Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_0 de Branges–Rovnyak spaces $\mathcal{H}(b)$

Boundary behavior of analytic functions on $\mathbb D$

Javad Mashreghi

February 10, 2012

Javad Mashreghi Boundary behavior

 $\begin{array}{c} \mbox{Boundary behavior questions} \\ \mbox{Pathological and normal results} \\ \mbox{Hardy spaces } H^p \\ \mbox{Model subspaces spaces } \mathcal{K}_{0} \\ \mbox{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

- Pathological and normal results
- 3 Hardy spaces *H^p*
- 4 Model subspaces spaces K_{Θ}
- 5 de Branges–Rovnyak spaces $\mathcal{H}(b)$

Image: A matched block of the second seco

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K₀ e Branges–Rovnyak spaces H(b)

The class $\mathcal{H}ol(\mathbb{D})$

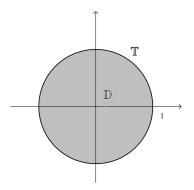


Figure: The open unit disc $\mathbb D$ and its boundary $\mathbb T.$

 $\mathcal{H}ol(\mathbb{D}) = \{f : f \text{ is analytic on } \mathbb{D}\}.$

 $\begin{array}{c} \mbox{Boundary behavior questions}\\ \mbox{Pathological and normal results}\\ \mbox{Hardy spaces } H^p\\ \mbox{Model subspaces spaces } K_{0}\\ \mbox{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

Six questions on boundary behavior

Question 1:

Let $f \in \mathcal{H}ol(\mathbb{D})$, and let $\zeta \in \mathbb{T}$.

Does f have an analytic continuation to an open neighborhood of ζ ?

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Six questions on boundary behavior

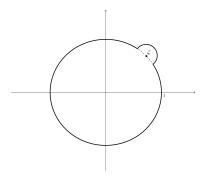


Figure: Analytic continuation across ζ .

 $\begin{array}{c} \mbox{Boundary behavior questions}\\ \mbox{Pathological and normal results}\\ \mbox{Hardy spaces } H^p\\ \mbox{Model subspaces spaces } \mathcal{K}_{0}\\ \mbox{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

Six questions on boundary behavior

Question 2:

Let $f \in \mathcal{H}ol(\mathbb{D})$, and let $\zeta \in \mathbb{T}$.

Does the (non-restrictive) limit

 $\lim_{\substack{z \to \zeta \\ z \in \mathbb{D}}} f(z)$

exit?

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Six questions on boundary behavior

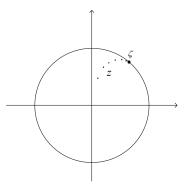


Figure: The (nonrestrictive) limit at ζ .

 $\begin{array}{c} \textbf{Boundary behavior questions} \\ \text{Pathological and normal results} \\ & \text{Hardy spaces } H^p \\ \text{Model subspaces spaces } \mathcal{K}_{\Theta} \\ \text{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

Six questions on boundary behavior

Question 3:

Let $f \in \mathcal{H}ol(\mathbb{D})$, and let $\zeta \in \mathbb{T}$.

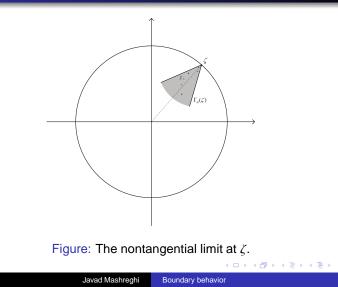
Does the nontangential limit

$$f^{\triangleleft *}(\zeta) = \lim_{z \to \zeta} f(z)$$

exit?

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Six questions on boundary behavior



 $\begin{array}{c} \textbf{Boundary behavior questions} \\ \text{Pathological and normal results} \\ \text{Hardy spaces } H^p \\ \text{Model subspaces spaces } \mathcal{K}_{\Theta} \\ \text{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

Six questions on boundary behavior

Question 4:

Let $f \in Hol(\mathbb{D})$, and let $\zeta \in \mathbb{T}$.

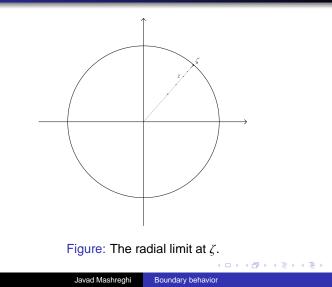
Does the radial limit

$$f^*(\zeta) = \lim_{r \to 1} f(r\zeta)$$

exit?

