Department of Mathematics and Statistics McGill University Math 262 Practice Midterm Solutions

INSTRUCTIONS

- You have TWO HOURS to complete the exam.
- Please show how your answers are derived. A correct solution without work will NOT receive full mark.
- Please read each question carefully and answer all questions neatly in the place provided.
- Non-programmable calculators are permitted.
- Formula sheets are not permitted.
- PLEASE NOTE: Invigilators are unable to respond to queries about the interpretation of exam questions. Do your best to answer exam questions as written.

- 1. Calculate the following limits.
 - (a) $\lim_{n \to \infty} \frac{4^n}{n!}$

The limit is equal to 0, since e.g. the ratio $a_{n+1}/a_n = 4/(n+1) \rightarrow 0$, so the terms decay faster than a geometric progression.

(b)
$$\lim_{n \to \infty} \frac{\arctan(n) \cdot (n-1)^n}{n^n}$$

First, $\arctan n \to \pi/2$ as $n \to \infty$. Next, the ratio $(1 - 1/n)^n \to 1/e$ by a result discussed in class. Thus, the limit is $\pi/(2e)$.

(c) $\lim_{n \to \infty} \frac{n^{1/3} \cdot \ln(n^{-2014})}{(n^2 + 5n + 2)^{1/6} \cdot e^{\ln \ln n}}.$ The fraction is equal to

$$\frac{-(2014)\ln n}{(1+5/n+2/n^2)^{1/6}\cdot\ln n} \ \to \ (-2014).$$

2. (a) Determine if the series $\sum_{n=1}^{\infty} \sqrt{n} \cdot \sin(1/n)$ converges or diverges. Hint: first compute the limit $n \cdot \sin(1/n)$.

We first remark that $\lim_{n\to\infty} n \cdot \sin(1/n) = \lim_{n\to\infty} \sin(1/n)/(1/n) = 1$, since $\lim_{x\to 0} \sin x/x = 1$. Accordingly, for large $n, \sqrt{n} \cdot \sin(1/n) \approx (1/\sqrt{n}) \cdot (n \cdot \sin(1/n))$. Using the limit comparison test, we find that the series converges or diverges together with $\sum_n 1/\sqrt{n}$. Since the latter series diverges, so does the original series.

(b) Determine if the series $\sum_{k=3}^{\infty} \frac{1}{k(\ln k)^{1/2}}$ converges or diverges.

We use the integral test. The series converges or diverges together with the integral

$$\int_3^\infty \frac{dx}{x(\ln x)^{1/2}}.$$

Changing variables $u = \ln x$, the integral becomes $\int_{\ln 3}^{\infty} du/u^{1/2} = \infty$ since the power of u is equal to -1/2 > -1; thus the series diverges.

3. (a) Use the integral test to estimate the difference between the partial sum S_{12} of the series $\sum_{n=1}^{\infty} \frac{1}{n^4}$, and the sum of the series.

•

The remainder $|R_{12}| = |S - S_{12}|$ is less than or equal to

$$\int_{12}^{\infty} \frac{dx}{x^4} = [-1/(3x^3)]_{12}^{\infty} = 1/(3 \cdot 12^3).$$

(b) Use the Taylor series of $\cos x$ to estimate the difference between $\cos(\pi/5)$ and the number $1 - \pi^2/(2 \cdot 25) + \pi^4/(24 \cdot 5^4)$.

All the derivatives of $f(x) = \cos x$ satisfy $|f^{(k)}(x)| \leq M := 1$. The remainder satisfies

$$|R_n(x)| \le \frac{Mx^{n+1}}{(n+1)!}.$$

Here $x = \pi/5$ and n = 4, so $|R_4| \le \pi^5/(5^5 \cdot 5!)$. Actually, the 5-th term in the Taylor series is equal to 0, so we also have $|R_5| \le \pi^6/(5^6 \cdot 6!)$.

4. (a) Find all the values of x for which the series $\sum_{n=1}^{\infty} \frac{(x^2-1)^n}{2^n}$ converges.

