
McGill University
Math 354: Honors Analysis 3 Fall 2012
Assignment 3 Solutions to selected problems

Problem 1. Lipschitz functions. Let MK be the set of all functions continuous functions on
[0, 1] satisfying a Lipschitz condition with constant K > 0, i.e. such that

|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ [0, 1]. (1)

For f ∈MK , define the norm ||f || by

||f || = sup
x∈[0,1]

|f(x)|+ sup
x,y∈[0,1]

|f(x)− f(y)|
|x− y|

.

Prove that

i) ||f || defines the norm on MK , i.e. ||c · f || = |c| · ||f || and that ||f + g|| ≤ ||f ||+ ||g||.

ii) Conclude that d(f, g) := ||f − g|| defines a distance on MK .

iii) (extra credit) MK is closed, and that it is the closure of the set of all differentiable functions
on [0, 1] satisfying |f ′(t)| ≤ K.

iv) The set M = ∪KMK is not closed.

v) (not for credit). What do you think is the closure of M?

Solution: For (i), we remark that linearity is obvious from the definition of ||f ||. The triangle
inequality follows from the triangle inequality for the sup-norm, and from taking the supremum over
x 6= y in the following inequality:

|f(x) + g(x)− f(y)− g(y)|
|x− y|

≤ |f(x)− f(y)|+ |g(x)− g(y)|
|x− y|

.

The statement of (ii) follows by a standard argument on how a norm defines a distance.
For (iii), assume that {fn(x)} is a sequence in LipK , and that ||fn(x) − f(x)|| → 0 as n → ∞,

i.e. that for any ε > 0 there exists N such that for all n ≥ N , we have

sup
x
|fn(x)− f(x)|+ sup

x 6=y

|f(x)− fn(x)− f(y) + fn(y)|
|x− y|

< ε. (2)

Consider the expression |f(x)− f(y)|/|x− y|. It follows from (2) that for n ≥ N , we have

|f(x)− f(y)|
|x− y|

≤ ε+
|fn(x)− fn(y)|
|x− y|

≤ ε+K.

Since ε was arbitrary, we see that f ∈ LipK (and is therefore automatically continuous), hence LipK
is closed.

Next, if f ∈ C1([0, 1]) with supt |f ′(t)| ≤ K, then f ∈ LipK by the intermediate value theorem,
since f(y)−f(x) = (y−x) ·f ′(θ), where θ ∈ [x, y]. Next, assume that f(x) satisfies (1) and consider
the Bernstein polynomial Bn(f, x). It suffices to show that



Lemma. If f ∈ LipK , then Bn(f, x) ∈ LipK .
Indeed, Bn is clearly differentiable for all n, approximates f uniformly as n → ∞ by a result

proved in class. Also, the inequality |Bn(f, y) − Bn(f, x)| ≤ K|y − x| implies that |B′n(f, x)| ≤ K
(if we assume that |B′n(f, y)| > K for some y ∈ [0, 1], we shall get a contradiction with Lipschitz
inequality by choosing x close enough to y and applying the intermediate value theorem).
Proof of the Lemma. (Taken from the note Lipschitz constants for the Bernstein polynomials of
a Lipschitz continuous function by B. Brown, D. Elliott and D. Paget, Journal of Approximation
Theory 49, 196–199, 1987).

Let 0 ≤ x < y ≤ 1. Then

Bn(f, y) =

n∑
j=0

(
n

j

)
(1− y)n−jf

(
j

n

)
(x+ (y − x))j

=

n∑
j=0

(
n

j

)
(1− y)n−jf

(
j

n

)[ j∑
k=0

(
j

k

)
xk(y − x)j−k

]

=

n∑
j=0

j∑
k=0

n!xk(y − x)j−k(1− y)n−j

k!(j − k)!(n− j)!
f

(
j

n

)
(3)

After changing the order of summation and writing k + l = j, (3) becomes

Bn(f, y) =

n∑
k=0

n−k∑
l=0

n!xk(y − x)l(1− y)n−k−l

k!(l)!(n− k − l)!
f

(
k + l

n

)
(4)

We next write a similar identity for Bn(f, x):