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Six questions on boundary behavior



 $\begin{array}{c} \mbox{Boundary behavior questions}\\ \mbox{Pathological and normal results}\\ \mbox{Hardy spaces } H^p\\ \mbox{Model subspaces spaces } \mathcal{K}_{0}\\ \mbox{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

Six questions on boundary behavior

Question 5:

Assuming that $f^{\triangleleft*}$ exists for almost all $\zeta \in \mathbb{T}$, can we recover f(z), $z \in \mathbb{D}$, from $f^{\triangleleft*}$?

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{c} \mbox{Boundary behavior questions}\\ \mbox{Pathological and normal results}\\ \mbox{Hardy spaces } H^p\\ \mbox{Model subspaces spaces } \mathcal{K}_{0}\\ \mbox{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

Six questions on boundary behavior

Question 5:

Assuming that $f^{\triangleleft*}$ exists for almost all $\zeta \in \mathbb{T}$, can we recover f(z), $z \in \mathbb{D}$, from $f^{\triangleleft*}$?

Question 6:

Assuming that f^* exists for almost all $\zeta \in \mathbb{T}$, can we recover f(z), $z \in \mathbb{D}$, from f^* ?

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_0 de Branges–Rovnyak spaces $\mathcal{H}(b)$

Monsters!

Answer to Q1: No, \mathbb{T} is a *natural boundary*, i.e. there is an analytic function on \mathbb{D} which cannot be analytically extended to any larger domain.

Weierstrass

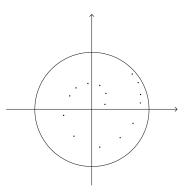
Let $(z_n)_{n\geq 1}$ be any sequence in \mathbb{D} such that $\lim_{n\to\infty} |z_n| = 1$, and each point of \mathbb{T} is an accumulation point of the sequence $(z_n)_{n\geq 1}$, e.g.

$$z_n = (1 - \varepsilon_n) e^{i\theta_n}, \qquad (\varepsilon_n \longrightarrow 0),$$

where $(\theta_n)_{n\geq 1}$ is an enumeration of \mathbb{Q} . Then there is a nonconstant analytic function f on \mathbb{D} such that $f(z_n) = 0$.

< ロト < 同ト < ヨト < ヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$



By the uniqueness theorem for analytic functions, f cannot be analytically extended across any point of \mathbb{T} .

イロト イヨト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{0} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Monsters!

Blaschke (1915)

Let $(z_n)_{n\geq 1}$ any sequence in \mathbb{D} such that

$$\sum_{n=1}^{\infty} (1-|z_n|) < \infty,$$

and each point of \mathbb{T} is an accumulation point of the sequence $(z_n)_{n\geq 1}$. Then

$$B(z) = \prod_{n} \frac{|z_n|}{z_n} \frac{z_n - z}{1 - \overline{z}_n z},$$

is a *bounded* analytic function on \mathbb{D} with $f(z_n) = 0$.

イロト イヨト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K₀ de Branges–Rovnyak spaces H(b)

Monsters!

Answer to Q2: Unrestricted limits of an analytic function may fail to exist even at *all* points of \mathbb{T} .

Lohwater–Piranian (1957), Littlewood (1927)

Let γ be a simple closed Jordan curve which is internally tangent to \mathbb{T} at the point 1. Then there exists a bounded analytic function f on \mathbb{D} such that

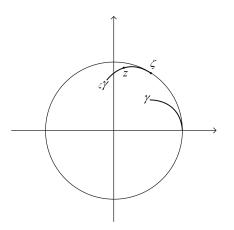
$$\lim_{\substack{z \to \zeta \\ z \in \zeta \gamma}} f(z)$$

does not exist for any $\zeta \in \mathbb{T}$.

Remark: "almost everywhere" version is due to Littlewood.

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_0 de Branges–Rovnyak spaces $\mathcal{H}(b)$

Monsters!



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K₀ de Branges–Rovnyak spaces H(b)

Monsters!

Answer to Q3, Q4: Radial limits of an analytic function may fail to exist even at *all* points of \mathbb{T} .