We use the root test: $|a_n|^{1/n} = |(x^2-1)/2|$, so the series will converge if $|(x^2-1)/2| < 1$ (case 1); and diverge if $|(x^2-1)/2| > 1$ (case 2). The case $|x^2-1| = 2$ is borderline. The case 1 is equivalent to $x^2 - 1 \in]-2, 2[$ or, equivalently, $x^2 \in [0,3[$. This corresponds to $x \in]-\sqrt{3}, +\sqrt{3}[$; for those x the series converges by the root test. The case 2 is equivalent to $|x^2-1| > 2$, or $x^2 > 3$, equivalently $|x| > \sqrt{3}$; for those x the series diverges by the root test.

The borderline case $|x^2-1| = 2$ is equivalent to $x = \pm \sqrt{3}$. In that case, $(x^2-1)/2 = 1$, and the series diverges.

Answer: the series converges for $|x| < \sqrt{3}$, and diverges for $|x| \ge \sqrt{3}$.

(b) Find the sum of the series $\sum_{n=0}^{\infty} x^{n+2}/n!$. Hint: recall the Taylor series of e^x . We have $e^x = \sum_{n=0}^{\infty} x^n/n! = 1 + x + x^2/2! + x^3/3! + \dots$ It follows that

$$x^{2}e^{x} = \sum_{n=0}^{\infty} \frac{x^{n+2}}{n!} = \frac{x^{2} + x^{3} + \frac{x^{4}}{2!} + \frac{x^{5}}{3!} + \dots$$

5. (a) Find the Taylor series of the function $f(x) = \int_0^x (y^2 \cos(y)) \, dy$ near the point x = 0. The Taylor series of the integrand is given by

$$y^{2} \cdot (1 + \sum_{n=1}^{\infty} (-1)^{n} \cdot y^{2n} / (2n)!) = y^{2} + \sum_{n=1}^{\infty} (-1)^{n} \cdot y^{2n+2} / (2n)!.$$

Page 3

$$f(x) = x^3/3 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot x^{2n+3}}{(2n+3) \cdot (2n)!}.$$

6. (a) Consider the space curve

$$\mathbf{r}(t) = \langle e^t, \sqrt{2}t, e^{-t} \rangle$$

where $0 \le t \le 2$. Find **T** and the curvature at the point (1, 0, 1). Find the length of the curve.

The tangent vector $\mathbf{r}'(t) = \langle e^t, \sqrt{2}, -e^{-t} \rangle$. Its norm is equal to $||\mathbf{r}'(t)|| = \sqrt{e^{2t} + 2 + e^{-2t}} = (e^t + e^{-t})$. The length of the curve is equal to

$$\int_0^2 (e^t + e^{-t}) dt = [e^t - e^{-t}]_0^2 = e^2 - e^{-2}.$$

Also

$$\mathbf{T}(\mathbf{t}) = rac{1}{\mathbf{e}^{\mathbf{t}} - \mathbf{e}^{-\mathbf{t}}} \cdot \langle \mathbf{e}^{\mathbf{t}}, \sqrt{2}, -\mathbf{e}^{-\mathbf{t}}
angle.$$

The point (1,0,1) corresponds to t = 0. We have $\mathbf{T}(0) = \langle 1/2, 1/\sqrt{2}, -1/2 \rangle$. We also have $\mathbf{r}'(0) = \langle 1, \sqrt{2}, -1 \rangle$ and $||\mathbf{r}'(0)|| = 2$. Next, $\mathbf{r}''(t) = \langle e^t, 0, e^{-t} \rangle$, $\mathbf{r}''(0) = \langle 1, 0, 1 \rangle$. The curvature at t = 0 is given by

$$\kappa(0) = \frac{||\mathbf{r}'(0) \times \mathbf{r}''(0)||}{||\mathbf{r}'(0)||^3} = \frac{1}{8}||\langle\sqrt{2}, -2, -\sqrt{2}\rangle|| = \frac{\sqrt{8}}{8} = \frac{1}{2\sqrt{2}}.$$