McGill University

Math 354: Honors Analysis 3 Fall 2012
Assignment 1 Solutions to selected problems
Problem 3. Prove that the set of all points « = (z1, 22, ..., Zk, . ..) with only finitely many nonzero
coordinates, each of which is a rational number, is dense in the space [y of sequences.

Solution: Let z = (z1,22,...,2pn,...) € lo. Then Z;’il xf < 00, so for any € > 0, there exists
N € N such that ZZ—>N xf < €. For each 1 < j < N, choose a rational number y; such that

(vi—y;)? < €/N. Let y = (y1,%2,---,Yn,0,0,...). Then y has only N nonzero rational coordinates,
and

(da(z,9))* = (@i —yi)* + D a2 < e+ N(e/N) = 2e.

N
j=1 i>N

Since € was arbitrary, we have proved the density.
Problem 4 (extra credit).

i) Suppose ¢ € C([a,b]) (which need not be differentiable) satisfies

o((x+y)/2) < (o(z) +¢()/2,  z,y€lab].

Prove that for all z,y € [a,b], and for any t € [0, 1], we have

p(te + (1 —t)y) < té(x) + (1 - 1)o(y), (1)
i.e. that ¢ is convez on [a, b].

ii) Assume that a function ¢ (that is not assumed to be continuous on an open interval (a, b)),
satisfies (1). Prove that ¢ is then actually continuous on (a,b).

iii) Prove that if ¢ € C?([a,b]), and ¢ (z) > 0,Vz € [a, b], then ¢ is convex on [a, b].

iv) Prove that if z1,...,2z, € [a,b], and t1,...,t, > 0 satisfy t; + ... + ¢, = 1, and if ¢ is convex
on [a,b], then

Solution i):
Let z,y € (a,b) and define f(A) = ©((1 — N)a + Ay) for 0 < A < 1. Note first that f(q) <
(1=¢)f(0)+qf(1) for all dyadic rationals 0 < g < 1. To see this, suppose that the inequality holds

for dyadic rationals of the form ¢ = % for 1 <n < N; then if 0 < k < 2V, we have

H(55) =30 () = (59))
<1 ((1 - 2’;) F(0) + e F(1) + (1 - k;vl) 7(0) + k;Vlf(l))
— (1 Gt ) 100+ G £0)

Consider now the sequence of dyadic rationals obtained by taking successively accurate approxima-
tions to the binary expansion of A\. Then X, = 27| \2"] is a sequence converging to A, and since f



is continuous the inequality holds in the limit; that is, f(A) < (1 —X)f(0) + Af(1) for all 0 < A <1,
and hence ¢ is convex.
ii): We find that the definition is convexity is equivalent to requiring that for all a < s <t < u < b,

we have
¢(t) — ¢(3) < (b(u) — ¢(t) (2)
t—s u—1
Fix t € (a,b); we shall prove that ¢ is continuous at t. Let (¢, s9) denote the ratio in the left-hand
side of (2) for some fixed a < sg < t; similarly, denote r(¢,ug) denote the ratio in the right-hand
side of (2) for some fixed ¢t < ug < b.
Suppose now that s € (sg,t). Then it follows from (2) that

¢(t) — 7t uo)(t — 5) < @(s) < ¢(t) —r(s0,t)(t — 5),

i.e. the graph of ¢ lies in between two straight lines that intersect at the point (¢,$(t)). The
continuity as s — t from the left follows. The proof of continuity as u — ¢ from the right follows
similarly from the inequality

¢(t) +7(s0,8)(u = 1) < G(u) < G(t) +7(t,uo0)(u — 1),

that holds for u € (¢, uo).

iii): By the argument in ii), it suffices to prove (2), which for continuously differentiable functions
is equivalent to saying that ¢’ is nondecreasing, and that follows from the assumption ¢”(¢) > 0,t €
[a, b].

iv): The proof is by induction, starting with n = 2 which is the assumption of continuity. The
induction step is proved as follows:

P(t1T1+. At Tyt t—n + 12pp1) = 1T+ . A (EnHtns1)y) < (1) +. . A (Enttns1)d(y), (3)

where y = (tnZn + tht1Znt1)/(tn + the1) and where we have used induction hypothesis. On the
other hand, by convexity

- tn + tn+1 tn + tTH'l

Substituting into (3), we complete the proof.
Problem 5. Let X be a metric space, A C X a subset of X, and x a point in X. The distance
from x to A is denoted by d(z, A) and is defined by

d(z,A) = ing d(z,a).

a€
Prove that

i) If x € A, then d(z, A) = 0, but not conversely;

ii) For a fixed A, d(x, A) is a continuous function of ;

iii) d(z,A) = 0 if and only if « is a contact point of A (i.e. every neighborhood of x contains a
point from A);

iv) The closure A satisfies -
A=AU{x:d(z,A) =0}.



