
McGill University
Math 354: Honors Analysis 3 Fall 2012
Assignment 4 due Friday, October 19

Problem 1 (extra credit). Let X = C1[0, 1] denote the space of continuously differentiable
functions on [0, 1].

a) Prove that the expression

||f ||2 = max
x∈[0,1]

|f(x)|+ max
x∈[0,1]

|f ′(x)|.

defines a norm on X

b) Prove that (X, || · ||2) is a complete metric space. Is it separable (does it contain a countable
dense set)?

c) Prove that ||f ||2 does not define the same topology on X as the d∞ norm maxx∈[0,1] |f(x)|.

Solution:
a) Clearly ‖ · ‖2 satisfies ‖f‖2 ≥ 0 and ‖λf‖2 = |λ|‖f‖2. If f ≡ 0 then f ′ ≡ 0 and ‖f‖2 = 0. Now,
if ‖f‖2 = 0, both maxx∈[0,1] |f(x)| = 0 and maxx∈[0,1] |f ′(x)| = 0. This implies f ≡ 0, f ′ ≡ 0 so f is
the zero function. The triangle inequality holds since

‖f + g‖2 = max
x∈[0,1]

|f + g(x)|+ max
x∈[0,1]

|(f + g)′(x)| ≤ max
x∈[0,1]

(|f(x)|+ |g(x)|) + max
x∈[0,1]

(|f ′(x)|+ |g′(x)|)

≤ max
x∈[0,1]

|f(x)|+ max
x∈[0,1]

|g(x)|+ max
x∈[0,1]

|f ′(x)|+ max
x∈[0,1]

|g′(x)| = ‖f‖2 + ‖g‖2.

b)Let (fn) be a Cauchy sequence in ‖ · ‖2. Let ε > 0. There exists n ∈ N such that for all
n,m ≥ N

|fn(x)− fm(x)|+ |f ′n(x)− f ′m(x)| < ε

for all x ∈ [0, 1]. In particular, d∞(f ′n, f
′
m) < ε, so (f ′n) is Cauchy in d∞, and therefore there

exists a uniform limit, say g (continuous). Let

f(x) =

∫ x

0

g(t)dt.

We have that, for n ≥ N ′ ≥ N and for all x ∈ [0, 1],

− ε
2
< f ′n(x)− g(x) <

ε

2
.

Integrating over [0, 1] we get − ε
2 < fn(x)− f(x) < ε

2 and thus

‖fn − f‖2 < ε.



By Stone-Weierstrass theorem we know that polynomials with rational coefficients form a count-
able dense subset of C([0, 1]). Let f ∈ C1([0, 1]) and ε > 0. We have that f ′ ∈ C([0, 1]) so there
exists a polynomial with rational coefficients, q(x), such that

d∞(f ′, q) <
ε

2
.

Then, for all x ∈ [0, 1], − ε
2 < f ′(x)− q(x) < ε

2 and therefore − ε
2 < f(x)−Q(x) < ε

2 , where Q(x) is
a polynomial with rational coefficients such that Q′(x) = q(x). Then, ‖f −Q‖2 < ε.

c)We will show that any ball about f ≡ 0 in d∞ contains functions with arbitrarily big derivative
and, therefore, such ball cannot be contained in any ball about 0 in ‖ · ‖2.
Let ε > 0 and consider B∞(0, ε) the ball about f ≡ 0 in d∞. Let

fn(x) =
1

n
sin(n2x),

x ∈ [0, 1]. Let N ∈ N such that 1
N < ε. Then for all n ≥ N , ‖fn‖∞ < ε, so fn ∈ B∞(0, ε). However,

f ′n(x) = n cos(n2x),

so ‖fn‖2 = n+ 1.

Problem 2. Let fn : [0, 1]→ R be a sequence of continuously differentiable functions satisfying

|fn(x)| ≤M, |f ′n(x)| ≤M, ∀x ∈ [0, 1], ∀n ∈ N.

