
McGill University
Math 354: Honors Analysis 3 Fall 2012
Assignment 3 Solutions to selected problems

Problem 1. Lipschitz functions. Let LipK be the set of all functions continuous functions on
[0, 1] satisfying a Lipschitz condition with constant K > 0, i.e. such that

|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ [0, 1]. (1)

For f ∈ LipK , define the norm ||f || by

||f || = sup
x∈[0,1]

|f(x)|+ sup
x,y∈[0,1]
x 6=y

|f(x)− f(y)|
|x− y|

.

Prove that

i) ||f || defines the norm on LipK , i.e. ||c · f || = |c| · ||f || and that ||f + g|| ≤ ||f ||+ ||g||.

ii) Conclude that d(f, g) := ||f − g|| defines a distance on LipK .

iii) (extra credit) LipK is closed, and that it is the closure of the set of all differentiable functions
on [0, 1] satisfying |f ′(t)| ≤ K.

iv) The set M = ∪KLipK is not closed.

v) (not for credit). What do you think is the closure of M?

Solution: For (i), we remark that linearity is obvious from the definition of ||f ||. The triangle
inequality follows from the triangle inequality for the sup-norm, and from taking the supremum over
x 6= y in the following inequality:

|f(x) + g(x)− f(y)− g(y)|
|x− y|

≤ |f(x)− f(y)|+ |g(x)− g(y)|
|x− y|

.

The statement of (ii) follows by a standard argument on how a norm defines a distance.
For (iii), it may be helpful to view LipK as a subset of LipK′ for K < K ′ or as a subset of

C([0, 1]). We want to show that LipK is closed in either of those two sets with respect to the usual
d∞ metric. Assume {fn(x)} is a sequence in LipK , and that ||fn(x) − f(x)|| → 0 as n → ∞, i.e.
that for any ε > 0 there exists N such that for all n ≥ N , we have

sup
x
|fn(x)− f(x)|+ sup

x6=y

|f(x)− fn(x)− f(y) + fn(y)|
|x− y|

< ε. (2)

Consider the expression |f(x)− f(y)|/|x− y|. It follows from (2) that for n ≥ N , we have

|f(x)− f(y)|
|x− y|

≤ ε+
|fn(x)− fn(y)|
|x− y|

≤ ε+K.

Since ε was arbitrary, we see that f ∈ LipK (and is therefore automatically continuous), hence LipK
is closed.



Next, if f ∈ C1([0, 1]) with supt |f ′(t)| ≤ K, then f ∈ LipK by the intermediate value theorem,
since f(y)−f(x) = (y−x) ·f ′(θ), where θ ∈ [x, y]. Next, assume that f(x) satisfies (1) and consider
the Bernstein polynomial Bn(f, x). It suffices to show that
Lemma. If f ∈ LipK , then Bn(f, x) ∈ LipK .

Indeed, Bn is clearly differentiable for all n, approximates f uniformly as n → ∞ by a result
proved in class. Also, the inequality |Bn(f, y) − Bn(f, x)| ≤ K|y − x| implies that |B′n(f, x)| ≤ K
(if we assume that |B′n(f, y)| > K for some y ∈ [0, 1], we shall get a contradiction with Lipschitz
inequality by choosing x close enough to y and applying the intermediate value theorem).
Proof of the Lemma. (Taken from the note Lipschitz constants for the Bernstein polynomials of
a Lipschitz continuous function by B. Brown, D. Elliott and D. Paget, Journal of Approximation
Theory 49, 196–199, 1987).

Let 0 ≤ x < y ≤ 1. Then

Bn(f, y) =

n∑
j=0

(
n

j

)
(1− y)n−jf

(
j

n

)
(x+ (y − x))j

=

n∑
j=0

(
n

j

)
(1− y)n−jf

(
j

n

)[ j∑
k=0

(
j

k

)
xk(y − x)j−k

]

=

n∑
j=0

j∑
k=0

n!xk(y − x)j−k(1− y)n−j

k!(j − k)!(n− j)!
f

(
j

n

)
(3)

After changing the order of summation and writing k + l = j, (3) becomes

Bn(f, y) =

n∑
k=0

n−k∑
l=0

n!xk(y − x)l(1− y)n−k−l

k!(l)!(n− k − l)!
f

(
k + l

n

)
(4)

We next write a similar identity for Bn(f, x):

Bn(f, x) =

n∑
k=0

(
n

k

)
xkf

(
k

n

)
((y − x) + (1− y))n−k

=

n∑
k=0

(
n

k

)
xkf

(
k

n

)[n−k∑
l=0

(
n− k
l

)
(y − x)l(1− y)n−k−l

]

=

n∑
k=0

n−k∑
l=0

n!xk(y − x)l(1− y)n−k−l

k!l!(n− k − l)!
f

(
k

n

)
(5)

Subtracting (5) from (4) we find that

|Bn(f, y)−Bn(f, x)| =

∣∣∣∣∣
n∑
k=0

n−k∑
l=0

n!xk(y − x)l(1− y)n−k−l

k!l!(n− k − l)!

