1 The Implicit Function Theorem

Suppose that (a,b) is a point on the curve F(z,y) = 0 where and suppose that this equation can
be solved for y as a function of x for all (z,y) sufficiently near (a,b). Then this part of the curve is
the graph of a function y = ¢(x) on some interval |x — a| < h with ¢(a) = b. If ¢'(x) exists, we can
compute it by differentiating both sides of the equation F(z, p(x)) = 0 with respect to x to get
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providing that the partial derivatives exist. If %—Z(& o(x)) # 0, we can solve for ¢'(z) and obtain
the well known formula

or, more classically,
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The precise conditions under which the existence of h and ¢ is assured are furnished by the following
theorem, which is the Implicit Function Theorem for functions of two variables.

Theorem 1. If F(a,b) =0 and F(x,y) is continuously differentiable on some open disk with center
(a,b) then, if %—Z(a, b) # 0, there exists an h > 0 and a unique function p(x) defined for |x —a| < h
such that ¢(a) =b and F(x,p(x)) =0 for |x — a| < h. Moreover, on |z — a| < h, the function ¢(x)
is continuously differentiable and
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There is a corresponding theorem for the case where %—I;(a, b) # 0. In this case the curve F(x,y)

is the graph of a function of x = ¢(y) near the point (a,b).
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Example. Except for the two points (£1,0), the curve x? +y? = 1 consists of the two continuously

differentiable functions y = +£v/1 — 22, —1 < = < 1. Notice that for F(z,y) = z? + y? we have

9L — 2y which is zero when y = 0. The points (%1,0) lie on the two branches x = £4/1 — 2,
—yl <y<l1

The general Implicit Function Theorem gives condition under which a system of equations
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can be solved for y1,...,y, as functions of z1, ..., T, say y; = i(z1,...,Ty). Differentiating the
equation
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with respect to x; we get
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These equations with 1 < i < n can be written in the matrix form
D.F+D,FDy = 0.

If D, F is invertible, i.e., if |[D,F| # 0, we get
Dy =—-D,F'D,F.

Let x = (z1,.. -, Zm), Yy = W1,y Yn), a = (a1,...,am), b= (b1,...,by,) and let

F(.Z‘,y) = (Fl(x7y)’ e 7Fn($5y))'

Theorem 2 (Implicit Function Theorem). If F(a,b) =0 and F(z,y) is continuously differen-
tiable on some open disk with center (a,b) then, if |DyF(a,b)| # 0, there exists an h > 0 and a unique
function p(z) = (p1(x),...,on(x)) defined for |z — a| < h such that p(a) = b and F(x,p(x)) =0
for |z — al < h. Moreover, on |x — a| < h, the function p(z) is continuously differentiable and

Dyp(x) = =Dy (a,¢(x)) "' Da(z, p(2)).
Example. Consider the equation F(z,y) = 0 where

Fi(z,y) = 2% + 205 + 47 + 292 — 8 = 0,

Fy(x,y) =1 — 25 +y1 —ys +3=0.

Ifa=(1,1), b= (1,2), we have F(a,b) =0 and

=—10 #0.
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By the Implicit Function Theorem one has, for x = (1, z2) sufficiently close to (1,1),

y = (y1,92) = (p1(2), p2(x)) = ¢(x)
with ¢(1,1) = (1,2) and
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An immediate consequence of the Implicit Function Theorem is the following theorem, known as
the Inverse Function Theorem.

Theorem 3 (Inverse Function Theorem). Let y = f(x), where y = (y1,y2, "+ ,Yn) and x =
(z1,22, - ,xn). If DF(a) is invertible, then, for y near b = f(a) and x near a, we have x = g(y)
and Dg(b) = Df(a)~?t.