Prove that {fn} has a uniformly convergent subsequence.
Solution. By Arzela-Ascoli theorem, it suffices to show that {fn} is uniformly bounded (true by
assumption), and (uniformly) equicontinuous. Accordingly, given ε > 0, let δ = ε/M . Then for any
n, and for any x < y ∈ [0, 1] such that |y − x| < δ, we have by the intermediate value theorem

|fn(y)− fn(x)| ≤ δ · sup
z∈[x,y]

|f ′n(z)| < M · ε
M

= ε,

proving uniform equicontinuity. QED
Problem 3. Determine whether the following sets of functions are sequentially compact in C[0, 1]:

a) {(ax)n}, n ∈ N, a > 0.

b) {sin(x+ n)}, n ∈ N.

c) {ex−a}, a > 0.

d) {f ∈ C2[0, 1] : |f(x)| < B0, |f ′(x)| < B1, |f ′′(x)| < B2}.

e) (extra credit) {f ∈ C2[0, 1] : |f(x)| < B0, |f ′′(x)| < B2}.

f) {f ∈ C2[0, 1] : |f ′(x)| < B1, |f ′′(x)| < B2}.

Solution:

a) {(ax)n}, n ∈ N, a > 0. Clearly, for a > 1, the sequence fn(1) = an is not bounded, so
the answer is NO. Also, for a < 1, fn(x) → 0 uniformly on [0, 1], so the answer is YES. If
a = 1, then fn(x) = xn was considered in class. The answer is NO, since the limit function is
discontinuous at x = 1.



b) {sin(x + n)}, n ∈ N. The sequence of functions is uniformly bounded, and has uniformly
bounded derivatives f ′n(x) = cos(x+ n). The answer is YES by Problem 2.

c) {ex−a}, a > 0. The sequence of functions is uniformly bounded, and has uniformly bounded
derivatives f ′a(x) = ex−a. The answer is YES by Problem 2.

d) {f ∈ C2[0, 1] : |f(x)| < B0, |f ′(x)| < B1, |f ′′(x)| < B2}. YES by Problem 2.

e) (extra credit) {f ∈ C2[0, 1] : |f(x)| < B0, |f ′′(x)| < B2}. The answer is YES. The two
conditions imply a uniform bound on the first derivative, then we can use Problem d). The
proof will be provided separately.

f) {f ∈ C2[0, 1] : |f ′(x)| < B1, |f ′′(x)| < B2}. NO, since the sequence is not necessarily uniformly
bounded (e.g. arbitrary constant satisfies both conditions, and fn(x) = n has no convergent
subsequence).

Problem 4. Let an be a sequence of nonnegative real numbers and let X = {x ∈ l∞ : |xn| ≤ an,∀n}.
Prove that the following statements are equivalent:

a) X is a compact subset of l∞.

b) limn→∞ an = 0.

Solution. Suppose that limn→∞ |an| 6= 0 or does not exist. Then there exists ε > 0 such that,
for all N ∈ N, there exists n ≥ N such that |an| ≥ ε. Then we can enumerate the ank

such that

|ank
| ≥ ε. For each nk, define an element (x

(nk)
j )j∈N ∈ l∞ by

x
(nk)
j =

{
ε, j = nk

0, j 6= nk.

Then the sequence x(nk) has no convergent subsequence, and each x(nk) has |x(nk)
j | ≤ |aj | for every

j, so each x(nk) ∈ X. Then X is not compact. The contrapositive of what we have just proven
implies that if X is compact, then limn→∞ |an| = 0.

Now suppose that limn→∞ an = 0. Let x(k) be a sequence in X. Consider (xn)n∈N as an element
of the product space

∏
n∈N[−|an|, |an|]. Since [−|an|, |an|] is compact, the product

∏
n∈N[−|an|, |an|]

is compact in the product metric, so that x(k) has a subsequence x(kj) converging to y. This

is equivalent to component-wise convergence, so that for each n,limn→∞ x
(kj)
n = yn. Since each

|x(kj)n | ≤ an, |yn| ≤ an as well, and since this is true for every n, y ∈ X and thus in l∞. It remains
to show that limj→∞ ‖x(kj) − y‖∞ = 0. Given ε > 0, choose N ∈ N such that supn≥N |an| < ε/3.

Since N is finite, there exists J such that, for all j ≥ J , max1≤n≤N−1 |x
(kj)
n − yn| < ε/3, because

each x
(kj)
n converges to yn pointwise. By the triangle inequality,

‖x(kj) − y‖∞ = sup
n∈N
≤ max

1≤n≤N−1
|x(kj)n − yn|+ sup

n≥N
|x(kj)n − yn|

<
ε

3
+ sup
n≥N
|x(kj)n − yn| ≤

ε

3
+ sup
n≥N
|x(kj)n |+ sup

n≥N
|yn|

≤ ε

3
+ 2 sup

n≥N
|an| <

ε

3
+

2ε

3
= ε



Then x(kj) converges to y with respect to ‖ · ‖∞. Then x(k) has a convergent subsequence, and X is
compact.

