McGill University
Math 354: Honors Analysis 3 Fall 2012
Assignment 4 due Friday, October 19

Problem 1 (extra credit). Let X = C'[0,1] denote the space of continuously differentiable
functions on [0, 1].

a) Prove that the expression

1/1lz = max |f(z)] + max [f'(x)]

€[0,1] z€[0,1]
defines a norm on X

b) Prove that (X, || - ||2) is a complete metric space. Is it separable (does it contain a countable
dense set)?

c) Prove that [[f||2 does not define the same topology on X as the do, norm max,eo 1y |f(2)|.

Solution:

a) Clearly || - ||2 satisfies ||f|l2 > 0 and [|Af]|2 = [A|||f]l2- If f =0 then f" =0 and || f|]2 = 0. Now,
if ||fll2 = 0, both max,e(o,1) | f(#)] = 0 and max,e(o,q) |f'(z)| = 0. This implies f =0, f' =0so f is
the zero function. The triangle inequality holds since

1f +9ll2 = max |f +9(x)] + Jmax (f +9) ()] Smrél[gf(lf(w)H\g(xﬂ + m[af](lf( )| +1g'(2)])

< + + = + .
;g[gf]lf( )| + m[af]lg( )| Jél[%fi]lf( )| e lg" (@) = | fll2 + llgll2

b)Let (f,) be a Cauchy sequence in || - ||2. Let € > 0. There exists n € N such that for all
n,m>N

(@) = (@) + |f7 (@) = frn ()| <€

for all z € [0,1]. In particular, ds(f},, f1,) < €, so (f},) is Cauchy in d, and therefore there
exists a uniform limit, say g (continuous). Let

We have that, for n > N’ > N and for all z € [0,1],

5 < folz) —g(x) <

Integrating over [0, 1] we get —§ < fn(z) — f(z) < § and thus

1fn = fllz <€



By Stone-Weierstrass theorem we know that polynomials with rational coefficients form a count-
able dense subset of C([0,1]). Let f € C1([0,1]) and € > 0. We have that f' € C([0,1]) so there
exists a polynomial with rational coefficients, ¢(x), such that

doo(f/aQ) < 5

Then, for all € [0,1], —=§ < f'(x) — q(x) < § and therefore —§ < f(z) — Q(z) < §, where Q(z) is
a polynomial with rational coefficients such that Q'(z) = ¢(z). Then, ||f — Q|2 < €.

¢)We will show that any ball about f = 0 in d., contains functions with arbitrarily big derivative
and, therefore, such ball cannot be contained in any ball about 0 in || - ||2.
Let € > 0 and consider B (0, ¢) the ball about f =0 in d,. Let

1
fn(z) = = sin(n’z),
n
z € [0,1]. Let N € N such that - < e. Then for all n > N, || fn|loc <€, 50 f, € B(0,€). However,

fi(x)=n cos(n’z),

50 || fullz =n+1.

Problem 2. Let f, : [0,1] — R be a sequence of continuously differentiable functions satisfying
[fu(@)] < M, |fy(x) <M, Vze[0,1], VneN.

Prove that {f,} has a uniformly convergent subsequence.

Solution. By Arzela-Ascoli theorem, it suffices to show that {f,} is uniformly bounded (true by
assumption), and (uniformly) equicontinuous. Accordingly, given € > 0, let 6 = ¢/M. Then for any
n, and for any x < y € [0, 1] such that |y — 2| < §, we have by the intermediate value theorem

Fa®) = Ful@)| <6 sup |F() < M- 17 =,

z€[z,y]

proving uniform equicontinuity. QED
Problem 3. Determine whether the following sets of functions are sequentially compact in C0, 1]:

a) {(ax)"},n € N,a > 0.
b) {sin(z+n)},n € N.

d) {f€C?0,1]: |f(z)] < Bo, |f' (@) < B, |f"(z)| < Bz}
e) (extra credit) {f € C?[0,1] : | f(z)| < Bo, |f"(x)| < Ba}.
f) {f € C?[0,1] : |f'(x)| < By, |f"(x)] < Ba}.

Solution:

)

c) {e*7%},a > 0.
)
)

a) {(ax)"},n € N,a > 0. Clearly, for a > 1, the sequence f,(1) = a" is not bounded, so
the answer is NO. Also, for a < 1, f,(2) — 0 uniformly on [0, 1], so the answer is YES. If
a =1, then f,(x) = 2™ was considered in class. The answer is NO, since the limit function is
discontinuous at x = 1.



b) {sin(z + n)},n € N. The sequence of functions is uniformly bounded, and has uniformly
bounded derivatives f/ (x) = cos(z + n). The answer is YES by Problem 2.

c) {e*"*},a > 0. The sequence of functions is uniformly bounded, and has uniformly bounded
derivatives f/(x) = e*~% The answer is YES by Problem 2.

d) {f € C?[0,1] : |f(z)| < Bo,|f'(z)| < B1,|f"(z)| < B2}. YES by Problem 2.

e) (extra credit) {f € C?[0,1] : |f(z)] < Bo,|f"(z)] < Bz2}. The answer is YES. The two
conditions imply a uniform bound on the first derivative, then we can use Problem d). The
proof will be provided separately.

f) {f € C?[0,1] : |f'(z)| < B1,|f"(z)| < B2}. NO, since the sequence is not necessarily uniformly
bounded (e.g. arbitrary constant satisfies both conditions, and f,(z) = n has no convergent
subsequence).

