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Math 325A: Differential Equations

LECTURE 22: EIGENVECTOR METHOD:

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS (II)

(Text: Chap. 5)

1 Introduction

In this lecture we will apply the eigenvector method to the solution of a second order system of the
type arising in the solution of a mass-spring system with two masses. The system we will consider
consists of two masses with mass m1, m2 connected by a spring with spring constant k2. The first
mass is attached to the ceiling of a room by a spring with spring constant k1 and the second mass
is attached to the floor by a spring with spring constant k3 at a point immediately below the point
of attachment to the ceiling. Assume that the system is under tension and in equilibrium. If x1(t),
x1(t) are the displacements of the two masses from their equilibrium position at time t, the positive
direction being upward, then the motion of the system is determined by the system

m1
d2x1

dt2
= −k1x1 − k2(x1 − x2) = −(k1 + k2)x1 + k2x2,

m2
d2x2

dt2
= k2(x1 − x2)− k3x2 = k2x1 − (k2 + k3)x2.

The system can be written in matrix form d2X
dt2 = AX where

X =
[
x1

x2

]
, A =

[−(k1 + k2)/m1 k2/m2

k2/m1 −(k2 + k3)/m2

]
.

The characteristic polynomial of A is

r2 +
m2(k1 + k2) + m1(k2 + k3)

m1m2
r + (

(k1 + k2)(k2 + k3)
m1m2

− k2
2

m1m2
).

The discriminant of this polynomial is

∆ =
(m2(k1 + k2) + m1(k2 + k3))2 − 4(k1 + k2)(k2 + k3)m1m2 + 4k2

2m1m2

m2
1m

2
2

=
(m2(k1 + k2)−m1(k2 + k3))2 + 4m1m2k2

2

m2
1m

2
2

> 0.

Hence the eigenvalues of A are real, distinct and negative since the trace of A is negative while the
determinant is positive. Let r1 > r2 be the eigenvalues of A and let

P1 =
[

1
s1

]
, P2 =

[
1
s2

]
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be (normalized) eigenvectors with eigenvalues r1, r2 respectively. We have

s1 =
m1r1 + k1 + k2

k2
, s2 =

m1r2 + k1 + k2

k2

and, if P is the matrix with columns P1, P2, we have

P−1AP =
[
r1 0
0 r2

]
.

If we make a change of variables X = PY with Y =
[
y1

y2

]
, we have

d2Y

dt2
=

[
r1 0
0 r2

]

so that our system in the new variables y1, y2 is

d2y1

dt2
= r1y1

d2y2

dT 2
= r2y2.

Setting ri = −ω2
i with ωi > 0, this uncoupled system has the general solution

y1 = A1 sin(ω1t) + B1 cos(ω1t), y2 = A2 sin(ω2t) + B2 cos(ω2t).

Since X = PY = y1P1 + y2P2, we obtain the general solution

X = (A1 sin(ω1t) + B1 cos(ω1t))P1 + (A2 sin(ω2t) + B2 cos(ω2t))P2.

The two solutions with Y (0) = Pi are of the form

X = (A sin(ωit) + B cos(ωit))Pi =
√

A2 + B2 sin(ωit + θi)Pi.

These motions are simple harmonic with frequencies ωi/2π and are called the fundamental mo-
tions of the system. Since any motion of the system is the sum (superposition) of two such motions
any periodic motion of the system must have a period which is an integer multiple of both the
fundamental periods 2π/ω1, 2π/ω2. This happens if and only if ω1/ω2 is a rational number. If
X ′(0) = 0, the fundamental motions are of the form

X = Bi cos(ωit)Pi

and if X(0) = 0 they are of the form

X = Ai sin(ωit)Pi.

These four motions are a basis for the solution space of the given system. The motion is completely
determined once X(0) and X ′(0) are known since

X(0) = PY (0) = P

[
B1

B2

]
, X ′(0) = PY ′(0) = P

[
ω1A1

ω2A2

]
.
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As a particular example, consider the case where m1 = m2 = m and k1 = k2 = k3 = k. The
system is symmetric and

A =
k

m

[−2 1
1 −2

]
,

a symmetric matrix. The characteristic polynomial is

r2 + 4
k

m
r + 3

k2

m2
= (r +

k

m
)(r + 3

k

m
).

The eigenvalues are r1 = −k/m, r2 = −3k/m. The fundamental frequencies are ω1 =
√

k/m,
ω2 =

√
3k/m. The normalized eigen vectors are

P1 =
[
1
1

]
, P2 =

[
1
−1

]
.

The fundamental motions with X ′(0) = 0 are

X = A cos(
√

k/m t)
[
1
1

]
, X = A cos(

√
3k/m t)

[
1
−1

]
.

Since the ratio of the fundamental frequencies is
√

3, an irrational number, theses are the only two
periodic motions of the mass-spring system where the masses are displaced and then let go.

Odds and Ends

If y = f(x) is a solution of the autonomous DE yn = f(y, y′, . . . , yn−1) then so is y = f(x + a)
for any real number a. If the DE is linear and homogeneous with fundamental set y1, y2, . . . , yn then
we must have identities of the form

y1(x + a) = c2y2 + c3y3 + · · ·+ cnyn.

For example, consider the DE y′′ + y = 0. Here sin(x), cos(x) is a fundamental set so we must have
an identity of the form

sin(x + a) = A sin(x) + B cos(x).

Differentiating, we get cos(x + a) = A cos(x) − B sin(x). Setting x = 0 in these two equations we
find A = cos(a), B = sin(a). We obtain in this way the addition formulas for the sine and cosine
functions:

sin(x + a) = sin(x) cos(a) + sin(a) cos(x), cos(x + a) = cos(x) cos(a)− sin(x) sin(a).

The numerical methods for solving DE’s can be extended to systems virtually without change.
In this way we can get approximate solutions for higher order DE’s. For more details consult the
text (Chapter 5).
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