WRITTEN ASSIGNMENT 2

Solutions

Problem 1. (4 points) Consider the space curve $\mathbf{r}(t) = (3t^2, 6t, 3 \ln t)$, where $1 \le t \le 3$.

- a) Find $\mathbf{r}'(t)$, $\mathbf{r}''(t)$; compute the arc-length of $\mathbf{r}(t)$.
- b) Find **T** and the curvature κ at t=1.

Solution:

a) We'll start with finding $\mathbf{r}'(t)$. This can be done by deriving each component of $\mathbf{r}(t)$ in terms of t:

$$\mathbf{r}'(t) = (6t, 6, \frac{3}{t}).$$

Now, to find the second derivative, $\mathbf{r}''(t)$, we take the derivative of each component of $\mathbf{r}'(t)$ in terms of t:

$$\mathbf{r}''(t) = (6, 0, \frac{-3}{t^2}).$$

Recall the arc-length equation given by,

$$s(t) = \int_{-t}^{t} |r'(u)| du.$$

In this case, this is calculated as follows,

$$s(t) = \int_{1}^{3} \sqrt{(6t)^{2} + (6)^{2} + (\frac{3}{t})^{2}} dt$$

$$= \int_{1}^{3} \sqrt{36t^{2} + 36 + \frac{9}{t^{2}}} dt$$

$$= \int_{1}^{3} \frac{1}{t} \sqrt{36t^{4} + 36t^{2} + 9} dt$$

$$= \int_{1}^{3} \frac{1}{t} \sqrt{(6t^{2} + 3)^{2}} dt$$

$$= \int_{1}^{3} \frac{1}{t} (6t^{2} + 3) dt$$

$$= \int_{1}^{3} 6t + \frac{3}{t} dt$$

$$= [3t^2 + 3 \ln t] |_1^3$$

= 24 + 3 \ln 3.

b) Recall that the unit tangent vector **T** is found through the equation,

$$\mathbf{T} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}.$$

From part a), we have $\mathbf{r}'(t)$ so we just need to find the magnitude,

$$|\mathbf{r}'(t)| = \frac{1}{t}(6t^2 + 3).$$

Now, putting $\mathbf{r}'(t)$ and $|\mathbf{r}'(t)|$ back into the equation for the unit tangent, we have,

$$\mathbf{T} = \frac{(6t, 6, \frac{3}{t})}{\frac{1}{t}(6t^2 + 3)} = \frac{(6t^2, 6t, 3)}{6t^2 + 3}.$$

When t = 1,

$$\mathbf{T}(1) = \frac{(6,6,3)}{9} = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3}).$$

The curvature is given by the equation,

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}
= \frac{|\mathbf{i} \quad \mathbf{j} \quad \mathbf{k}|}{|6t \quad 6 \quad \frac{3}{t}} |
= \frac{|6t \quad 0 \quad -\frac{3}{t^2}|}{(\frac{1}{t}(6t^2 + 3))^3}
= \frac{|(-\frac{18}{t^2}, \frac{36}{t}, -36)|}{\frac{1}{t^3}(6t^2 + 3)^3}
= \frac{\sqrt{(\frac{18}{t^2})^2 + (\frac{36}{t})^2 + 36^2}}{\frac{1}{t^3}(6t^2 + 3)^3}
\kappa(1) = \frac{\sqrt{(18)^2 + (36)^2 + 36^2}}{(9)^3} = \frac{2}{27}.$$

Problem 2. (4 points) Find T, N, B for the following curves:

a)
$$\mathbf{r}(t) = (t^2, 2t^3/3, t)$$
 at $t = 1$;

b)
$$\mathbf{r}(t) = (\cos t, \sin t, \ln \cos t)$$
 at $t = 0$.