Solution: (i) If x € A, then 0 = d(z,z) = inf,ecad(z,a). Converse is not true, for example if
A = (0,1], then d(0, A) = 0 while 0 ¢ A.

(ii) Let z,y € X. Given € > 0, choose a € A such that d(z,a) < d(x,A) + e. By triangle
inequality we have d(y,a) < d(z,a) + d(x,y) < d(z,y) + d(x, A) + €. Since € was arbitrary, and
since d(y, A) < d(y,a), we get d(y, A) < d(z,A) + d(z,y). Reversing the roles of z and y we get
d(z,A) <d(y, A) + d(x,y). It follows that

|d(z, A) = d(y, A)| < d(z,y).

This proves the continuity.

(iii) If = is a contact point of A, then for every r > 0, B(z,r) contains a point of A, hence
inf,ca d(z,a) < r. Since r was arbitrary, d(z, A) = 0, proving the “if” part. Now, suppose a ball
B(z,r) doesn’t contain points from A for some r > 0. Then d(z, A) > r > 0, finishing the proof of
the “only if” part of the statement.

(iv) The set A is a union of A and the set of all limit points of A. By part (iii), d(z, A) = 0 for
any limit point that doesn’t belong to A.

Problem 6. Let (X, d) be a metric space, and f : X — R a continuous function. The nodal set of
f, denoted by Z(f), is the set {z € X : f(z) = 0}.

i) Prove that Z(f) is a closed subset of X.

Next, let A, B be two closed nonempty subsets of X, AN B = 0. Let d(z, A) (resp. d(z, B))
denote the distance from = € X to A (resp. B), defined in Problem 5 in Assignment 1. Define a
function F': X — R by the formula

Prove that
ii) F' is continuous;
ili) F(z)=0iff x € A, and F(z) =1 iff z € B.

Solution: (i) Let z, € Z(f), and let x,, — y as n — co. By continuity of f, 0 = f(z,) — f(y),
therefore f(y) =0 and so y € Z(f), QED.

(ii) and (iii) By the results proved in Problem 5, Assgmt 1, d(x, A) = 0 iff z € A = A, since A
is closed, and similarly for B. It was also shown in Problem 5, Assgmt 1, that |d(x, A) — d(y, A)| <
d(xz,y). Now, if z € A, we have F(z) = 0. Let b = d(x,B) > 0, and let ¢ < b. Suppose that
d(z,y) <e. Then d(y, A) < d(x,y) <e¢, and b —e < d(y, B) < b+ e. It follows that

F(y) <¢/(b—e) — 0= F(a)

,as € = 0, so F is continuous at .

Next, suppose that « € B. Then d(x,B) = 0 so F(z) = 1. Let a = d(z,A) > 0. Also, let
€ < a and d(z,y) < € for some y € X. By an argument similar to the argument above, we find that
d(y,B) < eand a — e < d(y,A) < a+ e. Accordingly,

1 1

Py =12F0) = 0330 B)jdtw, 4) = 0+ e/(a—9)

— 1,

as € — 0, proving that F' is continuous at z.



Finally, suppose that ¢ A and « ¢ B. Let a = d(z, A) > 0 and let b = d(z, B) > 0. Finally, let
€ < min(a,b), and let d(z,y) < e. It follows that a —e < d(y, A) < a+e€,and b—e < d(y, B) < b+e.
We have 0 < F(z) =a/(a+b) < 1. Also,

1 1
Tt/ "W aro-o/mral

Both sides of the inequality converge to a/(a + b) as € — 0, proving the continuity of F' at z. This
finishes the proof.
Problem 7:

Let Mat,, denote the space of n x n real matrices. For A € Mat,, define the norms ||A||; as
follows:

A
Al = sup AXI
0#x€R™ HXH

where ||z|| is the usual Euclidean norm. Next define another norm ||A||s by

[|All2 = max | Az;].
1,7

Prove that
i) Prove that ||A||1,2 defines a norm on Mat,;
ii) Prove that there exists a constant C,, > 1 such that 1/C,, < ||A]|1/||A]|l2 < C,.

Solution: (i) The only nontrivial property is the equivalent of the triangle inequality, ||A + BJ|| <
[|A|| + ||B||; the other properties are very easy. Now,

14+ B)ll = maxx |l Ax + Bx| < masx (|| + mase [|Bx] = |Al] + 18]

Also,
1A+ B)llo = max (A -+ B)ig| < max| Ay +max | Byl = [|All2 +1|Bll

The proof is finished.