[
f

(
k + l

n

)
− f

(
k

n

)]∣∣∣∣∣
By the Lipschitz condition, ∣∣∣∣f (k + l

n

)
− f

(
k

n

)∣∣∣∣ ≤ K ( ln
)
,

so it follows from the preceding inequality that

|Bn(f, y)−Bn(f, x)| ≤ K ·
n∑
k=0

n−k∑
l=0

n!xk(y − x)l(1− y)n−k−l

k!l!(n− k − l)!

(
l

n

)
.



The last expression is equal to

K

n∑
l=0

n!(y − x)l

l!(n− l)!

(
l

n

)[n−l∑
k=0

(
n− l
k

)
xk(1− y)n−k−l

]
=

K

n∑
l=0

(
n

l

)
(y − x)l

(
l

n

)
(x+ 1− y)n−l =

K ·Bn(f(z) = z, y − x) = K(y − x),

where in the last line we have used the identity Bn(f(z) = z, x) = x. That identity follows easily
from the second combinatorial identity given in the handout about Bernstein approximation theorem.
Summarizing, we have shown that |Bn(f, y)−Bn(f, x)| ≤ K(y − x), which finishes the proof of the
Lemma, as well as the part (iii).

For items (iv) and (v), we note that approximation is understood in terms of the d∞ (uniform)
distance. Thus, it follows from Bernstein approximation theorem that the closure of ∪KLipK is the
whole C([0, 1]). Indeed, for any continuous function f on [0, 1], there exists N such that for any n >
N , supx |f(x)−Bn(f, x)| ≤ ε. Now, we claim that Bn(f, x) ∈ ∪KLipK . Indeed, |(d/dx)Bn(f, x)| is
continuous and thus takes a maximum value, say K. As discussed before, that shows that Bn(f, x) ∈
LipK . To see that not every continuous function lies in ∪KLipK , consider the function f(x) =

√
x.

Then (d/dx)f(x) = 1/(2
√
x) goes to infinity as x → 0. It is also easy to see that for any K > 0,

there exist 0 < x < y < 1 such that

√
y −
√
x

y − x
=

1
√
y +
√
x
> K.

This happens if x and y are small enough. Thus,
√
x /∈ LipK for any K, and hence it is not contained

in their union.

Problem 2. Fredholm equation. Use the fixed point theorem to prove the existence and unique-
ness of the solution to homogeneous Fredholm equation

f(x) = λ

∫ 1

0

K(x, y)f(y)dy.

Here K(x, y) is a continuous function on [0, 1]2 satisfying

|K(x, y)| ≤M

is called the kernel of the equation. Consider the mapping of C([0, 1]) into itself given by

(Af)(x) = λ

∫ 1

0

K(x, y)f(y)dy.

Let d = d∞ be the usual “maximum” distance between functions. Prove that

i) Prove that d(Af,Ag) ≤ λM · d(f, g).

ii) Conclude that A has a unique fixed point in C([0, 1]) for |λ| < 1/M , e.g. there exists a unique
f ∈ C([0, 1]) such that Af = f .



iii) Prove that f is a solution of the Fredholm equation.

Solution.
For (i), we find that

|Af(x)−Ag(x)| =
∣∣∣∣λ ∫ 1

0

K(x, y)(f(xy)− g(y))dy

∣∣∣∣ ≤ ∫ 1

0

|λK(x, y)| · |f(y)− g(y)|dy.

The last expression is ≤
∫ 1

0
|λ|M · d(f, g)dy = |λ|Md(f, g).

For (ii), we remark that it follows from (i) that A is a contraction mapping provided |λ| < 1/M .
The existence of a unique fixed point follows from standard results (we should also mention here
that the fixed point theorem depends on the fact that C([0, 1]) is complete with respect to the d∞
metric).

Item (iii) follows from the definition of A.

