I. Binder

Harmonic measure and polynomial Julia sets.

(Joint work with N. Makarov and S. Smirnov)

For a finite measure ω in the complex plane, we define

$$f_{\omega}^{+}(\alpha) := \dim\{\alpha_{\omega}(z) \le \alpha\},\$$

where $\alpha_{\omega}(z)$ is the lower pointwise dimension of ω :

$$\alpha_{\omega}(z) := \liminf_{\delta \to 0} \frac{\log \omega B(z, \delta)}{\log \delta}.$$

The universal dimension spectra $\Phi(\alpha)$ and $\Phi_{sc}(\alpha)$ are defined to be the supremum of $f_{\omega}^{+}(\alpha)$ taken over all harmonic measures ω of arbitrary plane domains, and of arbitrary simply connected plane domains respectively.

It is conjectured that $\Phi(\alpha) = \Phi_{sc}(\alpha)$ for $\alpha \geq 1$. Using fractal approximation one can reduce the conjecture to the case of conformal Cantor sets. We establish the equality of the universal spectra for the polynomial Julia sets.