
1 The Implicit Function Theorem

Suppose that (a, b) is a point on the curve F (x, y) = 0 where and suppose that this equation can
be solved for y as a function of x for all (x, y) sufficiently near (a, b). Then this part of the curve is
the graph of a function y = ϕ(x) on some interval |x− a| < h with ϕ(a) = b. If ϕ′(x) exists, we can
compute it by differentiating both sides of the equation F (x, ϕ(x)) = 0 with respect to x to get

∂F
∂x

(x, ϕ(x)) +
∂F
∂y

(x, ϕ(x))ϕ′(x) = 0

providing that the partial derivatives exist. If ∂F
∂y (x, ϕ(x)) 6= 0, we can solve for ϕ′(x) and obtain

the well known formula

ϕ′(x) = −
∂F
∂x (x, ϕ(x))
∂F
∂y (x, ϕ(x))

or, more classically,
dy
dx

= −
∂F
∂x
∂F
∂y

.

The precise conditions under which the existence of h and ϕ is assured are furnished by the following
theorem, which is the Implicit Function Theorem for functions of two variables.

Theorem 1. If F (a, b) = 0 and F (x, y) is continuously differentiable on some open disk with center
(a, b) then, if ∂F

∂y (a, b) 6= 0, there exists an h > 0 and a unique function ϕ(x) defined for |x− a| < h
such that ϕ(a) = b and F (x, ϕ(x)) = 0 for |x− a| < h. Moreover, on |x− a| < h, the function ϕ(x)
is continuously differentiable and

ϕ′(x) = −
∂F
∂x (x, ϕ(x))
∂F
∂y (x, ϕ(x))

There is a corresponding theorem for the case where ∂F
∂x (a, b) 6= 0. In this case the curve F (x, y)

is the graph of a function of x = ψ(y) near the point (a, b).

Example. Except for the two points (±1, 0), the curve x2 + y2 = 1 consists of the two continuously
differentiable functions y = ±

√
1− x2, −1 < x < 1. Notice that for F (x, y) = x2 + y2 we have

∂F
∂y = 2y which is zero when y = 0. The points (±1, 0) lie on the two branches x = ±

√

1− y2,
−1 < y < 1.

The general Implicit Function Theorem gives condition under which a system of equations

F1(x1, . . . , xm, y1, . . . , yn) = 0
F2(x1, . . . , xm, y1, . . . , yn) = 0

...

Fn(x1, . . . , xm, y1, . . . , yn) = 0

can be solved for y1, . . . , yn as functions of x1, . . . , xm, say yi = ϕi(x1, . . . , xm). Differentiating the
equation

Fi(x1, . . . , xm, ϕ1(x1, . . . , xm), . . . , ϕn(x1, . . . , xm) = 0

with respect to xj we get
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∂xj
=

∂Fi
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+ . . . +
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∂yn

∂ϕn

∂xj
.

Using the partial Jacobians
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These equations with 1 ≤ i ≤ n can be written in the matrix form

DxF + DyFDϕ = 0.

If DyF is invertible, i.e., if |DyF | 6= 0, we get

Dϕ = −DyF−1DxF.

Let x = (x1, . . . , xm), y = (y1, . . . , yn), a = (a1, . . . , am), b = (b1, . . . , bm) and let

F (x, y) = (F1(x, y), . . . , Fn(x, y)).

Theorem 2 (Implicit Function Theorem). If F (a, b) = 0 and F (x, y) is continuously differen-
tiable on some open disk with center (a, b) then, if |DyF (a, b)| 6= 0, there exists an h > 0 and a unique
function ϕ(x) = (ϕ1(x), . . . , ϕn(x)) defined for |x − a| < h such that ϕ(a) = b and F (x, ϕ(x)) = 0
for |x− a| < h. Moreover, on |x− a| < h, the function ϕ(x) is continuously differentiable and

Dϕ(x) = −Dy(x, ϕ(x))−1Dx(x, ϕ(x)).

Example. Consider the equation F (x, y) = 0 where

F1(x, y) = x2
1 + 2x2 + y2

1 + 2y2 − 8 = 0,

F2(x, y) = x1 − x2
2 + y1 − y2

2 + 3 = 0.

If a = (1, 1), b = (1, 2), we have F (a, b) = 0 and

|DyF (a, b)| =
∣

∣

∣

∣

2 2
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∣

∣

∣

∣

= −10 6= 0.

By the Implicit Function Theorem one has, for x = (x1, x2) sufficiently close to (1, 1),

y = (y1, y2) = (ϕ1(x), ϕ2(x)) = ϕ(x)

with ϕ(1, 1) = (1, 2) and

Dϕ(x) = −
[

2ϕ1(x) 2
1 −2ϕ2(x)

]−1 [

2x1 2
1 −2ϕ2(x)

]

.

An immediate consequence of the Implicit Function Theorem is the following theorem, known as
the Inverse Function Theorem.

Theorem 3 (Inverse Function Theorem). Let y = f(x), where y = (y1, y2, · · · , yn) and x =
(x1, x2, · · · , xn). If DF (a) is invertible, then, for y near b = f(a) and x near a, we have x = g(y)
and Dg(b) = Df(a)−1.


