Perturbed Haar function expansions

Michael Wilson Department of Mathematics University of Vermont Burlington, Vermont 05405

Abstract

The Haar functions $\{\phi_{(I)}\}_{I \in \mathcal{D}_1}$ form a complete orthonormal system for $L^2(\mathbf{R})$ and an unconditional basis for $L^p(\mathbf{R})$ $(1 : <math>\forall f \in L^p(\mathbf{R})$,

$$f = \sum_{I} \langle f, \phi_{(I)} \rangle \phi_{(I)}, \tag{1}$$

where \mathcal{D}_1 is the set of dyadic intervals, $\langle f, g \rangle := \int f \,\overline{g} \, dx$ is the usual inner product, and the series converges unconditionally in L^p . The Haar functions are readily generalized to a family $\{\phi_{(I),k}\}_{\substack{I \in \mathcal{D}_d \\ 1 \leq k < 2^d}}$ defined on

 \mathbf{R}^d , with \mathcal{D}_d being the dyadic cubes, for which the analogous convergence result holds.

We explore the stability of (1) when the $\phi_{(I),k}$ s are subjected to arbitrary, close-to-the-identity, (local) affine changes of variable. In one dimension this means replacing each $\phi_{(I)}$ by, respectively, $\phi_{(I)}$ and $\phi_{(I)}^*$,

$$\begin{split} \phi_{(I)}(x) &:= \phi_{(I)}(\widetilde{\alpha}_{I}(x - x_{I} + \widetilde{y}_{I}\ell(I)) + x_{I}) \\ \phi_{(I)}^{*}(x) &:= \phi_{(I)}(\alpha_{I}^{*}(x - x_{I} + y_{I}^{*}\ell(I)) + x_{I}), \end{split}$$

where x_I is *I*'s center, $\ell(I)$ is its length, and $\{\widetilde{\alpha}_I\}_{I \in \mathcal{D}_1}, \{\alpha_I^*\}_{I \in \mathcal{D}_1}, \{\widetilde{y}_I\}_{I \in \mathcal{D}_1}$, and $\{y_I^*\}_{I \in \mathcal{D}_1}$ are sets of real numbers satisfying

$$\sup_{I \in \mathcal{D}_1} \max\left(|1 - \widetilde{\alpha}_I| + |\widetilde{y}_I|, |1 - \alpha_I^*| + |y_I^*|\right) \le \eta$$

for a fixed $0 \le \eta < 1/2$. We show that, for all $f \in L^2(\mathbf{R})$,

$$\left\|f - \sum_{I} \langle f, \widetilde{\phi}_{(I)} \rangle \phi_{(I)}^* \right\|_2 \le C \eta^{1/2} \|f\|_2,$$

with C an absolute constant, and

$$\left\| f - \sum_{I} \langle f, \widetilde{\phi}_{(I)} \rangle \phi_{(I)} \right\|_{p} \le C \eta^{1/2} \|f\|_{p}$$

for all $f \in L^{p}(\mathbf{R})$, with C = C(p) for $2 ; and the analogous results, with more complicated notations, in <math>L^{p}(\mathbf{R}^{d})$ $(2 \leq p < \infty)$. (The "missing" * in the second inequality is not a typo.)