Solution:

a) To calculate the unit tangent, we need to find $\mathbf{r}(t)$ and $|\mathbf{r}(t)|$:

$$\mathbf{r}'(t) = (2t, 2t^2, 1)$$

and

$$|\mathbf{r}'(t)| = \sqrt{(2t)^2 + (2t^2)^2 + 1^2} = \sqrt{4t^4 + 4t^2 + 1} = \sqrt{(2t^2 + 1)^2} = 2t^2 + 1.$$

The unit tangent is therefore given by,

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}(t)|} = \frac{1}{2t^2 + 1}(2t, 2t^2, 1).$$

Evaluating the above at t = 1 gives,

$$\mathbf{T}(1) = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3}).$$

To find the unit normal, we need \mathbf{T}' and $|\mathbf{T}'|$:

$$\mathbf{T}'(t) = \left(\frac{2}{2t^2 + 1} - \frac{2t(4t)}{(2t^2 + 1)^2}, \frac{4t}{2t^2 + 1} - \frac{2t^2(4t)}{(2t^2 + 1)^2}, -\frac{4t}{(2t^2 + 1)^2}\right)$$
$$= \left(\frac{2}{2t^2 + 1} - \frac{8t^2}{(2t^2 + 1)^2}, \frac{4t}{2t^2 + 1} - \frac{8t^3}{(2t^2 + 1)^2}, -\frac{4t}{(2t^2 + 1)^2}\right).$$

Now,

$$\mathbf{T}'(1) = (\frac{2}{3} - \frac{8}{9}, \frac{4}{3} - \frac{8}{9}, -\frac{4}{9}) = (-\frac{2}{9}, \frac{4}{9}, -\frac{4}{9}),$$

and

$$\mid \mathbf{T}'(1) \mid = \sqrt{(\frac{2}{9})^2 + (\frac{4}{9})^2 + (\frac{4}{9})^2} = \frac{2}{3}.$$

Substituting the above into the equation for N gives,

$$\mathbf{N} = \frac{\left(-\frac{2}{9}, \frac{4}{9}, -\frac{4}{9}\right)}{\frac{2}{3}} = \left(-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right).$$

The unit binormal is calculated by taking the cross product of the tangent and the normal vectors,

$$\mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{vmatrix}$$
$$= (\frac{-4}{9} - \frac{2}{9}, \frac{4}{9} - \frac{1}{9}, \frac{4}{9} + \frac{2}{9})$$
$$= (\frac{-2}{3}, \frac{1}{3}, \frac{2}{3})$$

b) To calculate the unit tangent, we need to find $\mathbf{r}(t)$ and $|\mathbf{r}(t)|$:

$$\mathbf{r}'(t) = (-\sin t, \cos t, \frac{1}{\cos t}(-\sin t))$$
$$= (-\sin t, \cos t, -\tan t)$$

and

$$|\mathbf{r}'(t)| = \sqrt{(\sin t)^2 + (\cos t)^2 + (-\tan t)^2}$$
$$= \sqrt{1 + \tan^2 t}$$
$$= \sqrt{\sec^2 t}$$
$$= \sec t.$$

The unit tangent is therefore given by,

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}(t)|}$$

$$= (\frac{-\sin t}{\sec t}, \frac{\cos t}{\sec t}, \frac{-\tan t}{\sec t})$$

$$= (-\sin t \cos t, \cos^2 t, -\sin t).$$

Evaluating the above at t = 0 gives,

$$\mathbf{T}(0) = (-\sin 0 \cos 0, \cos^2 0, -\sin 0) = (0, 1, 0).$$

The unit normal vector requires $\mathbf{T}'(t)$ which is given by,

$$\mathbf{T}'(t) = (-\cos^2 t + \sin^2 t, -2\sin t \cos t, -\cos t),$$

evaluating this at t = 0 gives

$$\mathbf{T}'(0) = (-1, 0, -1)$$

with magnitude

$$|\mathbf{T}'(0)| = \sqrt{1^2 + 1^2} = \sqrt{2}.$$

The unit normal is therefore given by,

$$\mathbf{N}(0) = \frac{(-1, 0, -1)}{\sqrt{2}} = (-\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}).$$

The binormal can be calculated in the same way as previously done and is given by

$$\mathbf{B}(0) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{vmatrix}$$
$$= \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

Problem 3. (4 points) Verify the following identities:

- a) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w};$
- b) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}).$

You can use any properties of the determinant that you know.

Proof:

a) Let $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$ with respect to the standard basis.

