral of f is independent of the decomposition f = f1 − f2.
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The space L1 of integrable functions: For any integrable function f on Rd, we define
the norm of f ,

‖f‖ = ‖f‖L1 = ‖f‖L1(Rd) =

∫
Rd

|f(x)|dx

We define L1(Rd) to be the space of all equivalence classes of integrable functions, where
we define two functions to be equivalent if they agree almost everywhere.
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2 Theorems, Lemmas, Propositions

Proposition: If d(x, y) = ‖x− y‖ then d(., .) is a distance.

Proposition (Vector p-norm): Let x = (x1, ..., xn) ∈ Rn and 1 ≤ p ≤ ∞, then

(a) ‖x‖p = (
∑n

i=1 |xi|p)
1
p is a norm.

(b) ‖x‖∞ = maxni=1 |xi| is also a norm.

Proposition (Function p-norm): Let f be a continuous function on [a, b]. Then

‖f‖ p := (
∫ b
a
|f(x)|pdx)

1
p is a norm.

Holder and Minkowsky Inequalities

Lemma: If a, b ≥ 0 and p, q are conjugate exponents, i.e. 1
p

+ 1
q

= 1, then

ab ≤ ap

p
+
bq

q

Holder Inequality: Let x, y ∈ Rn and p, q ≥ 1. Then

n∑
k=1

|xk|.|yk| ≤ (
n∑
k=1

|xk|p)
1
p .(

n∑
k=1

|yk|q)
1
q

= ‖x‖p . ‖y‖q
Note: When p = q = 2, then Holder inequality ⇐⇒ Cauchy-Schwartz Inequality

Minkowsky Inequality: Let x, y ∈ Rn and p ≥ 1. Then

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

Proposition: Holder and Minkowsky inequalities continue to hold for infinite sequences.
In other words, let x = (x1, ..., xn, . . . ), y = (y1, . . . , yn, . . . ) and 1 < p, q < ∞ such that
1
p

+ 1
q

= 1, then

∞∑
k=1

|xk|.|yk| ≤ (
∞∑
k=1

|xk|p)
1
p .(

∞∑
k=1

|yk|q)
1
q

= ‖x‖p . ‖y‖q
and

‖x+ y‖p ≤ ‖x‖p + ‖y‖p
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Proposition: Let f, g be continuous functions on [a, b], then

• Holder inequality:∫ b

a

|f(x).g(x)|dx ≤
(∫ b

a

|f(x)|pdx
) 1

p
(∫ b

a

|g(x)|qdx
) 1

q

• Minkowsky Inequality:

‖f + g‖p =
(∫ b

a

|f(x) + g(x)|pdx
) 1

p ≤
(∫ b

a

|f(x)|pdx
) 1

p
+
(∫ b

a

|g(x)|pdx
) 1

p

= ‖f‖p + ‖g‖p

* * * * *

Proposition: Let x ∈ Rn and p ≥ 1. Consider the function f : p→ ‖x‖p, i.e.

f(p) = (
∑n

k=1 |xk|p)
1
p . Then f is a monotone decreasing function. Moreover, limp→∞ ‖x‖p =

‖x‖∞ = maxnk=1 |xk|.

* * * * *

Proposition: Let X be a topological space and A a subset of X. Then

(a) A◦ is open.

(b) Ā is closed.

(c) A open ⇐⇒ A = A◦

(d) B closed ⇐⇒ B = B̄

Proposition: B is a basis for a topology on X ⇐⇒ the following two properties hold:

1. Every x ∈ X lies in some B ∈ B.

2. ∀B1, B2 ∈ B such that B1 ∩ B2 6= ∅ and each point x ∈ B1 ∩ B2 there exists a set
B3 ∈ B with x ∈ B3 ⊂ B1 ∩B2.
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Lemma: For a subspace A ⊂ X which is open in X , a subset B ⊂ A is open in A if and
only if B is open in X . This is also true when ’open’ is replaced by closed throughout the
statement.

Proposition: Let f : X → Y where X, Y are topological spaces. Then f is continuous iff
∀ closed sets V in Y , f−1(V ) = {x ∈ X | f(x) ∈ U} is closed in X.

Proposition: If fn(x) is continuous and fn → g uniformly, then g is also continuous.

Proposition The metric space of continuous functions with respect to `p distance where
p <∞ is not complete.

Theorem: If a metric space (X, d) is not complete, then ∃ a metric space Y - completion
of X - and an isometry φ : X → Y ( i.e. dY (φ(x1), φ(x2)) = dX(x1, x2) where φ is a
bijection) such that

1. (Y, dY ) is complete

2. φ(X) is dense in Y .