Problem 3. Relative topology. Let X be a metric space, and let Y be a subset of X (with the
induced distance). Prove that a set B is open in Y if and only if B = Y ∩A, where A is open in X.
Solution: Suppose B ⊂ Y is open in Y . So, for every y ∈ B there exists a positive number ry such
that UY (y, ry) := {z ∈ Y : d(y, z) < ry} ⊂ B. Let

A = ∪y∈BUX(y, ry).

Clearly, A is an open subset of X (it is a union of open balls). Also,

A ∩ Y = ∪y∈B(UX(y, ry) ∩ Y ) = ∪y∈BUY (y, ry) = B,

since UY (y, ry) ⊂ B.
For the converse, let V be open in X, and let y ∈ V ∩ Y . Then UX(y, t) ⊂ V for some t > 0.

But UY (y, t) = UX(y, t) ∩ Y ⊂ V ∩ Y . Thus, V ∩ Y is open in Y , QED.

Problem 4. Let X be a topological space, X = ∪nXn, where Xn is open for all n. Suppose that
the restriction f |Xn is continuous for all n; prove that f is continuous on X.
Solution. Let f : X → Y be our map, and let V ⊂ Y be open. To prove continuity, we have to
show that f−1(V ) := {x ∈ X : f(x) ∈ V } is open. Now,

f−1(V ) = f−1(V ) ∩ (∪nXn) = ∪nf−1(V ) ∩Xn.

But the latter set is the preimage of V under the restriction f |Xn, and hence is open since f |Xn is
continuous for all n. Thus, f−1(V ) is open as a union of open sets.

A different proof uses sequences in the case where X is a metric space. Let xn → y ∈ X. We
want to show that f(xn) → f(y). Since open sets Xm cover the whole space, we have y ∈ Xm for
some m. Since Xm is open, we have B(y, r) ⊂ Xm for some r > 0. It follows that xn ∈ B(y, r) for
large enough n, so xn ∈ Xm. Since f |Xm

is continuous, we have f(xn)→ f(y), QED.

Problem 5. Consider C([a, b]), the vector space of all continuous functions on [a, b], equipped with
the usual norm ||f ||p, 1 ≤ p ≤ ∞. Consider a map Φ : C([a, b]) → C([a, b]) defined by Φ(f) = f2.
For what values of p is this map continuous? Please justify carefully your answer.



Solution: We have Φ(f + h) − Φ(f) = 2fh + h2. First let p = ∞. Let f ∈ C([a, b]), denote
||f ||∞ = M , and choose 0 < ε < 1/3. Let ||h||∞ < min(ε/(3M), ε). Then

||2fh+ h2||∞ ≤
2Mε

3M
+ ε2 = ε(2/3 + ε) < ε,

hence Φ is continuous at f , hence Φ is continuous for p =∞.
Consider next 1 ≤ p <∞, and assume WLOG that [a, b] = [0, 1]. Let f(x) ≡ 0, then Φ(f + h)−

Φ(f) = h2. We would like to choose h ∈ C([a, b]) such that ||h||p is small, but ||h2||p is large to
prove that Φ is not continuous at f .

Let h(x) = δn1/p for x ∈ [0, 1/n], h(x) = 0 for x ∈ [2/n, 1], and let h(x) be linear for x ∈
[1/n, 2/n]. Then it is easy to show that

δp ≤
∫ 1

0

(h(x))pdx ≤ 2δp,

hence δ ≤ ||h||p ≤ δ · 21/p, and the expression goes to 0 as δ → 0.
On the other hand, it is also easy to show that

δ2pn ≤
∫ 1

0

(h(x))2pdx ≤ 2δ2pn,

hence δ2 ·n1/p ≤ ||h2||p ≤ δ2 · (2n)1/p, and the expression diverges as n→∞, showing that Φ is not
continuous at f ≡ 0.

Problem 6. Let M be a bounded subset in C([0, 1]). Prove that the set of functions

F (x) =

∫ x

0

f(t)dt, f ∈M (6)

has compact closure (in the space of continuous functions with the uniform distance d∞).
Solution: Let F be a family of functions defined by (6). By Arzela-Ascoli Theorem, it suffices to
show that F is bounded and equicontinuous. We first remark, that since M is bounded in C([0, 1])
(with d∞, or uniform, distance), there exists C > 0 such that |f(t)| < C for all t ∈ [0, 1] and for all
f ∈M . It follows that for any x ∈ [0, 1] and for any f ∈M ,

|F (x)| =
∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣ ≤ ∫ x

0

|f(t)|dt ≤ Cx ≤ C,

so F is bounded in C([0, 1]). To prove that F is equicontinuous, we fix ε > 0, and let δ = ε/C.
Suppose |x− y| < δ. Assume (without loss of generality) that x < y. Then for any F ∈ F ,

|F (y)− F (x)| =
∣∣∣∣∫ y

x

f(t)dt

∣∣∣∣ ≤ ∫ y

x

|f(t)|dt < δ · C = ε,

so F is equicontinuous. This finishes the proof.