From this, we have

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = (v_2 w_3 - v_3 w_2) \mathbf{i} - (v_1 w_3 - v_3 w_1) \mathbf{j} + (v_1 w_2 - v_2 w_1) \mathbf{k},$$

then we have

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_2 w_3 - v_3 w_2 & -v_1 w_3 + v_3 w_1 & v_1 w_2 - v_2 w_1 \end{vmatrix}$$

$$= (u_2(v_1 w_2 - v_2 w_1) - u_3(-v_1 w_3 + v_3 w_1))\mathbf{i}$$

$$- (u_1(v_1 w_2 - v_2 w_1) - u_3(v_2 w_3 - v_3 w_2))\mathbf{j}$$

$$+ (u_1(-v_1 w_3 + v_3 w_1) - u_2(v_2 w_3 - v_3 w_2))\mathbf{k}$$

$$= ((\mathbf{u} \cdot \mathbf{w})v_1 - (\mathbf{u} \cdot \mathbf{v})w_1)\mathbf{i}$$

$$+ ((\mathbf{u} \cdot \mathbf{w})v_2 - (\mathbf{u} \cdot \mathbf{v})w_2)\mathbf{j}$$

$$+ ((\mathbf{u} \cdot \mathbf{w})v_3 - (\mathbf{u} \cdot \mathbf{v})w_3)\mathbf{k}$$

$$= (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})w_3$$

b) Note that

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}) \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

With the properties of determinant, say, if two rows of a determinant interchanged, then the determinant changes signs, the identity $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$ follows.

Problem 4. (4 points)

- a) Find the distance between the lines x + 2y = 3, y + 2z = 3 and x + y + z = 6, x 2z = -5.
- b) Show that the line x 2 = (y + 3)/2 = (z 1)/4 is parallel to the plane 2y z = 1. What is the distance between the line and the plane?

Solution:

a) The two plans x + 2y = 3, y + 2z = 3 have normals

$$\mathbf{n}_1 = \mathbf{i} + 2\mathbf{j}, \quad \mathbf{n}_2 = \mathbf{j} + 2\mathbf{k}.$$

Thus a direction vector of the line l_1 of their intersection is

$$\mathbf{v}_1 = \mathbf{n}_1 \times \mathbf{n}_2 = (\mathbf{i} + 2\mathbf{j}) \times (\mathbf{j} + 2\mathbf{k}) = 4\mathbf{i} - 2\mathbf{j} + \mathbf{k}.$$

Let z = 0, then $P_1 = (-3, 3, 0) \in l_1$;

Similarly, the two plans x + y + z = 6, x - 2z = -5 have normals

$$\mathbf{n}_3 = \mathbf{i} + \mathbf{j} + \mathbf{k}, \quad \mathbf{n}_4 = \mathbf{i} - 2\mathbf{k}.$$

Thus a direction vector of the line l_2 of their intersection is

$$\mathbf{v}_2 = \mathbf{n}_3 \times \mathbf{n}_4 = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (\mathbf{i} - 2\mathbf{k}) = -2\mathbf{i} + 3\mathbf{j} - \mathbf{k},$$

Let z = 0, then $P_2 = (-5, 11, 0) \in l_2$.

Therefore

$$\mathbf{v}_1 \times \mathbf{v}_2 = (4\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \times (-2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) = -\mathbf{i} + 2\mathbf{j} + 8\mathbf{k},$$

then the distance between the line l_1 and l_2 is given by

$$s = \frac{|\overrightarrow{P_1P_2} \cdot (\mathbf{v_1} \times \mathbf{v_2})|}{|\mathbf{v_1} \times \mathbf{v_2}|}$$

$$= \frac{1}{\sqrt{1+2^2+8^2}} |(-2\mathbf{i}+8\mathbf{j}) \cdot (-\mathbf{i}+2\mathbf{j}+8\mathbf{k})|$$

$$= \frac{18}{\sqrt{69}}$$

$$= \frac{6\sqrt{69}}{23}.$$

b) Note that the line l is the intersection of plans 2(x-2) = y+3 and 2(y+3) = z-1. Their respective normals is

$$\mathbf{n}_1 = 2\mathbf{i} - \mathbf{j}, \quad \mathbf{n}_2 = 2\mathbf{j} - \mathbf{k},$$

Thus a direction vector of the line l is

$$\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = (2\mathbf{i} - \mathbf{j}) \times (2\mathbf{j} - \mathbf{k}) = \mathbf{i} + 2\mathbf{j} + 4\mathbf{k}.$$

On the other hand, the plane H defined by 2y - z = 1 has normal

$$\mathbf{n} = 2\mathbf{j} - \mathbf{k}$$
.

Since

$$\mathbf{v} \cdot \mathbf{n} = (\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) = 0,$$

therefore, the line l is parallel to the plane H.

