McGill University
Math 325A: Differential Equations

LECTURE 6: SOME APPLICATIONS
FIRST ORDER DIFFERENTIAL EQUATIONS (IV)

(Text: Sections 3.1,3.2,3.4)

We now give a few applications of differential equations.

1 Falling Bodies with Air Resistance

Let z be the height at time ¢ of a body of mass m falling under the influence of gravity. If g is
the force of gravity and bw is the force on the body due to air resistance, Newton’s Second Law of

Motion gives the DE
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where v = Z%. This DE has the general solution

v(t) = mg/b+ Be /™,

The limit of v(t) as t — oo is mg/b, the terminal velocity of the falling body. Integrating once more,
we get

z(t) = C + (mg/b)t — m—bBe*”t/m.

2 Mixing Problems

Suppose that a tank is being filled with brine at the rate of a units of volume per second and at the
same time b units of volume per second are pumped out. If the concentration of the brine coming
in is ¢ units of weight per unit of volume. If at time ¢ = ¢ the volume of brine in the tank is Vj and
contains o units of weight of salt, what is the quantity of salt in the tank at any time ¢, assuming
that the tank is well mixed?

If z is the quantity of salt at any time ¢, we have ac units of weight of salt coming in per second

and
bx

Vo + (a — b)(t — to)
units of weight of salt going out. Hence
dz bz

= ac

dt Vot (@-b)(t—to)’

a linear equation. If a = b it has the solution
z(t) = Vo + (zg — cVp)e *E—t0)/ Vo,

As a numerical example, suppose a = b = 1 liter/min, ¢ = 1 grams/liter, V5 = 1000 liters, zo = 0
and tg = 0. Then
z(t) = 1000(1 — e—00%)



is the quantity of salt in the tank at any time ¢. Suppose that after 100 minutes the tank springs a
leak letting out an additional liter of brine per minute. To find out how much salt is in the tank 12
hours after the leak begins we use the DE
d_x 1 2z 2 -
dt = 1000 — (¢ — 100) 1100 — ¢
This equation has the general solution
z(t) = (1100 — ¢) + C(1100 — ¢)°.

Using 2(100) = 1000(1 — e~!) = 95.16, we find C = —9.0484 x 10~* and z(820) = 279.75. When
t = 1100 the tank is empty and the differential equation is no a valid description of the physical
process. The concentration at time 100 < ¢ < 1100 is

x(t)
1100 — ¢
which converges to 1 as ¢ tends to 1100.

=1+ C(1100 — t)

3 Heating and Cooling Problems

Newton’s Law of Cooling states that the rate of change of the temperature of a cooling body is
proportional to the difference between its temperature 7' and the temperature of its surrounding
medium. Assuming the surroundings maintain a constant temperature T, we obtain the differential
equation
dr
dt
where k is a constant. This is a linear DE with solution

T="T,+ Ce *t.

= —k(T -1Ty),

If T(O) = TO then C' = Tg - Ts and
T =T, + (To — Ty)e ",

As an example consider the problem of determining the time of death of a healthy person who
died in his home some time before noon when his body was 70 degrees. If his body cooled another
5 degrees in 2 hours when did he die, assuming that the room was a constant 60 degrees. Taking
noon as t = 0 we have Ty = 70. Since T, = 60, we get 65— 60 = 10e~2* from which k = In(2)/2. To
determine the time of death we use the equation 98.6 — 60 = 10e ** which gives t = —In(3.86)/k =
—21n(3.86)/In(2) = —3.90. Hence the time of death was 8 : 06 AM.

4 Radioactive Decay

A radioactive substance decays at a rate proportional to the amount of substance present. If x is

the amount at time ¢ we have P
iy

i
where k is a constant. The solution of the DE is z = z(0)e *. If ¢ is the half-life of the substance
we have by definition

—kx,

2(0)/2 = z(0)e~ke
which gives k = In(2)/c.