Problem 7. Let X be a compact metric space with a countable base, and let A : X → X be a map
satisfying d(Ax,Ay) < d(x, y) for all x, y ∈ X. Prove that A has a unique fixed point in X.



Solution. Consider the function f(x) = d(x,Ax). We first show that f is continuous. Indeed, if
d(y, x) < ε, then d(Ay,Ax) < ε as well since A is contracting, therefore as a result of applying the
triangle inequality we get |d(x,Ax) − d(y,Ay)| < 2ε. Since ε was arbitrary, continuity follows. A
continuous function on a compact set attains its minimum, say at a point y ∈ X. Suppose that the
minimum is positive, i.e. that Ay 6= y. Then d(A2y,Ay) < d(Ay, y) since A is contracting, which
contradicts the minimality. Therefore, d(a,Ay) = 0 and so y is a fixed point. Uniqueness follows
from the contracting property of A in the usual way.

Problem 8 (extra credit). Give an example of a non-compact but complete metric space X and
a map A : X → X as in Problem 7 such that A doesn’t have a fixed point.
Solution. Consider X = N with d(m,n) = 1 + 1/(m+ n). That distance defines discrete topology
in X, so X is certainly complete (any Cauchy sequence is eventually constant). Consider any
increasing map of N → N, for example A(n) = n2 + 1. Then A decreases the distance. Indeed,
1 + 1/(m+ n) > 1 + 1/(m2 + n2 + 2), for all m 6= n > 0. It is also clear that A has no fixed points.

Problem 9 (extra credit). Let f ∈ C([0, 1]). Prove that for any ε > 0 and N ∈ N there exists a
function g ∈ C([0, 1]) such that d1(f, g) < ε and ||g||2 > N .
Solution. The idea is based on an observation that a function x−α, 1/2 ≤ α < 1 is integrable but
not square-integrable on the interval [0, 1]. So, we fix 1/2 ≤ α < 1. We also let M := ||f ||∞ =
maxx |f(x)|. Next, given ε > 0 we can choose 0 < δ such that∣∣∣∣∣

∫ 2δ

0

x−αdx

∣∣∣∣∣ =
(2δ)1−α

1− α
< ε/3,

as well as
∫ 2δ

0
|f(x)|dx < ε/3. We also let M := ||f ||∞ = maxx |f(x)|. In addition, we require

δ1−α < ε/3 and δ < ε/3M
We construct g(x) as follows: for 2δ ≤ x ≤ 1, we let f(x) = g(x). For δ ≤ x ≤ 2δ, we let

x = (1 + t)δ, 0 ≤ t ≤ 1, and define g(x) = (1 − t)δ−α + tf(2δ) (i.e. we interpolate linearly between
f and g.

On the interval [0, δ], we remark that as η → 0, we have
∫ δ
η
x−2αdx→∞, so we can choose η > 0

so that
∫ δ
η
x−2αdx > N2. We finally let g(x) = x−α for x ∈ [η, δ], and g(x) = η−α for x ∈ [0, η]. We

need to verify that g has the required properties.
For the first property we remark that∫ 1

0

|f(x)− g(x)|dx =

∫ 2δ

0

|f(x)− g(x)|dx ≤
∫ 2δ

0

|f(x)|dx+

∫ 2δ

0

|g(x)|dx

The first integral in the right-hand side is less than ε/3 by the choice of δ. The second integral is
less than ∫ δ

0

x−αdx+ δ ·max(δ−α,M) ≤ ε

3
+ max(δ1−α, δM) <

2ε

3
,

also by the choice of δ. Adding the two estimates, we find that
∫ 1

0
|f(x)− g(x)|dx < ε.

For the second inequality, we find that∫ 1

0

|g(x)|2dx ≥
∫ δ

0

|g(x)|2dx ≥
∫ δ

η

x−2αdx > N2,



so ||g||2 > N and the second requirement is satisfied.