Moreover, since the line l is parallel to the plane H, the distance between l and H equals the distance from any point $P \in l$ to H. We may take $P = (2, -3, 1) \in l$, then

distance between
$$l$$
 and $H = \frac{|2 \cdot (-3) - 1 - 1|}{\sqrt{0^2 + 2^2 + 1^2}} = \frac{8}{\sqrt{5}} = \frac{8\sqrt{5}}{5}$.

Problem 5. (4 points)

- a) Express the length of the curve $\mathbf{r} = (at^2, bt, c \cdot \ln t), 1 \le t \le T$ as a definite integral. Evaluate the integral if $b^2 = 4ac$.
- b) Find the arc length parametrization of the curve $\mathbf{r} = (3t\cos t, 3t\sin t, 2\sqrt{2}t^{3/2})$.

Solution:

a) We compute

$$\mathbf{r}'(t) = (2at, b, \frac{c}{t}),$$

then

$$\frac{ds}{dt} = \left| \frac{d\mathbf{r}}{dt} \right| = \sqrt{4a^2t^2 + b^2 + \frac{c^2}{t^2}} = \sqrt{(2at + \frac{c}{t})^2 + (b^2 - 4ac)},$$

Therefore

arc length =
$$\int_{1}^{T} \sqrt{(2at + \frac{c}{t})^2 + (b^2 - 4ac)} dt$$
.

In particular, if $b^2 = 4ac$ (Since $ac \ge 0$, let us assume $a, c \ge 0$), then

arc length =
$$\int_{1}^{T} (2at + \frac{c}{t})dt = (at^{2} + c \ln t)\Big|_{1}^{T} = a(T^{2} - 1) + c \ln T.$$

b) Note that the curve is defined on $[0, +\infty)$, then

$$\frac{d\mathbf{r}}{dt} = (3(\cos t - t\sin t), 3(\sin t + t\cos t), 3\sqrt{2t})$$

and thus

$$\begin{aligned}
\frac{ds}{dt} &= \left| \frac{d\mathbf{r}}{dt} \right| \\
&= 3\sqrt{(\cos t - t\sin t)^2 + (\sin t + t\cos t)^2 + 2t} \\
&= 3\sqrt{1 + t^2 + 2t} \\
&= 3(t+1) > 0,
\end{aligned}$$

thus s(t) is a strictly increasing function of t, and t = t(s) can be parametrized in terms of arc length s either. Moreover, s(0) = 0, thus

$$s = \frac{3}{2}t^2 + 3t.$$

Solve t in terms of s, then

$$t = \sqrt{1 + \frac{2}{3}s} - 1.$$

From this, we obtain the arc length parametrization:

$$\mathbf{r}(s) = (3t\cos t, 3t\sin t, 2\sqrt{2}t^{3/2}),$$

where
$$t = \sqrt{1 + \frac{2}{3}s} - 1$$
, $s \ge 0$.

Problem 6. (4 points)

Find $\mathbf{T}, \mathbf{N}, \mathbf{B}$, curvature and torsion at a general point on the curve $\mathbf{r} = (e^t \cos t, e^t \sin t, e^t)$. Solution:

(I) Write

$$\mathbf{r}(t) = e^t(\cos t, \sin t, 1),$$

we first compute the velocity,

$$\frac{ds}{dt} = \mathbf{r}'(t) = e^t(\cos t, \sin t, 1) + e^t(-\sin t, \cos t, 0) = e^t(\cos t - \sin t, \sin t + \cos t, 1)$$

then we obtain

$$|\mathbf{r}'(t)| = e^t \sqrt{(\cos t - \sin t)^2 + (\sin t + \cos t)^2 + 1} = \sqrt{3}e^t.$$

The Frenet frame is

$$\widehat{\mathbf{T}}(t) = \frac{1}{|\mathbf{r}'(t)|} \mathbf{r}'(t)$$

$$= \frac{1}{\sqrt{3}} (\cos t - \sin t, \sin t + \cos t, 1)$$

$$\widehat{\mathbf{N}}(t) = \frac{T'(t)}{|T'(t)|}$$

$$= \frac{1}{\sqrt{2}} (-\sin t - \cos t, \cos t - \sin t, 0)$$

$$\widehat{\mathbf{B}}(t) = \widehat{\mathbf{T}}(t) \times \widehat{\mathbf{N}}(t)$$

$$= \frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos t - \sin t & \sin t + \cos t & 1 \\ -\sin t - \cos t & \cos t - \sin t & 0 \end{vmatrix}$$
$$= \frac{1}{\sqrt{6}} (\sin t - \cos t, -\sin t - \cos t, 2)$$

