McGill University Math 354: Honors Analysis 3

TAKE HOME MIDTERM 2012

Solutions

Do any 8 of the following 10 problems. Every problem are worth 10 points. Problem 1.

- a) Let X be a metric space with the distance d_1 . Prove that $d_2(x, y) = d_1(x, y)/(1 + d_1(x, y))$ also defines the distance on X. Prove that open sets and Cauchy sequences for d_1 and d_2 coincide.
- b) Prove the same results for $d_3(x, y) = \min\{d_1(x, y), 1\}$.
- c) Define the distance on the set X of all sequences $x = (x_1, x_2, ...)$ of real numbers by the formula

$$d(x,y) = \sum_{k=1}^{\infty} \frac{|x_k - y_k|}{2^k (1 + |x_k - y_k|)}.$$

Prove that d defines a distance on X, and that X is complete with respect to d. Is X separable?

Solution: See solutions to problems in Math 564, Assignment 5, posted on the course page. **Problem 2.** Let $X = \prod_i X_i$ be a product of metric spaces, with the distance d_i . Consider the product topology on X (a basis of open sets is given by $\prod_i U_i$, where $U_i = X_i$ except for finitely many *i*-s). Let $\rho_i = d_i/(1+d_i)$; it preserves the topology of X_i by Problem 1a. Prove that

$$\rho(x,y) = \sum_{j=1}^{\infty} \frac{\rho_j(x_j, y_j)}{2^j}$$

defines a distance on X, and that the topology given by ρ coincides with the product topology. Hint: Let U be an open set in the basis for the product topology, and let $x \in U$. Prove that there exists r > 0 s.t. $B_{\rho}(x,r) \subset U$. Conversely, let $y \in B_{\rho}(x,r)$. Prove that there exists a basis set U for the product topology s.t. $y \in U \subset B_{\rho}(x,r)$.

Solution:

The proof that ρ defines the distance is routine. We focus on the second part of the problem, that the distance induces the product topology on $\Pi_j X_j$.

By Problem 1, we know that d_j and $\rho_j = d_j/(1 + d_j)$ determine the same topology on X_j . We know that ρ_j satisfies $\rho_j \leq 1$; the distance on the product is defined by

$$\rho(x,y) = \sum_{j=1}^{\infty} \frac{\rho_j(x_j, y_j)}{2^j}.$$

Let

$$U = U_1 \times U_2 \times \ldots \times U_m \times X_{m+1} \times \ldots$$

be a cylinder in the product topology, and let $x = (x_1, x_2, \ldots) \in U$. Since each U_j is open, there exist $r_j, 1 \leq j \leq m$ such that $B(x_j, r_j) \subset U_j$, where the ball is taken with respect to the distance ρ_j . We want to find r such that

$$B_{\rho}(x,r) \subset B_{\rho_j}(x_j,r_j), \qquad 1 \le j \le m.$$
(1)

It will then follow that $B_{\rho}(x,r) \subset U$, proving the first part of the required statement.

Now, we claim it suffices to take

$$r < \min_{1 \le j \le m} r_j / 2^j.$$

for (1) to hold. Indeed, if $\rho(x, y) < r$, then $\rho_j(x_j, y_j)/2^j < r$, and it follows that $\rho_j(x_j, y_j) < 2^j \cdot r < r_j$, as required.

In the other direction, let $y \in B_{\rho}(x,r)$. Let $rho(x,y) = r_1 < r$. Let m be such that $2^{-m} < (r-r_1)/4$. We shall choose a set $U = U_1 \times \ldots \times U_m$, where $U_j = B_{\rho_j}(y_j, r_j)$. It is clear that one can choose r_j -s so that

$$\sum_{j=1}^{m} \frac{r_j}{2^j} < \frac{r-r_1}{4}; \tag{2}$$

indeed, it suffices to take $r_j < (r - r_1)/(4m)$. Assume now that $z \in U_1 \times \ldots \times U_m \times X_{m+1} \times \ldots$ Then

$$\rho(y,z) = \sum_{j} \frac{\rho_j(x_j, y_j)}{2^j} < \sum_{j=1}^m r_j 2^j + \sum_{j=m+1}^\infty \frac{1}{2^j} < \frac{r-r_1}{4} + \frac{1}{2^m} < \frac{r-r_1}{2},$$

where we have used the inequality (2) and our choice of m. It follows that $\rho(z, x) \leq \rho(z, y) + \rho(y, x) < r_1 + (r - r_1)/2 < r$, and so $U \subset B_{\rho}(x, r)$ as required, QED.