Proposition: `p is complete, p ≥ 1.

Proposition: C([a, b], d∞) is complete.

Completeness Criterion: The metric space X is complete ⇐⇒ for every sequence of
nested closed balls

B(x1, r1) ⊃ B(x2, r2) ⊃ · · · ⊃ B(x,rn) ⊃ . . .

with rn → 0, then
⋂∞
i=1B(xi, ri) 6= ∅

Contraction Mapping Principle: Let X be a complete metric space, and let A be a
contraction map. Then ∃ a unique x0 ∈ X such that A(x0) = x0. Moreover, ∀x ∈ X, the
sequence An(x)→ x0 as n→∞.

* * * * *

Proposition: A closed subset of a compact space is compact in the subspace topology.
That is, in a compact space X, a closed subset K ⊂ X is compact.

Proposition: Suppose that X is compact space and f : X → Y is a continuous and onto
function. Then Y = f(X) is also compact.
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Proposition: IfX and Y are compact, the so is their productX×Y with product topology.
By induction, this extends to any finite number of compact sets.( For a subset X ⊂ Rn to
be bounded means that it lies inside some ball of finite radius centred at the origin).

Proposition: Every compact metric space is separable.

Proposition: Metric spaces are Hausdorff.

Propodition: If a topological space is Hausdorff, then:

1. Points are closed subsets of X.

2. A subspace of a Hausdorff space id also Hausdorff.

3. X1, X2 Hausdorff, then X1 ×X2 is also Hausdorff.

Heine-Borel Theorem: If X ⊂ Rn, then X is compact iff X is closed and bounded.

Azella-Ascolli: Let F be a family of functions in C[a, b]. Then F is sequentially compact
iff

(1) F is uniformly bounded.

(2) F is equicontinuous.

Proposition: Let an be a sequence of nonnegative real numbers and let
X = {x ∈ `∞ | |xn| ≤ an,∀n}. Then the following statements are equivalent:

(a) X is a compact subset of `∞.

(b) limn→∞ an = 0.

Proposition: Let X ⊂ `p where 1 ≤ p < ∞. Then X is compact iff the following two
conditions hold:

(a) X is a closed and bounded subset of `p.

(b) For all ε > 0, ∃N ∈ N such that ∀x ∈ X we have
∑

n>N |xdn|p < ε.

Theorem(Another characterization of compactness): Let X be a complete metric
space and A ⊂ X. Then A is sequentially compact iff A is totally bounded.

* * * * *
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Proposition (A property of connected sets): If X is a connected topological space,
the only subsets of X that are both open and closed are ∅ and X.

Theorem: [a, b] ⊂ R is connected.

Theorem: Let X be a connected topological space and f : X → Y a continuous function.
Then f(X) is connected.

Theorem: Suppose f : X → Y is onto and f is continuous. Then

(a) X is connected =⇒ Y is also connected.

(b) X is path connected =⇒ Y is also path connected.

Theorem: X is path connected =⇒ X is connected.

Claim: If P (x1) ∩ P (x2) 6= ∅ then P (x1) = P (x2).

Lemma: Suppose that A ⊂ X is connected. Then Ā is also connected.

Lemma: A ⊂ X is open and closed. Then any connected subset C ⊂ X such that
C ∩ A 6= ∅, must satisfy C ⊂ A.

Intermediate Value Theorem: Suppose X is connected, f : X → R is continuous and
a < b. If ∃x1, x2 ∈ X such that f(x1) = a, f(x2) = b, then ∀c ∈ (a, b), ∃y ∈ X such that
f(y) = c.

* * * * *

Lemma: If a rectangle is the almost disjoint union of finitely may other rectangles, say
R =

⋃N
k=1Rk, then

|R| =
N∑
k=1

Rk

Lemma: If R1, R2, . . . , RN are rectangles, and R ⊂
⋃N
k=1Rk, then

|R| ≤
N∑
k=1

|Rk|
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Theorem: Every open set O ⊂ R can be written uniquely as a countable union of disjoint
open intervals.

Theorem: Every open subset O ⊂ Rd d ≥ 1, can be written as a countable union of almost
disjoint closed cubes.

Examples of Exterior measure:

Example (1) : The exterior measure of a point is 0.

Example (2) : The exterior measure of a closed cube is equal to its volume.

Example (3) : If Q is an open cube, m∗(Q) = |Q|

Example (4) : The exterior measure of a rectangle is equal to its volume.

