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TAKE HOME MIDTERM 2012 Solutions

Do any 8 of the following 10 problems. Every problem are worth 10 points.
Problem 1.

a) Let X be a metric space with the distance d1. Prove that d2(x, y) = d1(x, y)/(1+d1(x, y)) also
defines the distance on X. Prove that open sets and Cauchy sequences for d1 and d2 coincide.

b) Prove the same results for d3(x, y) = min{d1(x, y), 1}.

c) Define the distance on the set X of all sequences x = (x1, x2, . . .) of real numbers by the
formula

d(x, y) =
∞∑
k=1

|xk − yk|
2k(1 + |xk − yk|)

.

Prove that d defines a distance on X, and that X is complete with respect to d. Is X separable?

Solution: See solutions to problems in Math 564, Assignment 5, posted on the course page.
Problem 2. Let X = ΠiXi be a product of metric spaces, with the distance di. Consider the
product topology on X (a basis of open sets is given by ΠiUi, where Ui = Xi except for finitely
many i-s). Let ρi = di/(1 + di); it preserves the topology of Xi by Problem 1a. Prove that

ρ(x, y) =
∞∑
j=1

ρj(xj , yj)
2j

defines a distance on X, and that the topology given by ρ coincides with the product topology. Hint:
Let U be an open set in the basis for the product topology, and let x ∈ U . Prove that there exists
r > 0 s.t. Bρ(x, r) ⊂ U . Conversely, let y ∈ Bρ(x, r). Prove that there exists a basis set U for the
product topology s.t. y ∈ U ⊂ Bρ(x, r).
Solution:

The proof that ρ defines the distance is routine. We focus on the second part of the problem,
that the distance induces the product topology on ΠjXj .

By Problem 1, we know that dj and ρj = dj/(1 + dj) determine the same topology on Xj . We
know that ρj satisfies ρj ≤ 1; the distance on the product is defined by

ρ(x, y) =
∞∑
j=1

ρj(xj , yj)
2j

.

Let
U = U1 × U2 × . . .× Um ×Xm+1 × . . .

be a cylinder in the product topology, and let x = (x1, x2, . . .) ∈ U . Since each Uj is open, there
exist rj , 1 ≤ j ≤ m such that B(xj , rj) ⊂ Uj , where the ball is taken with respect to the distance
ρj . We want to find r such that

Bρ(x, r) ⊂ Bρj
(xj , rj), 1 ≤ j ≤ m. (1)



It will then follow that Bρ(x, r) ⊂ U , proving the first part of the required statement.
Now, we claim it suffices to take

r < min
1≤j≤m

rj/2j .

for (1) to hold. Indeed, if ρ(x, y) < r, then ρj(xj , yj)/2j < r, and it follows that ρj(xj , yj) < 2j · r <
rj , as required.

In the other direction, let y ∈ Bρ(x, r). Let rho(x, y) = r1 < r. Let m be such that 2−m <
(r − r1)/4. We shall choose a set U = U1 × . . . × Um, where Uj = Bρj (yj , rj). It is clear that one
can choose rj-s so that

m∑
j=1

rj
2j

<
r − r1

4
; (2)

indeed, it suffices to take rj < (r − r1)/(4m). Assume now that z ∈ U1 × . . . × Um × Xm+1 × . . .
Then

ρ(y, z) =
∑
j

ρj(xj , yj)
2j

<

m∑
j=1

rj2j +
∞∑

j=m+1

1
2j

<
r − r1

4
+

1
2m

<
r − r1

2
,

where we have used the inequality (2) and our choice of m. It follows that ρ(z, x) ≤ ρ(z, y)+ρ(y, x) <
r1 + (r − r1)/2 < r, and so U ⊂ Bρ(x, r) as required, QED.
Problem 3. Let C∞[a, b] denote the space of infinitely differentiable functions on [a, b] (all the
derivatives exist and are continuous). Let

d(f, g) =
∞∑
k=1

maxx∈[a,b] |f (k)(x)− g(k)(x)|
2k(1 + maxx∈[a,b] |f (k)(x)− g(k)(x)|)

.

Prove that d defines the distance on C∞[a, b], and that the resulting metric space is complete.
Solution: See solutions to problems in Math 564, Assignment 5, posted on the course page.
Problem 4. Hausdorff distance. Let A,B ⊂ X, where X is a metric space. Let Ur(Z) := {x ∈
X : d(x, Z) ≤ r}. Define the Hausdorff distance

dH(A,B) = inf{r > 0 : A ⊂ Ur(B), and B ⊂ Ur(A)}.

a) Prove that dH ≥ 0, is symmetric and satisfies the triangle inequality.

b) Prove that dH = max(supa∈A d(a,B), supb∈B d(b, A)).

c) Prove that dH(A,B) ≤ r if and only if d(a,B) ≤ r, for all a ∈ A and d(b, A) ≤ r for all b ∈ B.

d) dH(A,A) = 0, where A is the closure of A.

e) Show that if A,B are closed subsets of X, and dH(A,B) = 0, then A = B.

