MATH 264B Advanced Calculus, Winter 2006

Assignment 6 and solution outlines
1. Compute the Fourier series of f(z) =|cosz|, x € R.

Solution. f is m-periodic, so we set 2l = 7w. Also, f is even, hence, b, = 0 for all n.

Since | cos x| = cosz on [—7, 7] then,
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Eventually,

EFS of f(z) = % + = i (=)™ cos(2nx).
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2. Find HRC and QRS expansions for f(z) =1— x on [0, 1].

Solution. L =1

by y
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a) HRC of f is even, so b, = 0 and
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Hence,
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HRC of f(x) = 5 + = nEZI — cos(nmz).

b) QRS is odd, so a, = 0 for all n and b, = 0 for even n. For odd n we have
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. Solve the diffusion equation
Ugye = Ut

u(0,t) =0, u(10,t) = 100, t € (0, +0o0)
u(z,0) =0, z € (0,10)

using the method of separation of variables.

Solution. We are looking for a solution in the form
u(z,t) = X(x)T(t),

which after standard manipulations (see Section 18.3, pp.954-955 in Grinberg) is
reduced to
2
u(z,t) = H+ Iz + (Jcoskr + K sinkx)e ™,

where H, I, J, K,k are constants to be determined and s # 0.

Applying the boundary condition (0, %) = 0 we get 0 = H+Je """ for all t € (0, +00),
which is possible only if H = J = 0.



Similarly, applying the boundary condition «(10,¢) = 100 we get 10/ = 100 and
Ksin10k = 0. Observe that if K = 0 then u(z,t) = 10z and it can’t satisfy the
initial condition u(z,0) = 0, « € (0,10). Hence, sin 10k = 0 which implies K =

nm 2
a5, n=0,£1,42 ... Superimposing terms sin ("1—751’) e (58) " for all integer numbers

n (it is enough to consider only natural numbers n) we obtain the formal solution

u(z,t) = 10x + Z K, sin (%) e‘(%) t
n=1

in which we have to determine coefficients K,,.

Applying the initial condition u(z,0) = 0 to the formal solution we get

= nmx
—10x = K, sin —
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from which it follows that K,’s are the Fourier coefficients of the HRS expansion of
F(z) = —10x. Thus,

K, = _/ F(I)Sin@ dr = — —10xsin@ dr = — cosnm = —(—=1)".
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Finally,

200 = (—=1)" o )2
u(z,t) = 10x + - Z ( n) sin (nIEf) e (16) .
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. Solve the diffusion equation
Uge = Ut

u(0,t) =25, u,(4,t) =0, t € (0,+00)
u(z,0) =25, z € (0,4)

using the method of separation of variables.

Solution. As in the previous example we are looking for a solution in the form
w(z,t) = H + Iz + (J cos kx + K sin sz )e ",

where H, I, J, K,k are constants to be determined and  # 0.

Applying the boundary condition u(0,t) = 25 we get 25 = H + Je "t for all ¢ €
(0, 400), which is possible only if J =0, H = 25. Thus,
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u(z,t) = 25+ Iz + K sin(kz)e "

We have
2
uy(z,t) = I + Kk cos(kx)e ™,



and applying the boundary condition u,(4,t) = 0 we get 0 = I + Kr cos 4ke "t for
all t € (0,400), which implies I = 0 and Krcos4drx = 0. If K = 0 then u(x,t) =
25 is a solution. If kcosdx = 0 then cosdx = 0 since k # 0, so K = == for
odd natural numbers n (since cos(—x) = cosx it is enough to assume x = =& for
odd natural numbers n). Superimposing the solution u(z,t) = 25 with the terms

nim 2
sin (’”Sm) e_(?) ¢ we obtain the formal solution
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x,t) =25+ K, sm( )e_(T) ¢
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in which we have to determine coefficients K,,.

Applying the initial condition u(x,0) = 0 to the formal solution we get

Z K, sin @
n=1,3,.
which implies K,, = 0 for every odd n. Hence,
u(z,t) =25

is the general solution.



