McGill University

Math 564, Fall 2011 Assignment 5, Part 2 D. Jakobson due date to be announced

Problem 1. Let $X = C^m[0, 1]$ denote the space of *m* times continuously differentiable functions on [0, 1]. Define the norm on X by

$$||f|| = \sum_{k=0}^{m} \max_{x \in [0,1]} |f^{(k)}(x)|.$$

Prove that $(X, || \cdot ||)$ is a complete metric space. Is it separable? **Problem 2.** Let $C^{\infty}[a, b]$ denote the space of infinitely differentiable functions on [a, b] (all the derivatives exist and are continuous). Let

$$d(f,g) = \sum_{k=1}^{\infty} \frac{\max_{x \in [a,b]} |f^{(k)}(x) - g^{(k)}(x)|}{2^k (1 + \max_{x \in [a,b]} |f^{(k)}(x) - g^{(k)}(x)|)}$$

Prove that d defines the distance on $C^{\infty}[a, b]$, and that the resulting metric space is complete. **Problem 3.** Let $f_n : [0, 1] \to \mathbf{R}$ be a sequence of continuously differentiable functions satisfying

$$|f_n(x)| \le M, |f'_n(x)| \le M, \quad \forall x \in [0,1], \forall n \in \mathbf{N}.$$

Prove that $\{f_n\}$ has a uniformly convergent subsequence. **Problem 4 (extra credit).**

- a) Let X be a metric space with the distance d_1 . Prove that $d_2(x, y) = d_1(x, y)/(1 + d_1(x, y))$ also defines the distance on X. Prove that open sets and Cauchy sequences for d_1 and d_2 coincide.
- b) Prove the same results for $d_3(x, y) = \min\{d_1(x, y), 1\}$.
- c) Define the distance on the set X of all sequences $x = (x_1, x_2, ...)$ of real numbers by the formula

$$d(x,y) = \sum_{k=1}^{\infty} \frac{|x_k - y_k|}{2^k (1 + |x_k - y_k|)}$$

Prove that d defines a distance on X, and that X is complete with respect to d. Is X separable?

Problem 5 (extra credit). Let $X = \prod_i X_i$ be a product of metric spaces, with the distance d_i . Consider the product topology on X (a basis of open sets is given by $\prod_i U_i$, where $U_i = X_i$ except for finitely many *i*-s). Let $\rho_i = d_i/(1 + d_i)$; it preserves the topology of X_i by Problem 1a. Prove that

$$\rho(x,y) = \sum_{j=1}^{\infty} \frac{\rho_j(x_j, y_j)}{2^j}$$

defines a distance on X, and that the topology given by ρ coincides with the product topology. Hint: Let U be an open set in the basis for the product topology, and let $x \in U$. Prove that there exists r > 0 s.t. $B_{\rho}(x,r) \subset U$. Conversely, let $y \in B_{\rho}(x,r)$. Prove that there exists a basis set U for the product topology s.t. $y \in U \subset B_{\rho}(x,r)$.

Problem 6 (extra credit). Determine whether the following sets of functions are sequentially compact in C[0, 1]:

- a) $\{(ax)^n\}, n \in \mathbf{N}, a > 0.$
- b) $\{\sin(x+n)\}, n \in \mathbf{N}.$
- c) $\{e^{x-a}\}, a > 0.$
- d) $\{f \in C^2[0,1] : |f(x)| < B_0, |f'(x)| < B_1, |f''(x)| < B_2\}.$
- e) $\{f \in C^2[0,1] : |f(x)| < B_0, |f''(x)| < B_2\}.$
- f) $\{f \in C^2[0,1] : |f'(x)| < B_1, |f''(x)| < B_2\}.$