Littlewood (1930)

Let $(a_n)_{n\geq 1}$ be a sequence on complex numbers such that

$$\limsup_{n \to \infty} |a_n|^{1/n} = 1 \quad \text{and} \quad \sum_{n=1}^{\infty} |a_n|^2 = \infty.$$

 \sim

< ロト < 同ト < ヨト < ヨト

Then for almost every choice of the signs $\varepsilon_n = \pm 1$, the function

$$f(z) = \sum_{n=1}^{\infty} \varepsilon_n \, a_n \, z^n$$

has a radial limit almost nowhere on $\ensuremath{\mathbb{T}}.$

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_G de Branges–Rovnyak spaces H(b)

Bagemihl-Seidel (1954), Rudin (1954)

For any continuous function φ on \mathbb{D} , and any set *E* of first category on \mathbb{T} , there is an analytic function *f* on \mathbb{D} such that

$$\lim_{r \to 1} \left(f(r\zeta) - \varphi(r\zeta) \right) = 0$$

for all $\zeta \in E$.

Remark: There is a set *E* of first category such that $|E| = 2\pi$.

イロト イポト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Maclane (1962)

There exists an analytic function f on \mathbb{D} (even without any zeros and satisfying a certain growth condition) such that

 $\liminf_{r \to 1} |f(r\zeta)| = 0 \quad \text{and} \quad \limsup_{r \to 1} |f(r\zeta)| = \infty$ for all $\zeta \in \mathbb{T}$.

イロト イヨト イヨト イヨト

Boundary behavior questions **Pathological and normal results** Hardy spaces H^p Model subspaces spaces K_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Monsters!

Answer to Q6: No. But, there is hope!

Littlewood (1927)

There exists a nonzero analytic function f on \mathbb{D} such that

$$f^*(\zeta) = \lim_{r \to 1} f(r\zeta) = 0, \qquad (\text{a.e. } \zeta \in \mathbb{T}).$$

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K₀ de Branges–Rovnyak spaces H(b)

Monsters!

Answer to Q6: No. But, there is hope!

Littlewood (1927)

There exists a nonzero analytic function f on \mathbb{D} such that

$$f^*(\zeta) = \lim_{r \to 1} f(r\zeta) = 0, \qquad (\text{a.e. } \zeta \in \mathbb{T}).$$

F. and M. Riesz (1916)

Let *f* be a bounded analytic function on \mathbb{D} . Assume that there is a set $E \subset \mathbb{T}$, with |E| > 0, such that

$$f^*(\zeta) = \lim_{r \to 1} f(r\zeta) = 0, \qquad (\zeta \in E).$$

Then $f \equiv 0$.

イロト イボト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{Θ} le Branges–Rovnyak spaces $\mathcal{H}(b)$

Monster of monsters!!!

Frostman (1942)

There is a Blaschke product B such that

(i) For each
$$\zeta \in \mathbb{T}$$
,

$$\lim_{z\to\zeta}B(z)=\mathbb{D}.$$

(ii) For each
$$\zeta \in \mathbb{T}$$
,

$$B^{\triangleleft *}(\zeta) = \lim_{\substack{z \to \zeta \\ z \to \zeta}} B(z)$$

exists and, moreover,

$$|B^{\triangleleft *}(\zeta)| = 1.$$

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_0 de Branges–Rovnyak spaces $\mathcal{H}(b)$

Positive results

Answer to Q5: In principle 'Yes'.

Lusin–Privalov (1925)

Let f be an analytic function on \mathbb{D} such that

$$f^{\triangleleft *}(\zeta) = \lim_{z \to \zeta} f(z) = 0$$

for all $\zeta \in E$, where *E* is a Borel subset of \mathbb{T} with |E| > 0. Then

$$f \equiv 0.$$

Recovering *f* from $f^{\triangleleft*}$ is a more delicate problem.

A D D A A A D D A A B A A B A

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{0} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Positive results

Fatou (1906)

Let f be a bounded analytic function on \mathbb{D} . Then

$$f^{\triangleleft *}(\zeta) = \lim_{z \stackrel{\triangleleft}{\to} \zeta} f(z)$$

exists for all $\zeta \in \mathbb{T}$. Moreover,

$$f(z) = \int_0^{2\pi} \frac{1 - |z|^2}{|z - \zeta|^2} f^*(\zeta) \, dm(\zeta), \qquad (z \in \mathbb{D}).$$

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Positive results

Lindelöf (1915)

Let f be a bounded analytic function on \mathbb{D} . Assume that

 $\lim_{\substack{z \to \zeta \\ z \in \gamma}} f(z),$

where γ is a curve inside $\mathbb T$ terminating at $\zeta \in \mathbb T$, exists. Then

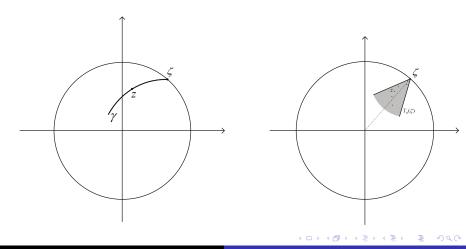
$$f^{\triangleleft *}(\zeta) = \lim_{z \stackrel{\triangleleft}{\to} \zeta} f(z)$$

exists.

