
McGill University
Math 354: Honors Analysis 3 Fall 2012
Assignment 3 due Wednesday, October 10

Problem 1. Lipschitz functions. Let MK be the set of all functions continuous functions on
[0, 1] satisfying a Lipschitz condition with constant K > 0, i.e. such that

|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ [0, 1].

For f ∈MK , define the norm ||f || by

||f || = sup
x∈[0,1]

|f(x)|+ sup
x,y∈[0,1]

|f(x)− f(y)|
|x− y|

.

Prove that

i) ||f || defines the norm on MK , i.e. ||c · f || = |c| · ||f || and that ||f + g|| ≤ ||f ||+ ||g||.

ii) Conclude that d(f, g) := ||f − g|| defines a distance on MK .

iii) (extra credit) MK is closed, and that it is the closure of the set of all differentiable functions
on [0, 1] satisfying |f ′(t)| ≤ K.

iv) The set M = ∪KMK is not closed.

v) (not for credit). What do you think is the closure of M?

Problem 2. Fredholm equation. Use the fixed point theorem to prove the existence and unique-
ness of the solution to homogeneous Fredholm equation

f(x) = λ

∫ 1

0

K(x, y)f(y)dy.

Here K(x, y) is a continuous function on [0, 1]2 satisfying

|K(x, y)| ≤M

is called the kernel of the equation. Consider the mapping of C([0, 1]) into itself given by

(Af)(x) = λ

∫ 1

0

K(x, y)f(y)dy.

Let d = d∞ be the usual “maximum” distance between functions. Prove that

i) Prove that d(Af,Ag) ≤ λM · d(f, g).

ii) Conclude that A has a unique fixed point in C([0, 1]) for |λ| < 1/M , e.g. there exists a unique
f ∈ C([0, 1]) such that Af = f .

iii) Prove that f is a solution of the Fredholm equation.



Problem 3. Relative topology. Let X be a metric space, and let Y be a subset of X (with the
induced distance). Prove that a set B is open in Y if and only if B = Y ∩A, where A is open in X.
Problem 4. Let X = ∪nXn, where Xn is open for all n. Suppose that the restriction f |Xn is
continuous for all n; prove that f is continuous on X.
Problem 5. Consider C([a, b]), the vector space of all continuous functions on [a, b], equipped with
the usual norm ||f ||p, 1 ≤ p ≤ ∞. Consider a map Φ : C([a, b])C([a, b]) defined by Φ(f) = f2. For
what values of p is this map continuous? Please justify carefully your answer.
Problem 6. Let M be a bounded subset in C([0, 1]). Prove that the set of functions

F (x) =
∫ x

0

f(t)dt, f ∈M

has compact closure (in the space of continuous functions with the uniform distance d∞).
Problem 7. Let X be a compact metric space with a countable base, and let A : X → X be a map
satisfying d(Ax,Ay) < d(x, y) for all x, y ∈ X. Prove that A has a unique fixed point in X.
Problem 8 (extra credit). Give an example of a non-compact but complete metric space X and
a map A : X → X as in Problem 7 such that A doesn’t have a fixed point.
Problem 9 (extra credit). Let f ∈ C([0, 1]). Prove that for any ε > 0 and N ∈ N there exists a
function g ∈ C([0, 1]) such that d1(f, g) < ε and ||g||2 > N .
Problem 10. Tube Lemma. Let X be a metric space, and let Y be a compact metric space.
Consider the product space X × Y . If V is an open set of X × Y containing the slice {x0} × Y of
X × Y , then V contains some tube W × Y about {x0} × Y , where W is a neighborhood of x0 in
X. Give an example showing that the Tube Lemma does not hold if Y is not compact.
Problem 11. Let B denote the set of all sequences (xn) such that limn→∞ |xn| = 0. Consider l1
as a subset of l∞. Prove that the closure of l1 in l∞ is equal to B.
Problem 12.

a) Let A ⊂ X be connected, and let {Aα}α∈I be a family of connected subsets of X. Show that
A ∩Aα 6= ∅ for all α ∈ I, then

A ∪ (∪α∈IAα)

is connected.

b) Let X and Y be connected metric spaces. Show that X × Y is connected.


