
McGill University
Math 325A: Differential Equations

LECTURE 21: INTRODUCTION TO SYSTEMS OF LINEAR

DIFFERENTIAL EQUATIONS (I)

(Text: Chap. 5)

1 Introduction

In this and the following lecture we will give an introduction to systems of differential equations. For
simplicity, we will limit ourselves to systems of two equations with two unknowns. The techniques
introduced can be used to solve systems with more equations and unknowns. As a motivational
example, consider the the following problem.

1.1 Mathematical Formulation of a Practical Problem

Two large tanks, each holding 24 liters of brine, are interconnected by two pipes. Fresh water flows
into tank A a the rate of 6 L/min, and fluid is drained out tank B at the same rate. Also, 8 L/min
of fluid are pumped from tank A to tank B and 2 L/min from tank B to tank A. The solutions in
each tank are well stirred sot that they are homogeneous. If, initially, tank A contains 5 in solution
and Tank B contains 2 kg, find the mass of salt in the tanks at any time t.

To solve this problem, let x(t) and y(t) be the mass of salt in tanks A and B respectively. The
variables x, y satisfy the system

dx

dt
=
−1
3

x +
1
12

y,

dy

dt
=

1
3
x− 1

3
y.

The first equation gives y = 12dx
dt + 4x. Substituting this in the second equation and simplifying,

we get
d2x

dt2
+

2
3

dx

dt
+

1
12

x = 0.

The general solution of this DE is
x = c1e

−t/2 + c2e
−t/6.

This gives y = 12dx
dt + 4x = −2c1e

−t/2 + 2c2e
−t/6. Thus the general solution of the system is

x = c1e
−t/2 + c2e

−t/6,

y = −2c1e
−t/2 + 2c2e

−t/6.

These equations can be written in matrix form as

X =
[
x
y

]
= c1e

−t/2

[
1
−2

]
+ c2e

−t/6

[
1
2

]
.
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Using the initial condition x(0) = 5, y(0) = 2, we find c1 = 2, c2 = 3. Geometrically, these equations
are the parametric equations of a curve (trajectory of the DE) in the xy-plane (phase plane of the
DE). As t → ∞ we have (x(t), y(t)) → (0, 0). The constant solution x(t) = y(t) = 0 is called an
equilibrium solution of our system. This solution is said to be asymptotically stable if the
general solution converges to it as t → ∞. A system is called stable if the trajectories are all
bounded as t →∞.

Our system can be written in matrix form as dX
dt = AX where

A =
[−1/3 1/12

1/3 −1/3

]
X.

The 2× 2 matrix A is called the matrix of the system. The polynomial

r2 − tr(A)r + det(A) = r2 +
2
3
r +

1
12

where tr(A) is the trace of A (sum of diagonal entries) and det(A) is the determinant of A is called
the characteristic polynomial of A. Notice that this polynomial is the characteristic polynomial
of the differential equation for x. The equations

A

[
1
−2

]
=
−1
2

[
1
−2

]
, A

[
1
2

]
=
−1
6

[
1
2

]

identify
[

1
−2

]
and

[
1
2

]
as eigenvectors of A with eigenvalues −1/2 and −1/6 respectively. More

generally, a non-zero column vector X is an eigenvector of a square matrix A with eigenvalue r if
AX = rX or , equivalently, (rI −A)X = 0. The latter is a homogeneous system of linear equations
with coefficient matrix rI−A. Such a system has a non-zero solution if and only if det(rI−A) = 0.
Notice that

det(rI −A) = r2 − (a + d)r + ad− bc

is the characteristic polynomial of A.

If, in the above mixing problem, brine at a concentration of 1/2 kg/L was pumped into tank A
instead of pure water the system would be

dx

dt
=
−1
3

x +
1
12

y + 3,

dy

dt
=

1
3
x− 1

3
y,

a non-homogeneous system. Here an equilibrium solution would be x(t) = a, y(t) = b where (a, b)
was a solution of

−1
3

x +
1
12

y = −3,

1
3
x− 1

3
y = 0.