Example (5) : The exterior measure of Rd is infinite.

Example (6) : The Cantor set has exterior measure 0.

Lemma: For every ε > 0, there exists a covering E ⊂
⋃∞
j=1Qj with

∞∑
j=1

m∗(Qj) ≤ m∗(E) + ε

Properties of Exterior Measure:

Observation (1) : (Monotonicity) If E1 ⊂ E2, then m∗(E1) ≤ m∗(E2).

Observation (2) : (Countable Sub-additivity) If E =
⋃∞
j=1Ej, then

m∗(E) ≤
∞∑
j=1

m∗(Ej)

or in other words,

m∗(
∞⋃
j=1

Ej) ≤
∞∑
j=1

m∗(Ej)

Observation (3) : If E ⊂ Rd, then m∗(E) = inf m∗(O), where the infimum is taken over all
open sets O ⊃ E.
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Observation (4) : If E = E1 ∪ E2, and d(E1, E2) > 0, then

m∗(E) = m∗(E1) +m∗(E2)

Observation (5) : If a set E is the countable union of almost disjoint cubes, E =
⋃∞
j=1Qj,

then

m∗(E) =
∞∑
j=1

|Qj|

Properties of Measurable Sets:

Property (1) : Every open set in Rd is measurable.

Property (2) : If m∗(E) = 0, then E is measurable. In particular, if F is a subset of a set of
exterior measure 0, then F is measurable.

Property (3) : A countable union of measurable sets is measurable.

Property (4) : Closed sets are measurable. (Suffices to show that compact sets are measur-
able)

Property (5) : The complement of a measurable set is measurable.

Property (6) : A countable intersection of measurable sets is measurable

Lemma: If F is closed, K is compact and F ∩K = ∅, then d(F,K) > 0.

Theorem: If E1, E2, . . . are disjoint measurable sets, and E =
⋃∞
j=1Ej, then

m(E) =
∞∑
j=1

m(Ej)

Corollary: Suppose E1, E2, . . . are measurable subsets of Rd.

(i) If Ek ↗ E, then

m(E) = lim
N→∞

m(EN)

(ii) If Ek ↘ E and m(Ek) <∞ for some k, then

m(E) = lim
N→∞

m(EN)
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Theorem: Suppose E is a measurable subset of Rd. Then, for every ε > 0:

(i) There exists an open set O with E ⊂ O and m(O − E) ≤ ε.

(ii) There exists a closed set F with F ⊂ E and m(E − F ) ≤ ε.

(iii) If m(E) is finite, there exists a compact set K with K ⊂ E and m(E −K) ≤ ε.

(iv) If m(E) is finite, there exists a finite union F =
⋃N
j=1Qj of closed cubes such that

m(E4F ) ≤ ε

Translation Invariance Lebesgue Measure: If E is a measurable set in Rd and h ∈ Rd,
then the set Eh = E + h = {x+ h | x ∈ E} is also measurable and m(E + h) = m(E).

Dilation Invariance Lebesgue Measure: Suppose δ > 0 and denote by
δE := {δx | x ∈ E}. If E is measurable, so is δE and m(δE) = δdm(E)

Reflexion Invariance of Lebesgue Measure: Whenever E is measurable, so is −E :=
{−x | x ∈ E} and m(−E) = m(E).

Theorem: A subset E of Rd is measurable

(i) if and only if it differs form a Gδ by a set of measure 0.

(ii) if and only if it differs form an Fδ by a set of measure 0.

* * * * *

Lemma: f is measurable if and only if {x ∈ E | f(x) ≤ a} = {f ≤ a} is measurable for
every a. Similarly, f is measurable if and only if {f ≥ a} (or {f > a}) is measurable for
every a. We can have any combination of strict or weak inequalities we choose.

Properties of Measurable Functions:

Property (1) : The finite-valued function f is measurable if and only if f−1(O) is measur-
able for every open set O, and if and only if f−1(F ) is measurable for every
closed set F .

Property (2) : If f is continuous on Rd, then f is measurable. If f is measurable and
finite-valued, and Φ is continuous, then Φ ◦ f is measurable.
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Property (3) : Suppose that {fn}∞n=1 is a sequence if measurable functions. Then

sup
n
fn(x) inf

n
fn(x) lim

n→∞
sup fn(x) lim

n→∞
inf fn(x)

are measurable.

Property (4) : If {fn}∞n=1 is a collection of measurable functions, and

lim
n→∞

fn(x) = f(x)

exists, then f is measurable.

