McGill University
Math 325A: Differential Equations

LECTURE 14 : LINEAR EQUATIONS WITH VARIABLE
COEFFICIENTS

HIGHER ORDER DIFFERENTIAL EQUATIONS (VI)
(Text: Chap. 4)

1 Introduction

In this lecture we will give a few techniques for solving certain linear differential equations with
non-constant coefficients. We will mainly restrict our attention to second order equations. However,
the techniques can be extended to higher order equations. The general second order linear DE is

po(@)y" + pr(x)y' + pa(z)y = q(=).

This equation is called a non-constant coefficient equation if at least one of the functions p; is not a
constant function.

2 Euler Equations
An important example of a non-constant linear DE is Euler’s equation
z?y" + azy' + by =0,

where a,b are constants.

This equation has singularity at £ = 0. The fundamental theorem of existence and uniqueness
of solution holds in the region £ > 0 and =z, 0, respectively. So one must solve the problem in the
region z > 0, or x < 0 separately. We first consider the region z > 0. This Euler equation can be
transformed into a constant coefficient DE by the change of independent variable z = ef. This is
most easily seen by noting that

dy _dydx _ ,dy ,
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so that 32 = e™" 4. In operator form, we have

d_,d__d
dt  dr dz’
If we set D = £, we have -t = e~'D so that
d2
i e 'De™'D = e ?e'De™'D = e *(D — 1)D
so that 2%y” = D(D — 1). By induction one easily proves that
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or "y = D(D —1)---(D —n +1)(y). With the variable ¢, Euler’s equation becomes

d*y dy ;
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which is a linear constant coefficient DE. Solving this for y as a function of ¢ and then making the
change of variable ¢t = In(z), we obtain the solution of Euler’s equation for y as a function of z.
For the region x < 0, we may let —z = ef, or |z| = e’. Then the equation

2y +azy +by=0, (zr<0)
is changed to the same form
d’y dy

Hence, we have the solution y(¢) = y(In |z]) (z < 0).
The above approach, can extend to solve the n-th order Euler equation

l'ny(n) + a1$n71y(n71) + s + any = q(:L-)7
where a1, as,...a, are constants.

Example 1. Solve z%y" + zy' + y = In(z), (z > 0).
Making the change of variable z = e! we obtain

% +y=t
whose general solution is y = A cos(t) + Bsin(t) + ¢. Hence
y = Acos(In(z)) + Bsin(In(z)) + In(z)
is the general solution of the given DE.

Example 2. Solve z%y"" + 22%y" + zy' —y =0, (x> 0).

This is a third order Euler equation. Making the change of variable z = e?, we get
(D(D=1)(D=2)+2D(D - 1) + (D = 1)) (4) = (D - 1)(D* + 1)(y) =0
which has the general solution y = ci1ef + ca sin(t) + c3 cos(t). Hence
y = c1z + casin(In(z)) + ¢3 cos(In(z))

is the general solution of the given DE.
3 Exact Equations
The DE po(z)y" + p1(z)y' + p2(z)y = ¢(z) is said to be exact if

Py +p () + pa(a)y = (Al + Blaly).



In this case the given DE is reduced to solving the linear DE

Az)y + Bz)y = / ¢(@)dz + C
a linear first order DE. The exactness condition can be expressed in operator form as
poD? + p1D + ps = D(AD + B).

Since & (A(z)y' + B(z)y) = A(z)y" + (A'(z) + B(z))y' + B'(z)y, the exactness condition holds if

!
and only if A(z), B(z) satisfy

A(z) =po(z), Blz)=pi(z) —py(z), B'(z) = pa(2).
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Since the last condition holds if and only if pf (z) — pj (z) = p2(z), we see that the given DE is exact
if and only if
po—Pi+p2=0
in which case
polay" + pr(ay + pa(e)y = = (po(e)y' + (r(e) — h())y)-

Example 3. Solve the DE zy" +zy' +y =2z, (z > 0).
This is an exact equation since the given DE can be written

%(my' +(x—1)y) = 2.

Integrating both sides, we get
2y + (@ — 1)y = /2 + A

which is a linear DE. The solution of this DE is left as an exercise.

4 Reduction of Order

If y; is a non-zero solution of a homogeneous linear n-th order DE, one can always find a second
solution of the form y = C(x)y; where C'(x) satisfies a homogeneous linear DE of order n— 1. Since
we can choose C'(z) # 0 we find in this way a second solution y» = C(z)y; which is not a scalar
multiple of y;. In particular for n = 2, we obtain a fundamental set of solutions y;,y2. Let us prove
this for the second order DE

po(2)y” + p1()y’ + p2(z)y =0.

If y1 is a non-zero solution we try for a solution of the form y = C(z)y;. Substituting y = C(z)y1
in the above we get

Po(@) (C" (@)1 +2C" @i + C@h) +pi(@) (C' @ + C@t ) + p2(@)C@)yr = 0.

Simplifying, we get
Poy1C" (z) + (poy1 + p1y1)C' (z) = 0

since poy! + p1y} + pay1 = 0. This is a linear first order homogeneous DE for C'(x). Note that to
solve it we must work on an interval where y;(z) # 0. However, the solution found can always be
extended to the places where y;(x) = 0 in a unique way by the fundamental theorem.



The above procedure can also be used to find a particular solution of the non-homogenous DE
po(z)y" + p1(2)y" + p2(2)y = ¢(z) from a non-zero solution of po(z)y" + p1(z)y’ + p2(x)y = 0.

Example 4. Solve y" + zy' —y = 0.

Here y = z is a solution so we try for a solution of the form y = C(x)x. Substituting in the given
DE, we get
C"(z)x + 2C" (z) + z(C'(z)x + C(z)) — C(z)z =0

which simplifies to
zC"(z) + (2% +2)C"(z) = 0.

Solving this linear DE for C'(z), we get
C'(z) = 141e2_$2/2/z'2
so that P
b
Ca)=A [ o +B
Hence the general solution of the given DE is

dz
y:A1$+A2$/W

Example 5. Solve 3" + zy' — y = z3€?.

By the previous example, the general solution of the associated homogeneous equation is

dz
y:A1$+A2$/W

Substituting y, = 2C(x) in the given DE we get
zC"(2) + (z* + 2)C' (z) = 23€”.
Solving for C'(x) we obtain C'(x) = z3e®. This gives
C(z) = (z* — 32 + 67 — 6)e” + Buz.

We can therefore take
yp = (z* — 32% + 627 — 67)e”

so that the general solution of the given DE is

dx
Yy = Az + AQ.'L'/ W + (.’L’4 _ 3.’53 + 6,2;'2 _ 6."[:)(;‘m