Bn(f, x) =

n∑
k=0

(
n

k

)
xkf

(
k

n

)
((y − x) + (1− y))n−k

=

n∑
k=0

(
n

k

)
xkf

(
k

n

)[n−k∑
l=0

(
n− k
l

)
(y − x)l(1− y)n−k−l

]

=

n∑
k=0

n−k∑
l=0

n!xk(y − x)l(1− y)n−k−l

k!l!(n− k − l)!
f

(
k

n

)
(5)

Subtracting (5) from (4) we find that

|Bn(f, y)−Bn(f, x)| =

∣∣∣∣∣
n∑
k=0

n−k∑
l=0

n!xk(y − x)l(1− y)n−k−l

k!l!(n− k − l)!

[
f

(
k + l

n

)
− f

(
k

n

)]∣∣∣∣∣
By the Lipschitz condition, ∣∣∣∣f (k + l

n

)
− f

(
k

n

)∣∣∣∣ ≤ K ( ln
)
,

so it follows from the preceding inequality that

|Bn(f, y)−Bn(f, x)| ≤ K ·
n∑
k=0

n−k∑
l=0

n!xk(y − x)l(1− y)n−k−l

k!l!(n− k − l)!

(
l

n

)
.



The last expression is equal to

K

n∑
l=0

n!(y − x)l

l!(n− l)!

(
l

n

)[n−l∑
k=0

(
n− l
k

)
xk(1− y)n−k−l

]
=

K

n∑
l=0

(
n

l

)
(y − x)l

(
l

n

)
(x+ 1− y)n−l =

K ·Bn(f(z) = z, y − x) = K(y − x),

where in the last line we have used the identity Bn(f(z) = z, x) = x. That identity follows easily
from the second combinatorial identity given in the handout about Bernstein approximation theorem.
Summarizing, we have shown that |Bn(f, y)−Bn(f, x)| ≤ K(y − x), which finishes the proof of the
Lemma, as well as the part (iii) of Problem 1.

For items (iv) and (v), we note that approximation is understood in terms of the d∞ (uniform)
distance. Thus, it follows from Bernstein approximation theorem that the closure of ∪KLipK is the
whole C([0, 1]). Indeed, for any continuous function f on [0, 1], there exists N such that for any n >
N , supx |f(x)−Bn(f, x)| ≤ ε. Now, we claim that Bn(f, x) ∈ ∪KLipK . Indeed, |(d/dx)Bn(f, x)| is
continuous and thus takes a maximum value, say K. As discussed before, that shows that Bn(f, x) ∈
LipK . To see that not every continuous function lies in ∪KLipK , consider the function f(x) =

√
x.

Then (d/dx)f(x) = 1/(2
√
x) goes to infinity as x → 0. It is also easy to see that for any K > 0,

there exist 0 < x < y < 1 such that

√
y −
√
x

y − x
=

1
√
y +
√
x
> K.

This happens if x and y are small enough. Thus,
√
x /∈ LipK for any K, and hence it is not contained

in their union.
Problem 2. Fredholm equation. Use the fixed point theorem to prove the existence and unique-
ness of the solution to homogeneous Fredholm equation

f(x) = λ

∫ 1

0

K(x, y)f(y)dy.

Here K(x, y) is a continuous function on [0, 1]2 satisfying

|K(x, y)| ≤M

is called the kernel of the equation. Consider the mapping of C([0, 1]) into itself given by

(Af)(x) = λ

∫ 1

0

K(x, y)f(y)dy.

Let d = d∞ be the usual “maximum” distance between functions. Prove that

i) Prove that d(Af,Ag) ≤ λM · d(f, g).

ii) Conclude that A has a unique fixed point in C([0, 1]) for |λ| < 1/M , e.g. there exists a unique
f ∈ C([0, 1]) such that Af = f .

iii) Prove that f is a solution of the Fredholm equation.



Solution:
For (i), we find that

|Af(x)−Ag(x)| =
∣∣∣∣λ ∫ 1

0

K(x, y)(f(xy)− g(y))dy

∣∣∣∣ ≤ ∫ 1

0

|λK(x, y)| · |f(y)− g(y)|dy.

The last expression is ≤
∫ 1

0
|λ|M · d(f, g)dy = |λ|Md(f, g).