イロト イヨト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_0 de Branges–Rovnyak spaces $\mathcal{H}(b)$

Positive results



Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Positive results

Plessner (1927)

Let f be an analytic (even meromorphic) function on \mathbb{D} , and let $\zeta \in \mathbb{T}$. Then one of the following situations hold:

• $f^{\triangleleft *}(\zeta)$ exists.

2 $f(\Gamma_{\alpha}(\zeta))$ is dense in the Riemann sphere for all α .

イロト イボト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Definition

Put

$$\begin{split} m_p(f,r) &= \left(\int_0^{2\pi} |f(r\zeta)|^p \, dm(\zeta) \right)^{1/p}, \qquad (0$$

and

$$||f||_p = \sup_{0 < r < 1} m_p(f, r).$$

Then

$$H^p = \{f : ||f||_p < \infty\}.$$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_0 de Branges–Rovnyak spaces $\mathcal{H}(b)$

The first brick

Hardy (1914)

Let f be an analytic function on \mathbb{D} , and let 0 . Then the following hold:

- $m_p(f, r)$ is an increasing function of r;
- 2 $\log m_p(f, r)$ is a convex function of $\log r$.

Remark: The case $p = \infty$ is due to Hadamard and is known as the Hadamard's three circle theorem.

イロト イボト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces *HP* Model subspaces spaces *K*₀ de Branges–Rovnyak spaces *H*(*b*)

Boundary behavior

Riesz (1923), Smirnov (1929)

Let $f \in H^p$, $0 , <math>f \ne 0$. Then *f* has a unique canonical factorization of the form f = BSh, where

$$B(z) = \gamma \prod_{n} \frac{|z_n|}{z_n} \frac{z_n - z}{1 - \overline{z}_n z},$$

is the Blaschke product formed with the zeros of f,

$$S(z) = \exp\left(-\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} d\sigma(\zeta)\right),$$

is an inner function formed with the singular measure σ , and $h(z) = \exp\left(\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} \log |f^*(\zeta)| \, dm(\zeta)\right).$ Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{0} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Boundary behavior

There are some results hidden in the previous theorem which are important by themselves:

the zeros of f satisfy the Blaschke condition

$$\sum_{n} (1 - |z_n|) < \infty;$$

2
$$f^{\triangleleft*}(\zeta)$$
 exists for almost all $\zeta \in \mathbb{T}$;

③ log $|f^*|$ ∈ $L^1(\mathbb{T})$, i.e.

$$\int_{\mathbb{T}} \left| \log |f^*(\zeta)| \right| dm(\zeta) < \infty.$$

< ロト < 同ト < ヨト < ヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces $\mathcal{K}_{(b)}$ de Branges–Rovnyak spaces $\mathcal{H}(b)$

Boundary behavior

More comments:

The function $\Theta = BS$ is called the inner part of f. Generally speaking, any bounded function whose boundary values are unimodular almost everywhere on \mathbb{T} is called an inner function. The theorem reveals that each inner function Θ has the unique decomposition $\Theta = BS$.

Solution is given any $\varphi ≥ 0$, $\varphi ∈ L^p(\mathbb{T})$, $\log \varphi ∈ L^1(\mathbb{T})$, we can construct the outer function

$$h(z) = \exp\left(\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} \log \varphi(\zeta) \, dm(\zeta)\right) \in H^p.$$

< □ > < 同 > < 回 > <

Boundary behavior questions Pathological and normal results Hardy spaces *H*^p Model subspaces spaces *K*₀ de Branges–Rovnyak spaces *H*(*b*)

Boundary behavior

Fatou-Riesz-Smirnov

Let $f \in H^1$. Then

$$f^*(\zeta) = \lim_{r \to 1} f(r\zeta)$$

exists for almost all $\zeta \in \mathbb{T}$ and, moreover,

$$f(z) = \int_0^{2\pi} \frac{1 - |z|^2}{|z - \zeta|^2} f^*(\zeta) \, dm(\zeta), \qquad (z \in \mathbb{D}).$$

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

r.

