Math 354: Honors Analysis 3 Assignment 1 Fall 2012 due Monday, September 24

Problem 1.

(i) Verify the identity

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 = \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right) - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - b_i a_j)^2.$$

ii) Let f(x) and g(x) be continuous functions on [a,b]. Prove that

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} = \int_{a}^{b} (f(x))^{2}dx \cdot \int_{a}^{b} (g(x))^{2}dx - \frac{1}{2} \int_{a}^{b} \int_{a}^{b} \left[f(x)g(y) - g(x)f(y)\right]^{2}dxdy.$$

Problem 2.

(i) Starting from the inequality $xy \le x^p/p + y^q/q$, where x, y, p, q > 0 and 1/p + 1/q = 1, deduce Hölder's integral inequality for continuous functions f(t), g(t) on [a, b]:

$$\int_a^b f(t)g(t)dt \leq \left(\int_a^b |f(t)|^p dt\right)^{1/p} \left(\int_a^b |g(t)|^q dt\right)^{1/q};$$

(ii) Use (i) to prove Minkowski's integral inequality for continuous functions f(t), g(t) on [a, b] and $p \ge 1$:

$$\left(\int_a^b |f(t)+g(t)|^p dt\right)^{1/p} \leq \left(\int_a^b |f(t)|^p dt\right)^{1/p} + \left(\int_a^b |g(t)|^p dt\right)^{1/p}.$$

Problem 3. Prove that the set of all points $x = (x_1, x_2, \ldots, x_k, \ldots)$ with only finitely many nonzero coordinates, each of which is a rational number, is dense in the space l^2 of sequences. **Problem 4 (extra credit).**

i) Suppose $\phi \in C([a,b])$ (which need not be differentiable) satisfies

$$\phi((x+y)/2) \le (\phi(x) + \phi(y))/2, \quad x, y \in [a, b].$$

Prove that for all $x, y \in [a, b]$, and for any $t \in [0, 1]$, we have

$$\phi(tx + (1-t)y) \le t\phi(x) + (1-t)\phi(y),\tag{1}$$

i.e. that ϕ is *convex* on [a,b].

- ii) Assume that a function ϕ (that is *not* assumed to be continuous on [a, b]), satisfies (1). Prove that ϕ is then actually continuous on [a, b].
- iii) Prove that if $\phi \in C^2([a,b])$, and $\phi''(x) > 0, \forall x \in [a,b]$, then ϕ is convex on [a,b].

iv) Prove that if $x_1, \ldots, x_n \in [a, b]$, and $t_1, \ldots, t_n > 0$ satisfy $t_1 + \ldots + t_n = 1$, and if ϕ is convex on [a, b], then

$$\phi(t_1x_1 + \ldots + t_nx_n) \le t_1\phi(x_1) + \ldots + t_n\phi(x_n).$$

Problem 5. Let X be a metric space, $A \subseteq X$ a subset of X, and x a point in X. The distance from x to A is denoted by d(x, A) and is defined by

$$d(x,A) = \inf_{a \in A} d(x,a).$$

Prove that

- i) If $x \in A$, then d(x, A) = 0, but not conversely;
- ii) For a fixed A, d(x, A) is a continuous function of x;
- iii) d(x, A) = 0 if and only if x is a contact point of A (i.e. every neighborhood of x contains a point from A);
- iv) The closure \overline{A} satisfies

$$\overline{A} = A \cup \{x : d(x, A) = 0\}.$$

Problem 6. Let (X,d) be a metric space, and $f: X \to \mathbf{R}$ a continuous function. The *nodal set* of f, denoted by Z(f), is the set $\{x \in X : f(x) = 0\}$.

i) Prove that Z(f) is a closed subset of X.

Next, let A, B be two closed nonempty subsets of X, $A \cap B = \emptyset$. Let d(x, A) (resp. d(x, B)) denote the distance from $x \in X$ to A (resp. B), defined in Problem 5 in Assignment 1. Define a function $F: X \to \mathbf{R}$ by the formula

$$F(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Prove that

- ii) F is continuous;
- iii) F(x) = 0 iff $x \in A$, and F(x) = 1 iff $x \in B$.

Problem 7. Let Mat_n denote the space of $n \times n$ real matrices. For $A \in \operatorname{Mat}_n$, define the norms $||A||_1$ as follows:

$$||A||_1 = \sup_{0 \neq \mathbf{x} \in \mathbf{R}^n} \frac{||A\mathbf{x}||}{||\mathbf{x}||},$$

where ||x|| is the usual Euclidean norm. Next define another norm $||A||_2$ by

$$||A||_2 = \max_{i,j} |A_{ij}|.$$

Prove that

- i) Prove that $||A||_{1,2}$ defines a norm on Mat_n ;
- ii) Prove that there exists a constant $C_n > 1$ such that $1/C_n \le ||A||_1/||A||_2 \le C_n$.

Problem 8 (extra credit). Let p be a prime number (a positive integer that is only divisible by 1 and itself, e.g. p=2,3,5,7,11 etc). Define p-adic distance d_p on the set \mathbf{Q} of rational numbers as follows: given $q_1q_2 \in \mathbf{Q}$, let $|q_1-q_2|=q \in \mathbf{Q}$. If $q_1=q_2,q=0$, then we set $d_p(q_1,q_2)=0$. If $q\neq 0$, we can write q as

$$q=p^m\;\frac{a}{b},\qquad where\;m\in\mathbf{Z},\;GCD(a,b)=1,\;GCD(a,p)=GCD(b,p)=1.$$

Here GCD(a, b) is the greatest common divisor of two natural numbers a and b. Then we define the p-adic distance by

$$d_p(q_1, q_2) = p^{-m}$$
.

Please, note the minus sign in the definition.

Examples: $d_2(5/2, 1/2) = 1/2$; $d_3(17, 8) = 1/9$; $d_5(4/15, 1/15) = 5$.

Prove that d_p satisfies all the properties of a distance. The only nontrivial part is the triangle inequality:

$$d_p(q_1, q_2) + d_p(q_2, q_3) \ge d_p(q_1, q_3).$$

You may use without proof all standard properties of the greatest common divisor, prime decomposition etc.

Problem 9 (extra credit).

Denote by \mathcal{P} the set of polygons in \mathbf{R}^2 , not necessarily convex. A polygon P with vertices $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is the set of points in \mathbf{R}^2 bounded by a simple closed curve that is a union of line segments

$$[\mathbf{x}_1, \mathbf{x}_2], [\mathbf{x}_2, \mathbf{x}_3], \dots, [\mathbf{x}_{n-1}, \mathbf{x}_n], [\mathbf{x}_n, \mathbf{x}_1].$$

The boundary curve is denoted ∂P and is sometimes called a *polyline* or a *broken line*. We require that different line segments do not intersect except at common endpoints.

A symmetric difference of two sets A, B is denoted by $A\Delta B$ and is defined by

$$A\Delta B = (A\backslash B) \cup (B\backslash A),$$

where $A \setminus B = A \cap B^c$ is the set of points $\{x \in A, x \notin B\}$.

Given two polygons $P_1, P_2 \in \mathbf{R}^2$, define the distance between them by

$$d(P_1, P_2) = \text{Area}(P_1 \Delta P_2).$$

Prove that d satisfies all the properties of a distance. Hint: if $X \subset Y$, then $Area(X) \leq Area(Y)$.