(ii) To compute ||A]|1, it suffices (by scaling) to take ||x|| = 1. Let ||A||2 = a be the largest (in
absolute value) matrix element. By conjugating the matrix, changing its sign, and re-labeling the
coordinates, we can assume without loss of generality that (one of) the largest matrix element(s) is
Aq1 > 0. First, we would like to show that all the coordinates of Ax have absolute value less than or
equal to ay/n. Indeed, let A; be the j-th row of A. Then (Ax); = (A;,x). Now, by Cauchy-Schwartz
inequality,

(A5, x)] < [I4;]] - [x]] < avn -1 = av/n.
It follows that ||Ax|| < av/n - /n = an. Accordingly, ||A||1 < ||A]l2 - n.
Next, choose x = e; = (1,0,0,...,0). Then Ax = (a,0,0,...,0). It follows that

1Al = HSlll‘plllAXII > [[Aeil = a = [|A]l2,
x||=

SO A
Il
41l

Problem 8 (extra credit). Let p be a prime number (a positive integer that is only divisible by
1 and itself, e.g. p=2,3,5,7,11 etc). Define p-adic distance d,, on the set Q of rational numbers as

1<



follows: given gi1g2 € Q, let |¢1 — ¢2| = ¢ € Q. If g1 = g2,¢ = 0, then we set d,(q1,92) = 0. If ¢ # 0,
we can write g as

qg=p" %, where m € Z, GCD(a,b) =1, GCD(a,p) = GCD(b,p) = 1.
Here GCD(a,b) is the greatest common divisor of two natural numbers a and b. Then we define the
p-adic distance by

—m

dp(q1,q2) = p

Please, note the minus sign in the definition.
Examples: do(5/2,1/2) =1/2; d3(17,8) = 1/9; d5(4/15,1/15) = 5.
Prove that d, satisfies all the properties of a distance. The only nontrivial part is the triangle
inequality:
dp(q1,q2) + dy(q2,q3) > dp(q1,3)-

You may use without proof all standard properties of the greatest common divisor, prime decompo-
sition etc.

We define the p-adic norm by ||z||, = p~™, for x = p"-(a/b), where GCD(a,p) =1 = GCD(b,p).
It suffices to show that ||z+y||, < ||z||,+]|yl|p- In fact, we shall see that ||z+y||, < max{||z||,,|yl|p},
implying the previous inequality.

Assume without loss of generality that

max{||z([p, llyllp} = [[z[lp :==p™™,

ie. that x = p™(a/b),y = p™**(c/d), where GCD(a,p) = 1 = GCD(b,p) = GCD(c,p) =
GCD(d,p), and where k > 0. Then

m (P* - ad +be)

rry=p bd

Since GCD(p, bd) = 1, we see that ||z + y|[, < p~™. The norm could be smaller, if GCD(p, p*ad +
be) = p.

QED

Problem 9 (extra credit).

Denote by P the set of polygons in R?, not necessarily convex. A polygon P with vertices
X1,X2,...,X, is the set of points in R? bounded by a simple closed curve that is a union of line
segments

[x1,%2], [X2,X3], - - -y [Xn—1,Xn], [Xn, X1]-
The boundary curve is denoted P and is sometimes called a polyline or a broken line. We require
that different line segments do not intersect except at common endpoints.

A symmetric difference of two sets A, B is denoted by AAB and is defined by

AAB = (A\B) U (B\A),

where A\B = AN B¢ is the set of points {x € A,z ¢ B}.
Given two polygons Py, P, € R?, define the distance between them by

d(Pl, Pz) = Area(PlAPg).

Prove that d satisfies all the properties of a distance. Hint: if X C Y, then Area(X) < Area(Y).



Solution: Denote by P the set of polygons in R?, not necessarily convex. A polygon P with vertices
X1,X2,...,X, is the set of points in R? bounded by a simple closed curve that is a union of line
segments

[Xla X2]a [X27 X3]7 ey [Xn—h Xn]7 [Xna X1]~
The boundary curve is denoted 0P and is sometimes called a polyline or a broken line. We require

that different line segments do not intersect except at common endpoints.
A symmetric difference of two sets A, B is denoted by AAB and is defined by

AAB = (A\B) U (B\A),

where A\B = AN B¢ is the set of points {z € A,z ¢ B}.
Given two polygons Py, P, € R2, define the distance between them by

d(Pl,PQ) = Area(PlAPQ).

Prove that d satisfies all the properties of a distance. Hint: if X C Y, then Area(X) < Area(Y).
Solution: it is easy to see that for any three polygons (or, indeed, sets!) Py, P2, P3 we have

(PlAPQ) C (PlApd)U(PQApg) (4)

Indeed, PLNPy = (PLNPsNP3)U(PiNPSNPy). Now, the first set is contained in PSNPs; C (P2 AP3),
while the second set is contained in PyNP§ C (P1APs). So, PLNPs C (PiAP;)U(P,APs). Reversing
the roles of Py and P, we see that Po,NPf C (PLAP;)U(P2APs). But (PLAP,) = (PINPS)U(PNFPY),
and both sets are contained in the RHS of (4), finishing the proof.

Taking areas in (4), we find that

Area(PiAP,) < Area((P1AP3) U (P2AP3)) < Area(PiAP;) + Area(P,AP;),

proving the triangle inequality. The other two properties are obviously satisfied.