In this case a = b = 12. The variables x∗ = x−12, y∗ = y−12 then satisfy the homogeneous system
dx∗

dt
=
−1
3

x∗ +
1
12

y∗,

dy∗

dt
=

1
3
x∗ − 1

3
y∗.

Solving this system as above for x∗, y∗ we get x = x∗ + 12, y = y∗ + 12 as the general solution for
x, y.
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2 (2× 2) System of Linear Equations

We now describe the solution of the system dX
dt = AX for an arbitrary 2× 2 matrix A. In practice,

one can use the elimination method or the eigenvector method but we shall use the eigenvector
method as it gives an explicit description of the solution. There are three main cases depending on
whether the discriminant

∆ = tr(A)2 − 4 det(A)

of the characteristic polynomial of A is > 0, < 0, = 0.

2.1 Case 1: ∆ > 0

In this case the roots r1, r2 of the characteristic polynomial are real and unequal, say r1 < r2. Let Pi

be an eigenvector with eigenvalue ri. Then P1 is not a scalar multiple of P2 and so the matrix P with
columns P1, P2 is invertible. After possibly replacing P2 by −P2, we can assume that det(P ) > 0.
The equation

AP = P

[
r1 0
0 r2

]

shows that

P−1AP =
[
r1 0
0 r2

]
.

If we make the change of variable X = PU with U =
[
u
v

]
, our system becomes

P
dU

dt
= APU or

dU

dt
= P−1APU.

Hence, our system reduces to the uncoupled system

du

dt
= r1u,

dv

dt
= r2v

which has the general solution u = c1e
r1t, v = c2e

r2t. Thus the general solution of the given system
is

X = PU = uP1 + vP2 = c1e
r1tP1 + c2e

r2tP2.

Since tr(A) = r1 + r2, det(A) = r1r2, we see that x(t), y(t) = (0, 0) is an asymptotically stable
equilibrium solution if and only if tr(A) < 0 and det(A) > 0. The system is unstable if det(A) < 0
or det(A) ≥ 0 and tr(A) ≥ 0.

2.2 Case 2: ∆ < 0

In this case the roots of the characteristic polynomial are complex numbers

r = α± iω = tr(A)/2± i
√

∆/4.

The corresponding eigenvectors of A are (complex) scalar multiples of
[

1
σ ± iτ

]
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where σ = (α− a)/b, τ = ω/b. If X is a real solution we must have X = V + V with

V =
1
2
(c1 + ic2)eαt(cos(ωt) + i sin(ωt))

[
1

σ + iτ

]
.

It follows that

X = eαt(c1 cos(ωt)− c2 sin(ωt))
[
1
σ

]
+ eαt(c1 sin(ωt) + c2 cos(ωt))

[
0
τ

]
.

The trajectories are spirals if tr(A) 6= 0 and ellipses if tr(A) = 0. The system is asymptotically
stable if tr(A) < 0 and unstable if tr(A) > 0.

2.3 Case 3: ∆ = 0

Here the characteristic polynomial has only one root r. If A = rI the system is

dx

dt
= rx,

dy

dt
= ry.

which has the general solution x = c1e
rt, y = c2e

rt. Thus the system is asymptotically stable if
tr(A) < 0, stable if tr(A) = 0 and unstable if tr(A) > 0.

Now suppose A 6= rI. If P1 is an eigenvector with eigenvalue r and P2 is chosen with (A−rI)P1 6=
0, the matrix P with columns P1, P2 is invertible and

P−1AP =
[
r 1
0 r

]
.

Setting as before X = PU we get the system

du

dt
= ru + v,

dv

dt
= rv

which has the general solution u = c1e
rt + c2te

rt, v = c2e
rt. Hence the given system has the general

solution
X = uP1 + vP2 = (c1e

rt + c2te
rt)P1 + c2e

rtP2.

The trajectories are asymptotically stable if tr(A) < 0 and unstable if tr(A) ≥ 0.

A non-homogeneous system dX
dt = AX + B having an equilibrium solution x(t) = x1, y(t) = y1

can be solved by introducing new variables x∗ = x− x1, y
∗ = y − y1. Since AX∗ + B = 0 we have

dX∗

dt
= AX∗,

a homogeneous system which can be solved as above.
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