
McGill University
Math 354: Honors Analysis 3 Fall 2012
Assignment 1 Solutions to selected problems

Problem 3. Prove that the set of all points x = (x1, x2, . . . , xk, . . .) with only finitely many nonzero
coordinates, each of which is a rational number, is dense in the space l2 of sequences.
Solution: Let x = (x1, x2, . . . , xn, . . .) ∈ l2. Then

∑∞
i=1 x

2
i < ∞, so for any ε > 0, there exists

N ∈ N such that
∑

i>N x2i < ε. For each 1 ≤ j ≤ N , choose a rational number yi such that
(xi−yi)2 < ε/N . Let y = (y1, y2, . . . , yN , 0, 0, . . .). Then y has only N nonzero rational coordinates,
and

(d2(x, y))2 =

N∑
j=1

(xi − yi)2 +
∑
i>N

x2i < ε+N(ε/N) = 2ε.

Since ε was arbitrary, we have proved the density.
Problem 4 (extra credit).

i) Suppose φ ∈ C([a, b]) (which need not be differentiable) satisfies

φ((x+ y)/2) ≤ (φ(x) + φ(y))/2, x, y ∈ [a, b].

Prove that for all x, y ∈ [a, b], and for any t ∈ [0, 1], we have

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y), (1)

i.e. that φ is convex on [a, b].

ii) Assume that a function φ (that is not assumed to be continuous on an open interval (a, b)),
satisfies (1). Prove that φ is then actually continuous on (a, b).

iii) Prove that if φ ∈ C2([a, b]), and φ′′(x) > 0,∀x ∈ [a, b], then φ is convex on [a, b].

iv) Prove that if x1, . . . , xn ∈ [a, b], and t1, . . . , tn > 0 satisfy t1 + . . .+ tn = 1, and if φ is convex
on [a, b], then

φ(t1x1 + . . .+ tnxn) ≤ t1φ(x1) + . . .+ tnφ(xn).

Solution i):
Let x, y ∈ (a, b) and define f(λ) = ϕ((1 − λ)x + λy) for 0 ≤ λ ≤ 1. Note first that f(q) ≤

(1− q)f(0) + qf(1) for all dyadic rationals 0 ≤ q ≤ 1. To see this, suppose that the inequality holds
for dyadic rationals of the form q = k

2n for 1 ≤ n ≤ N ; then if 0 ≤ k < 2N , we have
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=
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Consider now the sequence of dyadic rationals obtained by taking successively accurate approxima-
tions to the binary expansion of λ. Then λn = 2−nbλ2nc is a sequence converging to λ, and since f



is continuous the inequality holds in the limit; that is, f(λ) ≤ (1− λ)f(0) + λf(1) for all 0 ≤ λ ≤ 1,
and hence ϕ is convex.
ii): We find that the definition is convexity is equivalent to requiring that for all a < s < t < u < b,
we have

φ(t)− φ(s)

t− s
≤ φ(u)− φ(t)

u− t
. (2)

Fix t ∈ (a, b); we shall prove that φ is continuous at t. Let r(t, s0) denote the ratio in the left-hand
side of (2) for some fixed a < s0 < t; similarly, denote r(t, u0) denote the ratio in the right-hand
side of (2) for some fixed t < u0 < b.

Suppose now that s ∈ (s0, t). Then it follows from (2) that

φ(t)− r(t, u0)(t− s) ≤ φ(s) ≤ φ(t)− r(s0, t)(t− s),

i.e. the graph of φ lies in between two straight lines that intersect at the point (t, φ(t)). The
continuity as s → t from the left follows. The proof of continuity as u → t from the right follows
similarly from the inequality

φ(t) + r(s0, t)(u− t) ≤ φ(u) ≤ φ(t) + r(t, u0)(u− t),

that holds for u ∈ (t, u0).
iii): By the argument in ii), it suffices to prove (2), which for continuously differentiable functions
is equivalent to saying that φ′ is nondecreasing, and that follows from the assumption φ′′(t) > 0, t ∈
[a, b].
iv): The proof is by induction, starting with n = 2 which is the assumption of continuity. The
induction step is proved as follows:

φ(t1x1+. . .+tnxn+t−n+ 1xn+1) = φ(t1x1+. . .+(tn+tn+1)y) ≤ t1φ(x1)+. . .+(tn+tn+1)φ(y), (3)

where y = (tnxn + tn+1xn+1)/(tn + tn+1) and where we have used induction hypothesis. On the
other hand, by convexity

φ(y) ≤ tnφ(xn)

tn + tn+1
+
tn+1φ(xn+1)

tn + tn+1
.