Consider the forward shift operator

Question: What are the 'closed invariant' subspaces of H^2 , i.e. $M \subset H^2$ with

$$SM \subset M?$$

イロト イヨト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces *HP* **Model subspaces spaces** *K*₀ de Branges–Rovnyak spaces '*H*(*b*)

Definition

It is clear that if Θ is an inner function, then $M = \Theta H^2$ is a closed invariant subspace of H^2 .

Beurling (1949)

Let *M* be closed invariant subspace of H^2 . Then there exists a (unique) inner function Θ such that $M = \Theta H^2$.

イロト イボト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces *HP* **Model subspaces spaces** *K*₀ de Branges–Rovnyak spaces '*H*(*b*)

Definition

It is clear that if Θ is an inner function, then $M = \Theta H^2$ is a closed invariant subspace of H^2 .

Beurling (1949)

Let *M* be closed invariant subspace of H^2 . Then there exists a (unique) inner function Θ such that $M = \Theta H^2$.

Corollary

Let *M* be closed subspace of H^2 . Then *M* is invariant under *S*^{*} if and only if there exists an inner function Θ such that $M = (\Theta H^2)^{\perp}$.

イロト イボト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces *H^p* **Model subspaces spaces** *K*₀ de Branges–Rovnyak spaces *H*(*b*)

Definition

It is clear that if Θ is an inner function, then $M = \Theta H^2$ is a closed invariant subspace of H^2 .

Beurling (1949)

Let *M* be closed invariant subspace of H^2 . Then there exists a (unique) inner function Θ such that $M = \Theta H^2$.

Corollary

Let *M* be closed subspace of H^2 . Then *M* is invariant under *S*^{*} if and only if there exists an inner function Θ such that $M = (\Theta H^2)^{\perp}$.

Model subspace

$$K_{\Theta} = (\Theta H^2)^{\perp}.$$

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{Θ}

de Branges–Rovnyak spaces $\mathcal{H}(b)$

Boundary behavior

A general principle:

Each $f \in K_{\Theta}$ is nice at $\zeta \in \mathbb{T} \iff \Theta$ is nice at $\zeta \in \mathbb{T}$.

What does this mean?!

・ロト ・四ト ・ヨト ・ヨト

Boundary behavior questions Pathological and normal results Hardy spaces *HP* **Model subspaces spaces** *K*₀ de Branges–Rovnyak spaces *H*(*b*)

Boundary behavior

Put $S_{\Theta} = P_{\Theta} S i_{\Theta}$:

$$K_{\Theta} \xrightarrow{i_{\Theta}} H^2 \xrightarrow{S} H^2 \xrightarrow{P_{\Theta}} K_{\Theta}.$$

Helson (1964)

Let Θ be an inner function, and let $\zeta \in \mathbb{T}$. Then the following are equivalent:

- **()** Θ has an analytic continuation across ζ .
- 2 Each $f \in K_{\Theta}$ has an analytic continuation across ζ .
- **③** The operator $I \overline{\zeta} S_{\Theta}$ is invertible.

Image: A matrix and a matrix

Boundary behavior questions Pathological and normal results Hardy spaces *HP* **Model subspaces spaces** *K*₀ de Branges–Rovnyak spaces '*H*(*b*)

Boundary behavior

Ahern–Clark (1969)

Let $\Theta = BS$ be an inner function, and let $\zeta \in \mathbb{T}$. Then the following are equivalent:

0

$$\sum_n \frac{1-|z_n|^2}{|1-\bar{\zeta}\,z_n|^2} + \int_{\mathbb{T}} \frac{d\sigma(\tau)}{|1-\bar{\zeta}\,\tau|^2} < \infty.$$

2 For each $f \in K_{\Theta}$, the nontangential limit $f^{\triangleleft*}(\zeta)$ exists.

Solution $S_{\Theta}P_{\Theta}1$ is in the range of operator $I - \overline{\zeta}S_{\Theta}$.