Problem 5. Let X ⊂ lp where 1 ≤ p < ∞. Prove that X is compact if and only if the following
two conditions hold:

a) X is a closed and bounded subset of lp.

b) For all ε > 0, there exists n ∈ N such that ∀x ∈ X we have
∑
n>N |xn|p < ε.

Solution.
Suppose that X is compact. As a general property of compact spaces, X is closed and bounded.
Given ε > 0, choose x(1), . . . , x(n) such that X ⊂ ∪∞k=1B(x(k), ε/2). For each k, choose Nk such

that

( ∞∑
n=Nk

|x(k)n |p
)1/p

< ε/2, and let N = max{N1, . . . , Nn}. Given some arbitrary x ∈ X,

x ∈ D(x(k), ε/2) for some k. Minkowski’s Inequality then implies that

( ∞∑
n=N

|xn|p
)1/p

≤

( ∞∑
n=N

|xn − x(k)n |p
)1/p

+

( ∞∑
n=N

|x(k)n |p
)1/p

<

( ∞∑
n=N

|xn − x(k)n |p
)1/p

+
ε

2

≤

( ∞∑
n=1

|xn − x(k)n |p
)1/p

+
ε

2
= ‖x− x(k)‖p +

ε

2
<
ε

2
+
ε

2
= ε.

Now, suppose that X satisfies properties (a) and (b). Let (x(k))k∈N be a sequence of points of X.
Let M > 0 such that, for all x ∈ X, ‖x‖p ≤M . Since ‖ · ‖p is a decreasing function of p, ‖ · ‖∞ ≤M
for every x ∈ X as well. Consider each (x

(k)
n )n∈N as an element of the product space

∏
n∈N[−M,M ].

Since [−M,M ] is compact, and the countable product of compact spaces is compact,
∏
n∈N[−M,M ]

is also compact. Then (x(k)) has a convergent subsequence (x(kj)) converging to y in the product
metric on

∏
n∈N[−M,M ]. This is equivalent to component-wise convergence, so that for each n ∈ N,

limj→∞ x
(kj)
n = yn.

We want to show that y ∈ lp. For finite N ,
(∑N

n=1 |x
(kj)
n |p

)1/p
≤ M . Since the sum is finite,

we can take the limit as j → ∞, so that
(∑N

n=1 |yn|p
)1/p

≤ M . Then
∑N
n=1 |yn|p is an increasing

sequence in N and bounded above by Mp, so the limit as N →∞ exists and

lim
N→∞

(
N∑
n=1

|x(kj)n |p
)1/p

= ‖y‖p ≤M <∞.

Last, we need to show that limj→∞ ‖x(kj)−y‖p = 0. Since X is closed, this implies that y ∈ X, so

X is then compact. Let ε > 0. First, choose N1 ∈ N such that
(∑∞

n=N1
|yn|p

)1/p
< ε/3. Now choose

N2 ∈ N such that, for all x ∈ X,
(∑∞

n=N2
|xn|p

)1/p
< ε/3, and take N = max{N1, N2}. Finally,

choose J ∈ N such that, for all j ≥ J ,
(∑N−1

n=1 |x
(kj)
n − yn|p

)1/p
< ε/3. Such a J exists because the

sum is finite and each x
(kj)
n converges to yn. Then for j ≥ J , using Minkowski’s inequality,



‖x(kj) − y‖p =

( ∞∑
n=1

|x(kj)n − yn|p
)1/p

≤

(
N−1∑
n=1

|x(kj)n − yn|p
)1/p

+

( ∞∑
n=N

|x(kj)n − yn|p
)1/p

≤

(
N−1∑
n=1

|x(kj)n − yn|p
)1/p

+

( ∞∑
n=N

|x(kj)n |p
)1/p

+

( ∞∑
n=N

|yn|p
)1/p

<
ε

3
+
ε

3
+
ε

3
= ε

So, x(kj) converges to y in the p-norm, so x(k) has a convergent subsequence.