For (ii), we remark that it follows from (i) that A is a contraction mapping provided |λ| < 1/M .
The existence of a unique fixed point follows from standard results.

Item (iii) follows from the definition of A.
Problem 3. Relative topology. Let X be a metric space, and let Y be a subset of X (with the
induced distance). Prove that a set B is open in Y if and only if B = Y ∩A, where A is open in X.
Solution: Suppose B ⊂ Y is open in Y . So, for every y ∈ B there exists a positive number ry such
that UY (y, ry) := {z ∈ Y : d(y, z) < ry} ⊂ B. Let

A = ∪y∈BUX(y, ry).

Clearly, A is an open subset of X (it is a union of open balls). Also,

A ∩ Y = ∪y∈B(UX(y, ry) ∩ Y ) = ∪y∈BUY (y, ry) = B,

since UY (y, ry) ⊂ B.
For the converse, let V be open in X, and let y ∈ V ∩ Y . Then UX(y, t) ⊂ V for some t > 0.

But UY (y, t) = UX(y, t) ∩ Y ⊂ V ∩ Y . Thus, V ∩ Y is open in Y , QED.
Problem 4. Let X = ∪nXn, where Xn is open for all n. Suppose that the restriction f |Xn is
continuous for all n; prove that f is continuous on X.
Solution: Let f : X → Y be our map, and let V ⊂ Y be open. To prove continuity, we have to
show that f−1(V ) := {x ∈ X : f(x) ∈ V } is open. Now,

f−1(V ) = ∪nf−1(V ) ∩An.

But the latter set is the preimage of V under the restriction f |An, and hence is open since f |An is
continuous for all n. Thus, f−1(V ) is open as a union of open sets.

A different proof uses sequences. Let xn → y ∈ X. We want to show that f(xn)→ f(y). Since
open sets Am cover the whole space, we have y ∈ Am for some m. Since Am is open, we have
B(y, r) ⊂ Am for some r > 0. It follows that xn ∈ B(y, r) for large enough n, so xn ∈ Am. Since
f |Am

is continuous, we have f(xn)→ f(y), QED.
Problem 5. Consider C([a, b]), the vector space of all continuous functions on [a, b], equipped with
the usual norm ||f ||p, 1 ≤ p ≤ ∞. Consider a map Φ : C([a, b]) → C([a, b]) defined by Φ(f) = f2.
For what values of p is this map continuous? Please justify carefully your answer.
Solution: We have Φ(f + h) − Φ(f) = 2fh + h2. First let p = ∞. Let f ∈ C([a, b]), denote
||f ||∞ = M , and choose 0 < ε < 1/3. Let ||h||∞ < min(ε/(3M), ε). Then

||2fh+ h2||∞ ≤
2Mε

3M
+ ε2 = ε(2/3 + ε) < ε,

hence Φ is continuous at f , hence Φ is continuous for p =∞.
Consider next 1 ≤ p <∞, and assume WLOG that [a, b] = [0, 1]. Let f(x) ≡ 0, then Φ(f + h)−

Φ(f) = h2. We would like to choose h ∈ C([a, b]) such that ||h||p is small, but ||h2||p is large to
prove that Φ is not continuous at f .



Let h(x) = δn1/p for x ∈ [0, 1/n], h(x) = 0 for x ∈ [2/n, 1], and let h(x) be linear for x ∈
[1/n, 2/n]. Then it is easy to show that

δp ≤
∫ 1

0

(h(x))pdx ≤ 2δp,

hence δ ≤ ||h||p ≤ δ · 21/p, and the expression goes to 0 as δ → 0.
On the other hand, it is also easy to show that

δ2pn ≤
∫ 1

0

(h(x))2pdx ≤ 2δ2pn,

hence δ · n1/(2p) ≤ ||h2||p ≤ δ · (2n)1/(2p), and the expression diverges as n→∞, showing that Φ is
not continuous at f ≡ 0.
Problem 6. Let M be a bounded subset in C([0, 1]). Prove that the set of functions