Substituting into (3), we complete the proof.
Problem 5. Let X be a metric space, A ⊆ X a subset of X, and x a point in X. The distance
from x to A is denoted by d(x,A) and is defined by

d(x,A) = inf
a∈A

d(x, a).

Prove that

i) If x ∈ A, then d(x,A) = 0, but not conversely;

ii) For a fixed A, d(x,A) is a continuous function of x;

iii) d(x,A) = 0 if and only if x is a contact point of A (i.e. every neighborhood of x contains a
point from A);

iv) The closure A satisfies
A = A ∪ {x : d(x,A) = 0}.



Solution: (i) If x ∈ A, then 0 = d(x, x) = infa∈A d(x, a). Converse is not true, for example if
A = (0, 1], then d(0, A) = 0 while 0 /∈ A.

(ii) Let x, y ∈ X. Given ε > 0, choose a ∈ A such that d(x, a) ≤ d(x,A) + ε. By triangle
inequality we have d(y, a) ≤ d(x, a) + d(x, y) ≤ d(x, y) + d(x,A) + ε. Since ε was arbitrary, and
since d(y,A) ≤ d(y, a), we get d(y,A) ≤ d(x,A) + d(x, y). Reversing the roles of x and y we get
d(x,A) ≤ d(y,A) + d(x, y). It follows that

|d(x,A)− d(y,A)| ≤ d(x, y).

This proves the continuity.
(iii) If x is a contact point of A, then for every r > 0, B(x, r) contains a point of A, hence

infa∈A d(x, a) < r. Since r was arbitrary, d(x,A) = 0, proving the “if” part. Now, suppose a ball
B(x, r) doesn’t contain points from A for some r > 0. Then d(x,A) ≥ r > 0, finishing the proof of
the “only if” part of the statement.

(iv) The set A is a union of A and the set of all limit points of A. By part (iii), d(x,A) = 0 for
any limit point that doesn’t belong to A.
Problem 6. Let (X, d) be a metric space, and f : X → R a continuous function. The nodal set of
f , denoted by Z(f), is the set {x ∈ X : f(x) = 0}.

i) Prove that Z(f) is a closed subset of X.

Next, let A,B be two closed nonempty subsets of X, A ∩ B = ∅. Let d(x,A) (resp. d(x,B))
denote the distance from x ∈ X to A (resp. B), defined in Problem 5 in Assignment 1. Define a
function F : X → R by the formula

F (x) =
d(x,A)

d(x,A) + d(x,B)
.

Prove that

ii) F is continuous;

iii) F (x) = 0 iff x ∈ A, and F (x) = 1 iff x ∈ B.

Solution: (i) Let xn ∈ Z(f), and let xn → y as n → ∞. By continuity of f , 0 = f(xn) → f(y),
therefore f(y) = 0 and so y ∈ Z(f), QED.

(ii) and (iii) By the results proved in Problem 5, Assgmt 1, d(x,A) = 0 iff x ∈ A = A, since A
is closed, and similarly for B. It was also shown in Problem 5, Assgmt 1, that |d(x,A)− d(y,A)| ≤
d(x, y). Now, if x ∈ A, we have F (x) = 0. Let b = d(x,B) > 0, and let ε < b. Suppose that
d(x, y) < ε. Then d(y,A) ≤ d(x, y) < ε, and b− ε ≤ d(y,B) ≤ b+ ε. It follows that

F (y) ≤ ε/(b− ε)→ 0 = F (x)

, as ε→ 0, so F is continuous at x.
Next, suppose that x ∈ B. Then d(x,B) = 0 so F (x) = 1. Let a = d(x,A) > 0. Also, let

ε < a and d(x, y) < ε for some y ∈ X. By an argument similar to the argument above, we find that
d(y,B) < ε and a− ε ≤ d(y,A) ≤ a+ ε. Accordingly,

F (x) = 1 ≥ F (y) =
1

(1 + d(x,B)/d(x,A))
≥ 1

(1 + ε/(a− ε))
→ 1,

as ε→ 0, proving that F is continuous at x.