Problem 4. Let a,, be a sequence of nonnegative real numbers and let X = {z € l : |2,] < ap, Vn}.
Prove that the following statements are equivalent:

a) X is a compact subset of [,
b) lim,, s a, = 0.

Solution. Suppose that lim,, o |a,| # 0 or does not exist. Then there exists ¢ > 0 such that,
for all N € N, there exists n > N such that |a,| > e. Then we can enumerate the a,, such that

|an, | > €. For each ny, define an element (z; (n ’“))jeN €™ by

(1) € J=ng
z; M = ‘
0, J 7é Nk
Then the sequence z(™*) has no convergent subsequence, and each z("*) has |a:§”’”)| <|a;| for every

4, so each (™) € X. Then X is not compact. The contrapositive of what we have just proven
implies that if X is compact, then lim, . |a,| = 0.

Now suppose that lim,,_,~ a, = 0. Let ) be a sequence in X. Consider (2, )nen as an element
of the product space [[,,cn[—lan|, [an]]. Since [~|a,|, |a,|] is compact, the product [], cn[—|anl, |an]]

is compact in the product metric, so that z(*) has a subsequence z(¥9) converging to y. This
is equivalent to component-wise convergence, so that for each n,lim, s ng) = y,. Since each

|x \ < an, |yn| < ay, as Well and since this is true for every n, y € X and thus in {*°. It remains
to show that lim;_,, |z(7) — y||c = 0. Given € > 0, choose N € N such that sup,,> n |an| < €/3.

(k)

Since N is finite, there exists J such that, for all j > J, maxi<p<n—1|Zn’’ — yn| < €/3, because

(k5)

each z;”?’ converges to y, pointwise. By the triangle inequality,

£ — gl = sup < mane [ — |+ sup |25 —

< = +Sup|x(k)—y|< —|—sup|x |+sup|yn|
3 >N 3 >N

e+2 | |<€+2€
— sup |a, — =
3 n>]1:\)f 3



Then z(¥3) converges to y with respect to || - ||so. Then z(*) has a convergent subsequence, and X is
compact.

Problem 5. Let X C [, where 1 < p < co. Prove that X is compact if and only if the following
two conditions hold:

a) X is a closed and bounded subset of {,.
b) For all € > 0, there exists n € N such that Vo € X we have > _ v |z,|P <e.

Solution.
Suppose that X is compact. As a general property of compact spaces, X is closed and bounded.
Given € > 0, choose (M), ... (™ gsuch that X C Uzole(:v(k),e/2). For each k, choose N such

I~ 1/p

that (Z |x£1k)|p> < €¢/2, and let N = max{Ny,...,N,}. Given some arbitrary z € X,
n:Nk

x € D(z®), ¢/2) for some k. Minkowski’s Inequality then implies that

o 1/p o 1/p o 1/p o 1/p
P < _ p®&)p (k) |p _ k)P €
<anl> _<Z|xn xn|> +<Z|xn| < X fwa—aPr )+
n=N n=N n=N n=N
o 1/p
€ € € €

Now, suppose that X satisfies properties (a) and (b). Let (z*))en be a sequence of points of X.
Let M > 0 such that, for all z € X, ||z||, < M. Since || - ||, is a decreasing function of p, || - |0 < M

for every z € X as well. Consider each (x%k))neN as an element of the product space [, .y[—M, M].
Since [~M, M] is compact, and the countable product of compact spaces is compact, [ [, .n[—M, M]
is also compact. Then (x(k)) has a convergent subsequence (x(kj)) converging to y in the product

metric on [], cy[—M, M]. This is equivalent to component-wise convergence, so that for each n € N,
: k;
lim; o0 xgl - Yn -

. 1/p
We want to show that y € [P. For finite N, (ZnN:1 \:vslk”)|p) < M. Since the sum is finite,

1/p
we can take the limit as j — oo, so that (25:1 |yn\p) < M. Then ZnN:1 |yn|P is an increasing

sequence in N and bounded above by MP, so the limit as N — oo exists and

N 1/p
i (k3)|p — <
Jim <Zl el ) lyll, < M < oo,

Last, we need to show that lim;_, [|z(k3) —y||, = 0. Since X is closed, this implies that y € X, so
X is then compact. Let e > 0. First, choose Ny € N such that (3277 v, [yn|?) Yr €/3. Now choose

N, € N such that, for all z € X, (Y52 |ea[?)""” < ¢/3, and take N = max{N;, N;}. Finally,

N—-1
n=1

v 1/p
choose J € N such that, for all j > J, (Z |x£lkj) — yn|p) < €/3. Such a J exists because the

sum is finite and each x%kj) converges to y,. Then for 7 > J, using Minkowski’s inequality,



00 1/p N-1 1/p 50 1/p
= (S <) (et ) (X
n=1 n=1 n=N
N—1 1/p o0 1/p IS 1/p
< (St onr) e (Sarr) (3w
n=1 n=N n=N
< € + € + €
4 S4 - —¢
3 3 3

So, z(¥3) converges to y in the p-norm, so #(¥) has a convergent subsequence.



