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Problem 1.

(i) Verify the identity(
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ii) Let f(x) and g(x) be continuous functions on [a, b]. Prove that(∫ b

a

f(x)g(x)dx

)2

=

∫ b

a

(f(x))2dx ·
∫ b

a

(g(x))2dx− 1

2

∫ b

a

∫ b

a

[f(x)g(y)− g(x)f(y)]
2
dxdy.

Problem 2.

(i) Starting from the inequality xy ≤ xp/p+ yq/q, where x, y, p, q > 0 and 1/p+ 1/q = 1, deduce
Hölder’s integral inequality for continuous functions f(t), g(t) on [a, b]:

∫ b

a

f(t)g(t)dt ≤

(∫ b

a

|f(t)|pdt

)1/p(∫ b

a

|g(t)|qdt

)1/q

;

(ii) Use (i) to prove Minkowski’s integral inequality for continuous functions f(t), g(t) on [a, b] and
p ≥ 1: (∫ b

a

|f(t) + g(t)|pdt

)1/p

≤

(∫ b

a

|f(t)|pdt

)1/p

+

(∫ b

a

|g(t)|pdt

)1/p

.

Problem 3. Prove that the set of all points x = (x1, x2, . . . , xk, . . .) with only finitely many nonzero
coordinates, each of which is a rational number, is dense in the space l2 of sequences.
Problem 4 (extra credit).

i) Suppose φ ∈ C([a, b]) (which need not be differentiable) satisfies

φ((x+ y)/2) ≤ (φ(x) + φ(y))/2, x, y ∈ [a, b].

Prove that for all x, y ∈ [a, b], and for any t ∈ [0, 1], we have

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y), (1)

i.e. that φ is convex on [a, b].

ii) Assume that a function φ (that is not assumed to be continuous on [a, b]), satisfies (1). Prove
that φ is then actually continuous on [a, b].

iii) Prove that if φ ∈ C2([a, b]), and φ′′(x) > 0,∀x ∈ [a, b], then φ is convex on [a, b].



iv) Prove that if x1, . . . , xn ∈ [a, b], and t1, . . . , tn > 0 satisfy t1 + . . .+ tn = 1, and if φ is convex
on [a, b], then

φ(t1x1 + . . .+ tnxn) ≤ t1φ(x1) + . . .+ tnφ(xn).

Problem 5. Let X be a metric space, A ⊆ X a subset of X, and x a point in X. The distance
from x to A is denoted by d(x,A) and is defined by

d(x,A) = inf
a∈A

d(x, a).

Prove that

i) If x ∈ A, then d(x,A) = 0, but not conversely;

ii) For a fixed A, d(x,A) is a continuous function of x;

iii) d(x,A) = 0 if and only if x is a contact point of A (i.e. every neighborhood of x contains a
point from A);

iv) The closure A satisfies
A = A ∪ {x : d(x,A) = 0}.

Problem 6. Let (X, d) be a metric space, and f : X → R a continuous function. The nodal set of
f , denoted by Z(f), is the set {x ∈ X : f(x) = 0}.

i) Prove that Z(f) is a closed subset of X.

Next, let A,B be two closed nonempty subsets of X, A ∩ B = ∅. Let d(x,A) (resp. d(x,B))
denote the distance from x ∈ X to A (resp. B), defined in Problem 5 in Assignment 1. Define a
function F : X → R by the formula

F (x) =
d(x,A)

d(x,A) + d(x,B)
.

Prove that

ii) F is continuous;

iii) F (x) = 0 iff x ∈ A, and F (x) = 1 iff x ∈ B.

Problem 7. Let Matn denote the space of n × n real matrices. For A ∈ Matn, define the norms
||A||1 as follows:

||A||1 = sup
06=x∈Rn

||Ax||
||x||

,

where ||x|| is the usual Euclidean norm. Next define another norm ||A||2 by

||A||2 = max
i,j
|Aij |.

Prove that

i) Prove that ||A||1,2 defines a norm on Matn;

ii) Prove that there exists a constant Cn > 1 such that 1/Cn ≤ ||A||1/||A||2 ≤ Cn.



Problem 8 (extra credit). Let p be a prime number (a positive integer that is only divisible by
1 and itself, e.g. p = 2, 3, 5, 7, 11 etc). Define p-adic distance dp on the set Q of rational numbers as
follows: given q1q2 ∈ Q, let |q1 − q2| = q ∈ Q. If q1 = q2, q = 0, then we set dp(q1, q2) = 0. If q 6= 0,
we can write q as

q = pm
a

b
, where m ∈ Z, GCD(a, b) = 1, GCD(a, p) = GCD(b, p) = 1.

Here GCD(a, b) is the greatest common divisor of two natural numbers a and b. Then we define the
p-adic distance by

dp(q1, q2) = p−m.

Please, note the minus sign in the definition.
Examples: d2(5/2, 1/2) = 1/2; d3(17, 8) = 1/9; d5(4/15, 1/15) = 5.
Prove that dp satisfies all the properties of a distance. The only nontrivial part is the triangle

inequality:
dp(q1, q2) + dp(q2, q3) ≥ dp(q1, q3).

You may use without proof all standard properties of the greatest common divisor, prime decompo-
sition etc.
Problem 9 (extra credit).

Denote by P the set of polygons in R2, not necessarily convex. A polygon P with vertices
x1,x2, . . . ,xn is the set of points in R2 bounded by a simple closed curve that is a union of line
segments

[x1,x2], [x2,x3], . . . , [xn−1,xn], [xn,x1].

The boundary curve is denoted ∂P and is sometimes called a polyline or a broken line. We require
that different line segments do not intersect except at common endpoints.

A symmetric difference of two sets A,B is denoted by A∆B and is defined by

A∆B = (A\B) ∪ (B\A),

where A\B = A ∩Bc is the set of points {x ∈ A, x /∈ B}.
Given two polygons P1, P2 ∈ R2, define the distance between them by

d(P1, P2) = Area(P1∆P2).

Prove that d satisfies all the properties of a distance. Hint: if X ⊂ Y , then Area(X) ≤ Area(Y ).