Property (5) : If f and g are measurable, then

(i) The integer powers fk, k ≥ 1 are measurable.

(ii) f + g and fg are measurable if both f and g are finite valued.

Property (6) : Suppose f is measureble, and f(x) = g(x) for a.e. x. Then g is measurable.

Theorem: Suppose that f is a non-negative measurable function on Rd. Then there exists
an increasing sequence of non-negative simple functions {φk}∞k=1 that converges pointwise to
f , namely:

φk(x) ≤ φk+1(x),∀x and lim
k→∞

φk(x) = f(x),∀x

Theorem: Suppose that f is a measurable function on Rd. Then there exists a sequence
of simple functions {φk}∞k=1 that satisfy:

|φk(x)| ≤ |φk+1(x)|,∀x and lim
k→∞

φk(x) = f(x),∀x

In particular, we have |φk(x)| ≤ |f(x)| for all x and k.

Theorem: Suppose that f is measurable on Rd. Then there exists a seaquence of step
functions {ψk}∞k=1 that converges point-wise to f(x) for almost every x.

Egorov: Suppose that {fk}∞k=1 is a sequence of measurable functions defined on a measur-
able set E with m(E) < ∞, and assume that fk → f (pointwise) a.e. on E. Given ε > 0,
we can find a closed set Aε ⊂ E such that m(E − Aε) ≤ ε and fk → f uniformly on Aε.
(Every convergent sequence is nearly uniformly continuous.)
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Lusin: Suppose f is measurable and finite valued on E with E of finite measure. Then for
every ε > 0 there exists a closed set Fε, with

Fε ⊂ E, and m(E − Fε) ≤ ε

and such that f |Fε is continuous. ( Every function is nearly continuous.)

* * * * *

Proposition: The integral of simple functions satisfies the following properties:

(i) Independence of the representation: If φ =
∑M

k=1 akχEk
is any representation of φ, then∫

φ =
M∑
k=1

akm(Ek)

Notice that
∫
φ is defined in terms of the canonical representation of φ.

(ii) Linearity: If φ and ψ are simple, and a, b ∈ R, then∫
aφ+ bψ = a

∫
φ+ b

∫
ψ

(iii) Additivity: If E and F are disjoint subsets of Rd with finite measure, then∫
E∪F

φ =

∫
E

φ+

∫
F

φ

(iv) Monotonicity: If φ ≤ ψ are simple, then∫
φ ≤

∫
ψ

(v) Triangle Inequality: If φ is a simple function, then so is |φ|, and∣∣∣ ∫ φ
∣∣∣ ≤ ∫ |φ|

Lemma: Let f be a function bounded by M on a set E of finite measure. If {φn}∞n=1 is
any sequence of simple functions bounded by M , supported on E, and with φn(x) → f(x)
for a.e. x, then

(i) The limn→∞
∫
φn exists.

(ii) If f = 0 a.e., then limn→∞
∫
φn = 0
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Proposition: Suppose f and g are bounded functions supported on sets of finite measure.
Then the following properties hold.

(i) If a, b ∈ R, then ∫
(af + bg) = a

∫
f + b

∫
g

(ii) Additivity: If E and F are disjoint subsets of Rd with finite measure, then∫
E∪F

f =

∫
E

f +

∫
F

f

(iii) Monotonicity: If f ≤ g, then ∫
f ≤

∫
g

(iv) Triangle Inequality: |f | is also bounded, supported on a set of finite measure, and∣∣∣ ∫ f
∣∣∣ ≤ ∫ |f |

Bounded Convergence Theorem: Suppose that {fn}∞n=1 is a sequence of measurable
functions that are all bounded by M , are supported on a set E of finite measure, and
fn(x)→ f(x) a.e. x as n→∞. Then f is measurable, bounded, supported on E for a.e. x
and ∫

|fn − f | → 0 as n→∞

Consequently ∫
fn →

∫
f as n→∞

In other words,

lim
n→∞

∫
fn =

∫
lim
n→∞

fn

Observation: If f ≥ 0 is bounded and supported on a set E of finite measure and f = 0,
then f = 0 almost everywhere.
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Theorem: Suppose f is Riemann integrable on the closed interval [a, b]. Then f is mea-
surable, and ∫ R

[a,b]

f(x)dx =

∫ L
[a,b]

f(x)dx

Proposition: The Integral of non-negative measurable functions enjoys the following prop-
erties:

(i) If f, g ≥ 0 and a, b ∈ R, then∫
(af + bg) = a

∫
f + b

∫
g

(ii) Additivity: If E and F are disjoint subsets of Rd and f ≥ 0, then∫
E∪F

f =

∫
E

f +

∫
F

f

(iii) Monotonicity: If 0 ≤ f ≤ g, then ∫
f ≤

∫
g

(iv) Triangle Inequality: |f | is also bounded, supported on a set of finite measure, and∣∣∣ ∫ f
∣∣∣ ≤ ∫ |f |

(v) If g is integrable and 0 ≤ f ≤ g, then f is integrable.