Finally, suppose that x /∈ A and x /∈ B. Let a = d(x,A) > 0 and let b = d(x,B) > 0. Finally, let
ε < min(a, b), and let d(x, y) < ε. It follows that a− ε < d(y,A) < a+ ε, and b− ε < d(y,B) < b+ ε.
We have 0 < F (x) = a/(a+ b) < 1. Also,

1

[1 + (b+ ε)/(a− ε)]
≤ F (y) ≤ 1

[1 + (b− ε)/(a+ ε)]
.

Both sides of the inequality converge to a/(a+ b) as ε→ 0, proving the continuity of F at x. This
finishes the proof.
Problem 7:

Let Matn denote the space of n × n real matrices. For A ∈ Matn, define the norms ||A||1 as
follows:

||A||1 = sup
0 6=x∈Rn

||Ax||
||x||

,

where ||x|| is the usual Euclidean norm. Next define another norm ||A||2 by

||A||2 = max
i,j
|Aij |.

Prove that

i) Prove that ||A||1,2 defines a norm on Matn;

ii) Prove that there exists a constant Cn > 1 such that 1/Cn ≤ ||A||1/||A||2 ≤ Cn.

Solution: (i) The only nontrivial property is the equivalent of the triangle inequality, ||A + B|| ≤
||A||+ ||B||; the other properties are very easy. Now,

||(A+B)||1 = max
||x||=1

||Ax +Bx|| ≤ max
||x||=1

||Ax||+ max
||x||=1

||Bx|| = ||A||1 + ||B||1.

Also,
||(A+B)||2 = max

i,j
|(A+B)ij | ≤ max

i,j
|Aij |+ max

i,j
|Bij | = ||A||2 + ||B||2.

The proof is finished.
(ii) To compute ||A||1, it suffices (by scaling) to take ||x|| = 1. Let ||A||2 = a be the largest (in

absolute value) matrix element. By conjugating the matrix, changing its sign, and re-labeling the
coordinates, we can assume without loss of generality that (one of) the largest matrix element(s) is
A11 > 0. First, we would like to show that all the coordinates of Ax have absolute value less than or
equal to a

√
n. Indeed, let Aj be the j-th row of A. Then (Ax)j = (Aj ,x). Now, by Cauchy-Schwartz

inequality,
|(Aj ,x)| ≤ ||Aj || · ||x|| ≤ a

√
n · 1 = a

√
n.

It follows that ||Ax|| ≤ a
√
n ·
√
n = an. Accordingly, ||A||1 ≤ ||A||2 · n.

Next, choose x = e1 = (1, 0, 0, . . . , 0). Then Ax = (a, 0, 0, . . . , 0). It follows that

||A||1 = sup
||x||=1

||Ax|| ≥ ||Ae1|| = a = ||A||2,

so

1 ≤ ||A||1
||A||2

≤ n.

Problem 8 (extra credit). Let p be a prime number (a positive integer that is only divisible by
1 and itself, e.g. p = 2, 3, 5, 7, 11 etc). Define p-adic distance dp on the set Q of rational numbers as



follows: given q1q2 ∈ Q, let |q1 − q2| = q ∈ Q. If q1 = q2, q = 0, then we set dp(q1, q2) = 0. If q 6= 0,
we can write q as

q = pm
a

b
, where m ∈ Z, GCD(a, b) = 1, GCD(a, p) = GCD(b, p) = 1.

Here GCD(a, b) is the greatest common divisor of two natural numbers a and b. Then we define the
p-adic distance by

dp(q1, q2) = p−m.

