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Math 325A: Differential Equations

LECTURE 2: FIRST ORDER DIFFERENTIAL EQUATIONS (I)

(Text: Sections 2.1, 2.2)

In this lecture we will treat linear and separable first order ODE’s.

1 Linear Equation

The general first order ODE has the form F (x, y, y′) = 0 where y = y(x). If it is linear it can be
written in the form

a0(x)y′ + a1(x)y = b(x)

where a0(x), a(x), b(x) are continuous functions of x on some interval (I). To bring it to normal
form y′ = f(x, y) we have to divide both sides of the equation by a0(x). This is possible only for
those x where a0(x) 6= 0. After possibly shrinking I we assume that a0(x) 6= 0 on (I). So our
equation has the form (standard form)

y′ + p(x)y = q(x)

with p(x) = a1(x)/a0(x) and q(x) = b(x)/a0(x), both continuous on (I). Solving for y′ we get the
normal form for a linear first order ODE, namely

y′ = q(x)− p(x)y.

1.1 Linear homogeneous equation

Let us first consider the simple case: q(x) = 0, namely,

dy

dx
+ p(x)y = 0.

With the chain law of derivative, one may write

y′(x)
y

=
d
dx

ln
[
y(x)

]
= −p(x),

integrating both sides, we derive

ln y(x) = −
∫

p(x)dx + C,

or
y = C1e−

R
p(x)dx,

where C, as well as C1 = eC , is arbitrary constant.



1.2 Linear inhomogeneous equation

We now consider the general case:
dy

dx
+ p(x)y = q(x).

We multiply the both sides of our differential equation with a factor µ(x) 6= 0. Then our equation
is equivalent (has the same solutions) to the equation

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x).

We wish that with a properly chosen function µ(x),

µ(x)y′(x) + µ(x)p(x)y(x) =
d
dx

[
µ(x)y(x)

]
.

For this purpose, the function µ(x) must has the property

µ′(x) = p(x)µ(x), (1)

and µ(x) 6= 0 for all x. By solving the linear homogeneous equation (1), one obtain

µ(x) = e
R

p(x)dx. (2)

With this function, which is called an integrating factor, our equation is reduced to

d
dx

[
µ(x)y(x)

]
= µ(x)q(x), (3)

Integrating both sides, we get

µ(x)y =
∫

µ(x)q(x)dx + C

with C an arbitrary constant. Solving for y, we get

y =
1

µ(x)

∫
µ(x)q(x)dx +

C

µ(x)
= yP (x) + yH(x) (4)

as the general solution for the general linear first order ODE

y′ + p(x)y = q(x).

In solution (4), the first part, yP (x), is a particular solution of the inhomogeneous equation, while
the second part, yH(x), is the general solution of the associate homogeneous solution. Note that for
any pair of scalars a, b with a in (I), there is a unique scalar C such that y(a) = b. Geometrically,
this means that the solution curves y = φ(x) are a family of non-intersecting curves which fill the
region I × R.

Example 1: y′ + xy = x. This is a linear first order ODE in standard form with p(x) = q(x) = x.
The integrating factor is

µ(x) = e
R

xdx = ex2/2.

Hence, after multiplying both sides of our differential equation, we get

d
dx

(ex2/2y) = xex2/2



which, after integrating both sides, yields

ex2/2y =
∫

xex2/2dx + C = ex2/2 + C.

Hence the general solution is y = 1 + Ce−x2/2. The solution satisfying the initial condition y(0) = 1
is y = 1 and the solution satisfying y(0) = a is y = 1 + (a− 1)e−x2/2.

Example 2: xy′ − 2y = x3 sin x,
(x > 0). We bring this linear first order equation to standard form by dividing by x. We get

y′ +
−2
x

y = x2 sin x.

The integrating factor is
µ(x) = e

R −2dx/x = e−2 ln x = 1/x2.

After multiplying our DE in standard form by 1/x2 and simplifying, we get

d
dx

(y/x2) = sin x

from which y/x2 = − cosx + C and y = −x2 cosx + Cx2. Note that the later are solutions to the
DE xy′ − 2y = x3 sin x and that they all satisfy the initial condition y(0) = 0. This non-uniqueness
is due to the fact that x = 0 is a singular point of the DE.

2 Separable Equations.

The first order ODE y′ = f(x, y) is said to be separable if f(x, y) can be expressed as a product of
a function of x times a function of y. The DE then has the form y′ = g(x)h(y) and, dividing both
sides by h(y), it becomes

y′

h(y)
= g(x).

Of course this is not valid for those solutions y = y(x) at the points where φ(x) = 0. Assuming the
continuity of g and h, we can integrate both sides of the equation to get

∫
y′(x)

h
[
y(x)

]dx =
∫

g(x)dx + C.

Assume that
H(y) =

∫
dy

h(y)
,

By chain rule, we have
d
dx

H
[
y(x)

]
= H ′(y)y′(x) =

1
h
[
y(x)

]y′(x),

hence

H
[
y(x)

]
=

∫
y′(x)

h
[
y(x)

]dx =
∫

g(x)dx + C.



Therefore, ∫
dy

h(y)
= H(y) =

∫
g(x)dx + C,

gives the implicit form of the solution. It determines the value of y implicitly in terms of x.

Example 1: y′ = x−5
y2 .

To solve it using the above method we multiply both sides of the equation by y2 to get

y2y′ = (x− 5).

Integrating both sides we get y3/3 = x2/2− 5x + C. Hence,

y =
[
3x2/2− 15x + C1

]1/3

.

Example 2: y′ = y−1
x+3 (x > −3). By inspection, y = 1 is a solution. Dividing both sides of the

given DE by y − 1 we get
y′

y − 1
=

1
x + 3

.

This will be possible for those x where y(x) 6= 1. Integrating both sides we get
∫

y′

y − 1
dx =

∫
dx

x + 3
+ C1,

from which we get ln |y−1| = ln(x+3)+C1. Thus |y−1| = eC1(x+3) from which y−1 = ±eC1(x+3).
If we let C = ±eC1 , we get

y = 1 + C(x + 3)

which is a family of lines passing through (−3, 1); for any (a, b) with b 6= 0 there is only one member
of this family which passes through (a, b). Since y = 1 was found to be a solution by inspection the
general solution is

y = 1 + C(x + 3),

where C can be any scalar.

Example 3: y′ = y cos x
1+2y2 . Transforming in the standard form then integrating both sides we get

∫
(1 + 2y2)

y
dy =

∫
cos xdx + C,

from which we get a family of the solutions:

ln |y|+ y2 = sin x + C,

where C is an arbitrary constant. However, this is not the general solution of the equation, as it
does not contains, for instance, the solution: y = 0. With I.C.: y(0)=1, we get C = 1, hence, the
solution:

ln |y|+ y2 = sin x + 1.