Problem 10. Tube Lemma. Let X be a metric space, and let Y be a compact metric space.
Consider the product space X × Y . If V is an open set of X × Y containing the slice {x0} × Y of
X × Y , then V contains some tube W × Y about {x0} × Y , where W is a neighborhood of x0 in
X. Give an example showing that the Tube Lemma does not hold if Y is not compact.
Solution. Let ρ be the distance on X and σ the distance on Y . We define the maximum distance
d on X × Y by

d((x1, y1), (x2, y2)) = max(ρ(x1, x2), σ(y1, y2)). (7)

This defines the d∞ distance in case R2 = R×R. It easy to see that open balls for the metric d have
the form U × V , where U is an open ball in X, and V is an open ball in Y (and similarly for closed
balls). It is also easy to see that the topology defined by the distance d = max(ρ, σ) is equivalent to
topologies defined by dp := (ρp + σp)1/p, just like for R2, (i.e. open and closed sets coincide for all
distances), so we can make our calculation using the distance d without loss of generality.

The point (x0, y) is an interior point of V for all y ∈ Y , hance there exist r = r(y) > 0 such that
the ball UX(x0, r(y)) × UY (y, r(y)) centered at (x0, y) is contained in V . Call the corresponding
balls UX(y) and UY (y). The balls {UX(y)× UY (y)}y∈Y form an open cover of {x0} × Y .

Since {x0} × Y is isometric to Y , it is compact. Accordingly, there exist finitely many y ∈ Y ,
say y1, y2 . . . , yk such that ∪kj=1UX(yj) × UY (yj) cover {x0} × Y . Let r = min1≤j≤k{r(yj)}. Then
we can let W = U(x0, r) and the conclusion will hold.

For the counterexample in case of noncompact Y , let X = Y = R, x0 = 0 (so that {x0} × Y is
the y-axis), and consider the open set V = {(x, y) : |xy| < 1}.

Problem 11. Let B denote the set of all sequences (xn) such that lim
n→∞

|xn| = 0. Consider l1 as a

subset of l∞. Prove that the closure of l1 in l∞ is equal to B.
Solution. Suppose that x = (x1, x2, ...) ∈ B. Consider the sequence (xn)∞n=1 of elements in l1 where
xn = (x1, x2, ..., xn, 0, 0, ...). Then because lim

n→∞
|xn| = 0 we have sup

i∈N
|xni − xi| = d(xn, x) → 0 as

n→∞. So B ⊂ cl(l1). To show the reverse inclusion, let x ∈ cl(l1) and choose a sequence (xn)∞n=1

of elements in l1 such that sup
i∈N
|xni − xi| → 0 as n → ∞. Let ε > 0 be given. Choose N ∈ N such

that n ≥ N ⇒ sup
i∈N
|xni − xi| ≤ ε

2 . For the element xN , choose M ∈ N such that |xNi | ≤ ε
2 whenever

i ≥ M . Then ∀i ≥ M , we have (using reverse triangle inequality) |xi| − |xNi | ≤ ε
2 ⇒ |xi| ≤ ε. So

x ∈ B.

Problem 12.

(a) Let A ⊂ X be connected, and let {Aα}α∈I be a family of connected subsets of X. Show that
A ∩Aα 6= ∅ for all α ∈ I, then

A ∪ (∪α∈IAα)

is connected.

(b) Let X and Y be connected metric spaces. Show that X × Y is connected.



Solution.
(a) Let B = A ∪ (∪α∈IAα). Suppose for contradiction that B is not connected. Then by Lemma
we can assume that B ⊂ C ∪D, where C and D are disjoint open subsets of X that have nonempty
intersection with B. By a result proved in class, we know that A ∪Aα is connected for all α. Then
A∪Aα has to lie entirely in C or entirely in D, otherwise they will separate A∪Aα. Thus A∪Aα ⊂ C
(say). But this must then hold for all α, so B ⊂ C and D∩B = ∅. Contradiction finishes the proof.
(b) Given x0 ∈ X, consider the map f : Y → X × Y given by f(y) = (x0, y). The map f is
continuous and Y is connected, so {x0} × Y is connected for every Y .

Next, fix y0 ∈ Y . We similarly find that X × {y0} is connected. Referring to part (a), let A =
X×{y0}, and let Ax = {x}×Y , where the index α is replaced by x ∈ X. Now, A∩Ax = (x, y0) 6= ∅.
It follows from (a) that

(X × {y0}) ∪ (∪x∈X{x} × Y )

is connected. But the above set is just X × Y , so the proof is finished.