Please, note the minus sign in the definition.
Examples: d2(5/2, 1/2) = 1/2; d3(17, 8) = 1/9; d5(4/15, 1/15) = 5.
Prove that dp satisfies all the properties of a distance. The only nontrivial part is the triangle

inequality:
dp(q1, q2) + dp(q2, q3) ≥ dp(q1, q3).

You may use without proof all standard properties of the greatest common divisor, prime decompo-
sition etc.

We define the p-adic norm by ||x||p = p−m, for x = pm ·(a/b), where GCD(a, p) = 1 = GCD(b, p).
It suffices to show that ||x+y||p ≤ ||x||p+||y||p. In fact, we shall see that ||x+y||p ≤ max{||x||p, ||y||p},
implying the previous inequality.

Assume without loss of generality that

max{||x||p, ||y||p} = ||x||p := p−m,

i.e. that x = pm(a/b), y = pm+k(c/d), where GCD(a, p) = 1 = GCD(b, p) = GCD(c, p) =
GCD(d, p), and where k ≥ 0. Then

x+ y = pm
(pk · ad+ bc)

bd

Since GCD(p, bd) = 1, we see that ||x+ y||p ≤ p−m. The norm could be smaller, if GCD(p, pkad+
bc) = p.
QED
Problem 9 (extra credit).

Denote by P the set of polygons in R2, not necessarily convex. A polygon P with vertices
x1,x2, . . . ,xn is the set of points in R2 bounded by a simple closed curve that is a union of line
segments

[x1,x2], [x2,x3], . . . , [xn−1,xn], [xn,x1].

The boundary curve is denoted ∂P and is sometimes called a polyline or a broken line. We require
that different line segments do not intersect except at common endpoints.

A symmetric difference of two sets A,B is denoted by A∆B and is defined by

A∆B = (A\B) ∪ (B\A),

where A\B = A ∩Bc is the set of points {x ∈ A, x /∈ B}.
Given two polygons P1, P2 ∈ R2, define the distance between them by

d(P1, P2) = Area(P1∆P2).

Prove that d satisfies all the properties of a distance. Hint: if X ⊂ Y , then Area(X) ≤ Area(Y ).



Solution: Denote by P the set of polygons in R2, not necessarily convex. A polygon P with vertices
x1,x2, . . . ,xn is the set of points in R2 bounded by a simple closed curve that is a union of line
segments

[x1,x2], [x2,x3], . . . , [xn−1,xn], [xn,x1].

The boundary curve is denoted ∂P and is sometimes called a polyline or a broken line. We require
that different line segments do not intersect except at common endpoints.

A symmetric difference of two sets A,B is denoted by A∆B and is defined by

A∆B = (A\B) ∪ (B\A),

where A\B = A ∩Bc is the set of points {x ∈ A, x /∈ B}.
Given two polygons P1, P2 ∈ R2, define the distance between them by

d(P1, P2) = Area(P1∆P2).

Prove that d satisfies all the properties of a distance. Hint: if X ⊂ Y , then Area(X) ≤ Area(Y ).
Solution: it is easy to see that for any three polygons (or, indeed, sets!) P1, P2, P3 we have

(P1∆P2) ⊂ (P1∆P3) ∪ (P2∆P3). (4)

Indeed, P1∩P c
2 = (P1∩P c

2 ∩P3)∪(P1∩P c
2 ∩P c

3 ). Now, the first set is contained in P c
2 ∩P3 ⊂ (P2∆P3),

while the second set is contained in P1∩P c
3 ⊂ (P1∆P3). So, P1∩P c

2 ⊂ (P1∆P3)∪(P2∆P3). Reversing
the roles of P1 and P2, we see that P2∩P c

1 ⊂ (P1∆P3)∪(P2∆P3). But (P1∆P2) = (P1∩P c
2 )∪(P2∩P c

1 ),
and both sets are contained in the RHS of (4), finishing the proof.

Taking areas in (4), we find that

Area(P1∆P2) ≤ Area((P1∆P3) ∪ (P2∆P3)) ≤ Area(P1∆P3) + Area(P2∆P3),

proving the triangle inequality. The other two properties are obviously satisfied.