F (x) =

∫ x

0

f(t)dt, f ∈M (6)

has compact closure (in the space of continuous functions with the uniform distance d∞).
Solution: Let F be a family of functions defined by (6). By Arzela-Ascoli Theorem, it suffices to
show that F is bounded and equicontinuous. We first remark, that since M is bounded in C([0, 1])
(with d∞, or uniform, distance), there exists C > 0 such that |f(t)| < C for all t ∈ [0, 1] and for all
f ∈M . It follows that for any x ∈ [0, 1] and for any f ∈M ,

|F (x)| =
∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣ ≤ ∫ x

0

|f(t)|dt ≤ Cx ≤ C,

so F is bounded in C([0, 1]). To prove that F is equicontinuous, we fix ε > 0, and let δ = ε/C.
Suppose |x− y| < δ. Assume (without loss of generality) that x < y. Then for any F ∈ F ,

|F (y)− F (x)| =
∣∣∣∣∫ y

x

f(t)dt

∣∣∣∣ ≤ ∫ y

x

|f(t)|dt < δ · C = ε,

so F is equicontinuous. This finishes the proof.
Problem 7. Let X be a compact metric space with a countable base, and let A : X → X be a map
satisfying d(Ax,Ay) < d(x, y) for all x, y ∈ X. Prove that A has a unique fixed point in X.
Solution: Consider the function f(x) = d(x,Ax). We first show that f is continuous. Indeed, if
d(y, x) < ε, then d(Ay,Ax) < ε as well since A is contracting, therefore |d(x,Ax) − d(y,Ay)| <
2ε. Since ε was arbitrary, continuity follows. A continuous function on a compact set attains
its minimum, say at a point y ∈ X. Suppose that the minimum is positive, i.e. that Ay 6= y.
Then d(A2y,Ay) < d(Ay, y) since A is contracting, which contradicts the minimality. Therefore,
d(a,Ay) = 0 and so y is a fixed point. Uniqueness follows from the contracting property of A in the
usual way.
Problem 8 (extra credit). Give an example of a non-compact but complete metric space X and
a map A : X → X as in Problem 7 such that A doesn’t have a fixed point.
Solution: Consider the example from Problem 4, Assignment 2: X = N with d(m,n) = 1+1/(m+
n). That distance defines discrete topology in X, so X is certainly complete (any Cauchy sequence
is eventually constant). Consider any increasing map of N→ N, for example A(n) = n2 + 1. Then
A decreases the distance. Indeed, 1 + 1/(m+ n) > 1 + 1/(m2 + n2 + 2), for all m 6= n > 0. It is also
clear that A has no fixed points.



Problem 9 (extra credit). Let f ∈ C([0, 1]). Prove that for any ε > 0 and N ∈ N there exists a
function g ∈ C([0, 1]) such that d1(f, g) < ε and ||g||2 > N .
Solution. The idea is based on an observation that a function x−α, 1/2 ≤ α < 1 is integrable but
not square-integrable on the interval [0, 1]. So, we fix 1/2 ≤ α < 1. We also let M := ||f ||∞ =
maxx |f(x)|. Next, given ε > 0 we can choose 0 < δ such that∣∣∣∣∣

∫ 2δ

0

x−αdx

∣∣∣∣∣ =
(2δ)1−α

1− α
< ε/3,

as well as
∫ 2δ

0
|f(x)|dx < ε/3. We also let M := ||f ||∞ = maxx |f(x)|. In addition, we require

δ1−α < ε/3 and δ < /epsilon/3M
We construct g(x) as follows: for 2δ ≤ x ≤ 1, we let f(x) = g(x). For delta ≤ x ≤ 2δ, we let

x = (1 + t)δ, 0 ≤ t ≤ 1, and define g(x) = (1 − t)δ−α + tf(2δ) (i.e. we interpolate linearly between
f and g.

On the interval [0, δ], we remark that as η → 0, we have
∫ δ
η
x−2αdx→∞, so we can choose η > 0

so that
∫ δ
η
x−2αdx > N2. We finally let g(x) = x−α for x ∈ [η, δ], and g(x) = η−α for x ∈ [0, η]. We

need to verify that g has the required properties.
For the first property we remark that∫ 1

0

|f(x)− g(x)|dx =

∫ 2δ

0

|f(x)− g(x)|dx ≤
∫ 2δ

0

|f(x)|dx+

∫ 2δ

0

|g(x)|dx

The first integral in the right-hand side is less than ε/3 by the choice of δ. The second integral is
less than ∫ δ

0

x−αdx+ δ ·max(δ−α,M) ≤ ε

3
+ max(δ1−α, δM) <

2ε

3
,

also by the choice of δ. Adding the two estimates, we find that
∫ 1

0
|f(x)− g(x)|dx < ε.