The curvature is

$$\kappa(t) = \left| \frac{dt}{ds} \frac{d}{dt} \widehat{\mathbf{T}} \right| = \frac{|\widehat{\mathbf{T}}'(t)|}{|\mathbf{r}'(t)|} = \frac{\left| \frac{1}{\sqrt{3}} (-\sin t - \cos t, \cos t - \sin t, 0) \right|}{\sqrt{3}e^t} = \frac{\sqrt{2}}{3}e^{-t},$$

Next we compute the torsion,

$$\frac{d}{dt}\widehat{\mathbf{B}} = \frac{1}{\sqrt{6}}(\sin t + \cos t, \sin t - \cos t, 2).$$

With the definition of torsion

$$\frac{d}{dt}\widehat{\mathbf{B}} = \frac{ds}{dt}\frac{d}{ds}\widehat{\mathbf{B}} = -|\mathbf{r}'(t)|\tau\widehat{\mathbf{N}},$$

therefore

$$\tau(t) = \frac{1}{3}e^{-t}.$$

(II) Alternatively, we apply the general formula with respect to general parametrization. Write

$$\mathbf{r}(t) = e^t(\cos t, \sin t, 1),$$

we first compute

$$\mathbf{r}'(t) = e^{t}(\cos t, \sin t, 1) + e^{t}(-\sin t, \cos t, 0)$$

$$= e^{t}(\cos t - \sin t, \sin t + \cos t, 1)$$

$$\mathbf{r}''(t) = e^{t}(\cos t - \sin t, \sin t + \cos t, 1) + e^{t}(-\sin t - \cos t, \cos t - \sin t, 0)$$

$$= e^{t}(-2\sin t, 2\cos t, 1)$$

$$\mathbf{r}'''(t) = e^{t}(-2\sin t, 2\cos t, 1) + e^{t}(-2\cos t, -2\sin t, 0)$$

$$= e^{t}(-2(\sin t + \cos t), -2(\sin t - \cos t), 1)$$

From these, we obtain

$$|\mathbf{r}'(t)| = e^t \sqrt{(\cos t - \sin t)^2 + (\sin t + \cos t)^2 + 1} = \sqrt{3}e^t$$

$$\mathbf{r}'(t) \times \mathbf{r}''(t) = e^t e^t \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos t - \sin t & \sin t + \cos t & 1 \\ -2\sin t & 2\cos t & 1 \end{vmatrix}$$

$$= e^{2t}(\sin t - \cos t, -\sin t - \cos t, 2).$$

The Frenet frame can be determined as

$$\widehat{\mathbf{T}}(t) = \frac{1}{|\mathbf{r}'(t)|} \mathbf{r}'(t)$$

$$= \frac{1}{\sqrt{3}} (\cos t - \sin t, \sin t + \cos t, 1)$$

$$\widehat{\mathbf{B}}(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}$$

$$= \frac{1}{\sqrt{6}} (\sin t - \cos t, -\sin t - \cos t, 2)$$

$$\widehat{\mathbf{N}}(t) = \widehat{\mathbf{B}}(t) \times \widehat{\mathbf{T}}(t)$$

$$= \frac{1}{\sqrt{6}} \frac{1}{\sqrt{3}} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \sin t - \cos t & -\sin t - \cos t & 2 \\ \cos t - \sin t & \sin t + \cos t & 1 \end{vmatrix}$$

$$= \frac{1}{\sqrt{2}} (-\sin t - \cos t, \cos t - \sin t, 0).$$

The curvature is

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{\sqrt{6}e^{2t}}{(\sqrt{3}e^t)^3} = \frac{\sqrt{2}}{3}e^{-t},$$

and the torsion is

$$\tau(t) = \frac{(\mathbf{r}'(t) \times \mathbf{r}''(t)) \cdot \mathbf{r}'''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|^2} = \frac{2e^{3t}}{(\sqrt{6}e^{2t})^2} = \frac{1}{3}e^{-t}.$$