According to e), dH defines a distance on the set M(X) of all closed subsets of X.
Solution: See the paper by J. Henrikson on Hausdorff distance

http://www-math.mit.edu/phase2/UJM/vol1/HAUSF.PDF
Problem 5. Let An ∈ M(X) be a sequence of closed subsets of X, and let dH(An, A) → 0 as
n→∞, i.e. let An → A in the metric space (M(X), dH). Prove that

a) A is the set of limits of all converging subsequences {an} in X, s.t. an ∈ An for all n.

b) A = ∩∞n=1(closure of ∪∞m=n Am).



Next, let X be compact, and {Ai} be a sequence of its compact subspaces. Prove that

c) If Ai+1 ⊂ Ai for all i, then Ak → ∩∞k=1Ak in M(X).

d) If Ai ⊂ Ai+1 for all i, then Ai converges to the closure of ∪∞i=1Ai.

Solution:
See the paper by J. Henrikson on Hausdorff distance
http://www-math.mit.edu/phase2/UJM/vol1/HAUSF.PDF

Problem 6. Consider the orthogonal group O(n) consisting of all n × n orthogonal matrices, i.e.
matrices whose columns form an orthonormal basis v1, . . . , vn of Rn. We introduce the topology on
O(n) by considering it as a subspace of Rn2

(consider the matrix entries as coordinates). Show that

a) O(n) is a closed subset of Matn(R) ' Rn2
, by considering the dot products (vi, vj) of the

columns of matrices in O(n) as functions from Matn(R) into R.

b) Show that O(n) is compact.

c) Prove that O(n) is a group, i.e. if A,B ∈ O(n), then AB ∈ O(n), and A−1 ∈ O(n).

Solution, sketch: The mapping πij : M → (vi, vj) is a continuous function for all (i, j), so

O(n) =
(
∩i 6=jπ−1

ij ({0})
)
∩
(
∩iπ−1

ii ({1})
)

is an intersection of closed sets and hence is closed. Is is also clearly bounded, hence compact by a
characterization of compact subsets of Rn2

.
Problem 7. Let X = Cm[0, 1] denote the space of m times continuously differentiable functions on
[0, 1]. Define the norm on X by

||f || =
m∑
k=0

max
x∈[0,1]

|f (k)(x)|.

Prove that (X, || · ||) is a complete metric space. Is it separable?
Solution: See solutions to problems in Math 564, Assignment 5, posted on the course page.
Problem 8.

a) Compute the area A(r) of the ball of radius r in R2, S2, and H2. Hint: the volume element in
polar coordinates (r, θ) is given by rdrdθ in R2; sin rdrdθ on S2; and sinh rdrdθ in H2. Where
does the volume grow faster? Compute the first 3 terms in the Taylor series expansion of the
volume as r → 0; what do you get?

b) Next, compute he length L(r) of the circle of radius r in R2, S2, and H2. Hint: the length
element in polar coordinates (r, θ) is given by dr2 + r2dθ2 in R2; dr2 + sin2 rdθ2 on S2; and
dr2 + sinh2 rdθ2 in H2.

c) Describe the behavior of the ratio A(r)/L(r) as r → 0.

d) Describe the behavior of the ratio L(r)/A(r) as r →∞ in R2 and H2; and as r → π in S2.

Solution: Explained in class.
Problem 9.

a) Compute L(r) and A(r) on an infinite k-regular tree, k ≥ 2. Describe the behavior of the ratio
L(r)/A(r) as r →∞.



b) Do the same for the graph Z2.

Solution: Similar to Problem 8, it is a discrete analogue.
Problem 10. Every real number in x ∈ [0, 1] can be expanded into a (finite or infinite) continued
fraction

x =
1

n1 + 1
n2+

1
n3+...

,

sometimes denoted by x = [n1, n2, n3, . . .].

a) Prove that finite continued fractions correspond to rational numbers, while infinite fractions
correspond to irrational numbers.

c) Describe all the periodic continued fractions, x = [n1, . . . , nk, n1, . . . , nk, . . .].

Solution: Let f denote the map f(x) = {1/x}, where {y} denotes the fractional part of y. If

x =
1

n1 + 1
n2+

1
n3+...

, (3)

then the function f can be written as a shift map,

f([n1, n2, n3, . . .]) = [n2, n3, . . .].

since
1/x = n1 +

1
n2 + 1

n3+...

.

Clearly, finite continued fractions give rise to rational numbers (clear the denominators). Conversely,
if we apply the map f to a rational number p/q, 0 < p < q, the result {q/p} will have a smaller
denominator p, so after ≤ q applications of f we shall get 1 and the continued fraction will terminate.

Every periodic real number x satisfies the equation

x =
1

n1 + 1
n2+...+

1
nk+x

.

Clearing the denominators, it is easy to see by induction that x satisfies

x =
Ax+B

Cx+D

where A,B,C,D are integers that depend on n1, . . . , nk; it follows that x satisfies quadratic equation
with integer coefficients, so it is a quadratic irrational. In fact, every quadratic irrational gives rise
to eventually periodic continued fraction, but we won’t prove it.