Problem 3. Let $C^{\infty}[a, b]$ denote the space of infinitely differentiable functions on [a, b] (all the derivatives exist and are continuous). Let

$$d(f,g) = \sum_{k=1}^{\infty} \frac{\max_{x \in [a,b]} |f^{(k)}(x) - g^{(k)}(x)|}{2^k (1 + \max_{x \in [a,b]} |f^{(k)}(x) - g^{(k)}(x)|)}$$

Prove that d defines the distance on $C^{\infty}[a, b]$, and that the resulting metric space is complete. Solution: See solutions to problems in Math 564, Assignment 5, posted on the course page. **Problem 4. Hausdorff distance.** Let $A, B \subset X$, where X is a metric space. Let $U_r(Z) := \{x \in X : d(x, Z) \leq r\}$. Define the Hausdorff distance

$$d_H(A,B) = \inf\{r > 0 : A \subset U_r(B), and B \subset U_r(A)\}.$$

- a) Prove that $d_H \ge 0$, is symmetric and satisfies the triangle inequality.
- b) Prove that $d_H = \max(\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)).$
- c) Prove that $d_H(A, B) \leq r$ if and only if $d(a, B) \leq r$, for all $a \in A$ and $d(b, A) \leq r$ for all $b \in B$.
- d) $d_H(A, \overline{A}) = 0$, where \overline{A} is the closure of A.
- e) Show that if A, B are closed subsets of X, and $d_H(A, B) = 0$, then A = B.

According to e), d_H defines a distance on the set $\mathcal{M}(X)$ of all *closed* subsets of X. **Solution:** See the paper by J. Henrikson on Hausdorff distance

http://www-math.mit.edu/phase2/UJM/vol1/HAUSF.PDF Problem 5. Let $A_n \in \mathcal{M}(X)$ be a sequence of closed subsets of X, and let $d_H(A_n, A) \to 0$ as

- $n \to \infty$, i.e. let $A_n \to A$ in the metric space $(\mathcal{M}(X), d_H)$. Prove that
 - a) A is the set of limits of all converging subsequences $\{a_n\}$ in X, s.t. $a_n \in A_n$ for all n.
 - b) $A = \bigcap_{n=1}^{\infty} (closure \ of \ \cup_{m=n}^{\infty} A_m).$

Next, let X be compact, and $\{A_i\}$ be a sequence of its compact subspaces. Prove that

- c) If $A_{i+1} \subset A_i$ for all i, then $A_k \to \bigcap_{k=1}^{\infty} A_k$ in $\mathcal{M}(X)$.
- d) If $A_i \subset A_{i+1}$ for all *i*, then A_i converges to the closure of $\bigcup_{i=1}^{\infty} A_i$.

Solution:

See the paper by J. Henrikson on Hausdorff distance

http://www-math.mit.edu/phase2/UJM/vol1/HAUSF.PDF

Problem 6. Consider the orthogonal group O(n) consisting of all $n \times n$ orthogonal matrices, i.e. matrices whose columns form an orthonormal basis v_1, \ldots, v_n of \mathbf{R}^n . We introduce the topology on O(n) by considering it as a subspace of \mathbf{R}^{n^2} (consider the matrix entries as coordinates). Show that

- a) O(n) is a closed subset of $\operatorname{Mat}_n(\mathbf{R}) \simeq \mathbf{R}^{n^2}$, by considering the dot products (v_i, v_j) of the columns of matrices in O(n) as functions from $\operatorname{Mat}_n(\mathbf{R})$ into \mathbf{R} .
- b) Show that O(n) is compact.
- c) Prove that O(n) is a group, i.e. if $A, B \in O(n)$, then $AB \in O(n)$, and $A^{-1} \in O(n)$.