(vi) If f is integrable, then f(x) <∞ for almost every x.

(vii) If f = 0, then f(x) = 0 for almost every x.

Fatou’s Lemma: Suppose {fn}∞n=1 is a sequence of measurable functions with fn ≥ 0. If
limn→∞ fn(x) = f(x) for a.e. x, then∫

f ≤ lim inf
n→∞

∫
fn

or in other words, ∫
lim
n→∞

fn ≤ lim inf
n→∞

∫
fn
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Monotone Convergence Theorem: Suppose {fn}∞n=1 is a sequence of non-negative mea-
surable functions with fn ↗ f . Then

lim
n→∞

∫
fn =

∫
f

(
=

∫
lim
n→∞

fn

)

Corollary to MCT: Consider a series
∑∞

k=1 ak(x), where ak(x) ≥ 0 is measurable for
every k ≥ 1. Then ∫ ∞∑

k=1

ak(x)dx =
∞∑
k=1

∫
ak(x)dx

If
∑∞

k=1

∫
ak(x)dx is finite, then the series

∑∞
k=1 ak(x)dx converges for a.e. x.

Proposition: The integral of Lebesgue integrable functions is linear, additivem monotonic
and satisfies the triangle inequality.

Proposition: Suppose f is integrable on Rd. Then for every ε > 0:

(i) There exists a set of finite measure B (a ball, for example) such that∫
Bc

|f | < ε

(ii) There is a δ > 0 such that∫
E

|f | < ε whenever m(E) < δ

Dominated Convergence Theorem: Suppose {fn}∞n=1 is a sequence of measurable func-
tions such that fn(x) → f(x) a.e. x, as n → ∞. If |fn(x)| ≤ g(x), where g is integrable,
then ∫

|fn − f | → 0 as n→∞

and consequently ∫
fn →

∫
f as n→∞
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Proposition: Suppose f and g are two functions in L1(Rd). Then

(i) ‖af‖L1 = |a| ‖f‖L1 for all a ∈ C.

(ii) ‖f + g‖L1 ≤ ‖f‖L1 + ‖g‖L1

(iii) ‖f‖L1 = 0 if and only if f = 0 a.e.

(iv) d(f, g) = ‖f − g‖L1 defines a metric on L1(Rd).

Theorem (Riesz-Fischer): The vector space L1 is complete in its metric.

Proposition (Invariance Properties of the Lebesgue Integral:): Suppose that f is
an integrable function.Then:

(i)
∫
Rd f(x− h) =

∫
Rd f

(ii) δd
∫
Rd f(δx)dx =

∫
Rd f(x)dx

(iii)
∫
Rd f(−x)dx =

∫
Rd f(x)dx

* * * * *

Fubini: We may write

Rd = Rd1 × Rd2 where d1 + d2 = d and d1, d2 ≥ 1

A point in Rd then takes the form (x, y), where x ∈ Rd1 and y ∈ Rd2 . If f is a function in
Rd1 × Rd2 , the slice of f corresponding to y ∈ Rd2 is the function f y of x ∈ Rd1 given by

f y(x) := f(x, y)

Similarly, the slice of f for a fixed x ∈ Rd1 is

fx(y) := f(x, y)

Fubini’s Theorem: Suppose f(x, y) is integrable on Rd1 × Rd2 . Then for almost every
y ∈ Rd2 :

(i) The slice f y is integrable on Rd1

(ii) The function F (y) =
∫
Rd1

f y(x)dx is integrable on Rd2
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(iii) Moreover, ∫
Rd2

(∫
Rd1

f(x, y)dx
)
dy =

∫
Rd

f

Clearly, the theorem is symmetric in x and y so we we conclude∫
Rd1

(∫
Rd2

f(x, y)dy
)
dx =

∫
Rd

f

In conclusion ∫
Rd2

(∫
Rd1

f(x, y)dx
)
dy =

∫
Rd1

(∫
Rd2

f(x, y)dy
)
dx =

∫
Rd

f
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