For the second inequality, we find that∫ 1

0

|g(x)|2dx ≥
∫ δ

0

|g(x)|2dx ≥
∫ δ

η

x−2αdx > N2,

so ||g||2 > N and the second requirement is satisfied.
Problem 10. Tube Lemma. Let X be a metric space, and let Y be a compact metric space.
Consider the product space X × Y . If V is an open set of X × Y containing the slice {x0} × Y of
X × Y , then V contains some tube W × Y about {x0} × Y , where W is a neighborhood of x0 in
X. Give an example showing that the Tube Lemma does not hold if Y is not compact.
Solution. Let ρ be the distance on X and σ the distance on Y . We define the maximum distance
d on X × Y by

d((x1, y1), (x2, y2)) = max(ρ(x1, x2), σ(y1, y2)). (7)

This defines the d∞ distance in case R2 = R ×R. It easy to see that open balls for the metric d
have the form U × V , where U is an open ball in X, and V is an open ball in Y (and similarly for
closed balls). It is also easy to see that the topology defined by the distance d = max(ρ, sigma)
is equivalent to topologies defined by dp := (ρp + σp)1/p, just like for R2, (i.e. open and closed
sets coincide for all distances), so we can make our calculation using the distance d without loss of
generality.



The point (x0, y) is an interior point of V for all y ∈ Y , hance there exist r = r(y) > 0 such that
the ball UX(x0, r(y)) × UY (y, r(y)) centered at (x0, y) is contained in V . Call the corresponding
balls UX(y) and UY (y). The balls {UX(y)× UY (y)}y∈Y form an open cover of {x0} × Y .

Since {x0} × Y is isometric to Y , it is compact. Accordingly, there exist finitely many y ∈ Y ,
say y1, y2 . . . , yk such that ∪kj=1UX(yj) × UY (yj) cover {x0} × Y . Let r = min1≤j≤k{r(yj)}. Then
we can let W = U(x0, r) and the conclusion will hold.

For the counterexample in case of noncompact Y , let X = Y = R, x0 = 0 (so that {x0} × Y is
the y-axis), and consider the open set V be {(x, y) : |y| < 1/|x|, or y = 0.}
Problem 11. Let B denote the set of all sequences (xn) such that limn→∞ |xn| = 0. Consider l1
as a subset of l∞. Prove that the closure of l1 in l∞ is equal to B.
Problem 12.

a) Let A ⊂ X be connected, and let {Aα}α∈I be a family of connected subsets of X. Show that
A ∩Aα 6= ∅ for all α ∈ I, then

A ∪ (∪α∈IAα)

is connected.

b) Let X and Y be connected metric spaces. Show that X × Y is connected.

Solution.
a) Let B = A ∪ (∪α∈IAα). Suppose for contradiction that B is not connected. Then by Lemma we
can assume that B ⊂ C ∪ D, where C and D are disjoint open subsets of X that have nonempty
intersection with B. By a result proved in class, we know that A ∪Aα is connected for all α. Then
A∪Aα has to lie entirely in C or entirely in D, otherwise they will separate A∪Aα. Thus A∪Aα ⊂ C
(say). But this must then hold for all α, so B ⊂ C and D∩B = ∅. Contradiction finishes the proof.
(b) Given x0 ∈ X, consider the map f : Y → X × Y given by f(y) = (x0, y). The map f is
continuous and Y is connected, so {x0} × Y is connected for every Y .

Next, fix y0 ∈ Y . We similarly find that X ×{y0} is connected. In Problem 5, let A = X ×{y0},
and let Ax = {x} × Y , where the index α is replaced by x ∈ X. Now, A ∩ Ax = (x, y0) 6= ∅. It
follows from Problem 5 that

(X × {y0}) ∪ (∪x∈X{x} × Y )

is connected. But the above set is just X × Y , so the proof is finished.