Solution, sketch: The mapping $\pi_{ij}: M \to (v_i, v_j)$ is a continuous function for all (i, j), so

$$O(n) = \left(\bigcap_{i \neq j} \pi_{ij}^{-1}(\{0\})\right) \cap \left(\bigcap_{i} \pi_{ii}^{-1}(\{1\})\right)$$

is an intersection of closed sets and hence is closed. Is is also clearly bounded, hence compact by a characterization of compact subsets of \mathbf{R}^{n^2} .

Problem 7. Let $X = C^m[0, 1]$ denote the space of *m* times continuously differentiable functions on [0, 1]. Define the norm on X by

$$||f|| = \sum_{k=0}^{m} \max_{x \in [0,1]} |f^{(k)}(x)|.$$

Prove that $(X, || \cdot ||)$ is a complete metric space. Is it separable? Solution: See solutions to problems in Math 564, Assignment 5, posted on the course page. **Problem 8.**

- a) Compute the area A(r) of the ball of radius r in \mathbb{R}^2 , S^2 , and \mathbb{H}^2 . Hint: the volume element in polar coordinates (r, θ) is given by $rdrd\theta$ in \mathbb{R}^2 ; $\sin rdrd\theta$ on S^2 ; and $\sinh rdrd\theta$ in \mathbb{H}^2 . Where does the volume grow faster? Compute the first 3 terms in the Taylor series expansion of the volume as $r \to 0$; what do you get?
- b) Next, compute he length L(r) of the circle of radius r in \mathbf{R}^2, S^2 , and \mathbf{H}^2 . Hint: the length element in polar coordinates (r, θ) is given by $dr^2 + r^2 d\theta^2$ in \mathbf{R}^2 ; $dr^2 + \sin^2 r d\theta^2$ on S^2 ; and $dr^2 + \sinh^2 r d\theta^2$ in \mathbf{H}^2 .
- c) Describe the behavior of the ratio A(r)/L(r) as $r \to 0$.
- d) Describe the behavior of the ratio L(r)/A(r) as $r \to \infty$ in \mathbf{R}^2 and \mathbf{H}^2 ; and as $r \to \pi$ in S^2 .

Solution: Explained in class. Problem 9.

a) Compute L(r) and A(r) on an infinite k-regular tree, $k \ge 2$. Describe the behavior of the ratio L(r)/A(r) as $r \to \infty$.

b) Do the same for the graph \mathbf{Z}^2 .

Solution: Similar to Problem 8, it is a discrete analogue.

Problem 10. Every real number in $x \in [0, 1]$ can be expanded into a (finite or infinite) continued fraction

$$x = \frac{1}{n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \dots}}},$$

sometimes denoted by $x = [n_1, n_2, n_3, \ldots]$.

- a) Prove that finite continued fractions correspond to rational numbers, while infinite fractions correspond to irrational numbers.
- c) Describe all the *periodic* continued fractions, $x = [n_1, \ldots, n_k, n_1, \ldots, n_k, \ldots]$.

Solution: Let f denote the map $f(x) = \{1/x\}$, where $\{y\}$ denotes the fractional part of y. If

$$x = \frac{1}{n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \dots}}},\tag{3}$$

then the function f can be written as a *shift map*,

$$f([n_1, n_2, n_3, \ldots]) = [n_2, n_3, \ldots].$$

since

$$1/x = n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \dots}}.$$

Clearly, finite continued fractions give rise to rational numbers (clear the denominators). Conversely, if we apply the map f to a rational number $p/q, 0 , the result <math>\{q/p\}$ will have a smaller denominator p, so after $\leq q$ applications of f we shall get 1 and the continued fraction will terminate.

Every periodic real number x satisfies the equation

$$x = \frac{1}{n_1 + \frac{1}{n_2 + \dots + \frac{1}{n_k + x}}}.$$

Clearing the denominators, it is easy to see by induction that x satisfies

$$x = \frac{Ax + B}{Cx + D}$$

where A, B, C, D are integers that depend on n_1, \ldots, n_k ; it follows that x satisfies quadratic equation with integer coefficients, so it is a *quadratic irrational*. In fact, every quadratic irrational gives rise to *eventually periodic* continued fraction, but we won't prove it.