ヘロト 人間 とくほとくほと

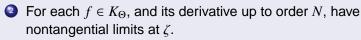
Boundary behavior questions Pathological and normal results Hardy spaces *HP* **Model subspaces spaces** *K*₀ de Branges–Rovnyak spaces *H*(*h*)

Boundary behavior

Ahern–Clark (1969)

Let $\Theta = BS$ be an inner function, let $N \ge 0$, and let $\zeta \in \mathbb{T}$. Then the following are equivalent:

 $\sum_n \frac{1-|z_n|^2}{|1-\bar{\zeta}\,z_n|^{2N+2}} + \int_{\mathbb{T}} \frac{d\sigma(\tau)}{|1-\bar{\zeta}\,\tau|^{2N+2}} < \infty.$



Solution $S_{\Theta}^{N}P_{\Theta}1$ is in the range of operator $(I - \overline{\zeta}S_{\Theta})^{N+1}$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

 $\begin{array}{c} \mbox{Boundary behavior questions} \\ \mbox{Pathological and normal results} \\ \mbox{Hardy spaces } H^p \\ \mbox{Model subspaces spaces } K_{\Theta} \\ \mbox{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

Definition

Let $\varphi \in L^{\infty}(\mathbb{T})$. Then the Toeplitz operator T_{φ} is

$$H^2 \xrightarrow{i_+} L^2 \xrightarrow{M_{\varphi}} L^2 \xrightarrow{P_+} H^2,$$

i.e.
$$T_{\varphi} = P_+ M_{\varphi} i_+$$
.

In particular,

$$S = T_z$$

and

$$S^* = T_{\overline{z}}.$$

・ロト ・四ト ・ヨト ・ヨト

Boundary behavior questions Pathological and normal results Hardy spaces *H*^p Model subspaces spaces *K*_O de Branges–Rovnyak spaces *H*(*b*)

Definition

Theorem

Let $\varphi \in L^{\infty}(T)$. Then

$$\left\| T_{\varphi} \right\|_{H^2 \to H^2} = \left\| \varphi \right\|_{L^{\infty}(\mathbb{T})}.$$

Javad Mashreghi Boundary behavior

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Boundary behavior questions Pathological and normal results Hardy spaces *H*^p Model subspaces spaces *K*_O de Branges–Rovnyak spaces *H*(*b*)

Definition

Theorem

Let $\varphi \in L^{\infty}(T)$. Then

$$\left\| T_{\varphi} \right\|_{H^2 \to H^2} = \left\| \varphi \right\|_{L^{\infty}(\mathbb{T})}.$$

Corollary

Let $\varphi \in L^{\infty}(T)$, with $\|\varphi\|_{\infty} \leq 1$. Then

$$I - T_{\bar{\varphi}} T_{\varphi} \ge 0.$$

・ロト ・聞 ト ・ ヨト ・ ヨト

æ

 $\begin{array}{c} \mbox{Boundary behavior questions} \\ \mbox{Pathological and normal results} \\ \mbox{Hardy spaces } H^p \\ \mbox{Model subspaces spaces } \mathcal{K}_{\Theta} \\ \mbox{de Branges-Rovnyak spaces } \mathcal{H}(b) \end{array}$

Definition

Let $b \in H^{\infty}$, *b* nonconstant, $||b||_{\infty} \leq 1$. Then

$$\mathcal{H}(b) = \mathcal{R}\left((I - T_b T_{\bar{b}})^{1/2}\right) = (I - T_b T_{\bar{b}})^{1/2} H^2,$$

endowed with the inner product

$$\left((I - T_b T_{\bar{b}})^{1/2} f, (I - T_b T_{\bar{b}})^{1/2} g \right)_{\mathcal{H}(b)} = \langle f, g \rangle_{H^2},$$

where $f \perp \ker(I - T_b T_{\bar{b}})$ and $g \perp \ker(I - T_b T_{\bar{b}})$.

・ロト ・四ト ・ヨト ・ヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces K_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Some properties

(i) $\mathcal{H}(b)$ is a reproducing kernel Hilbert space, with kernel

$$k_w^b(z) = \frac{1 - \overline{b(w)} \, b(z)}{1 - \overline{w} \, z}.$$

(ii) $\mathcal{H}(b)$ is boundedly inside H^2 , i.e.

 $||f||_{H^2} \le ||f||_{\mathcal{H}(b)}, \qquad (f \in \mathcal{H}(b)).$

(iii) $\mathcal{H}(b)$ is invariant under S^* . Put $X_b = S^* | \mathcal{H}(b)$.

(iv) $\mathcal{H}(b)$ is a closed subspace of H^2 if and only if *b* is an inner.

(v) If $b = \Theta$, an inner function, then $\mathcal{H}(b) = K_{\Theta}$.

イロト イポト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Boundary behavior

Fricain-M. (2008)

Let $b \in H^{\infty}$, b nonconstant, $||b||_{\infty} \leq 1$, and let $\zeta \in \mathbb{T}$. Then the following are equivalent:

$$\sum_n \frac{1-|z_n|^2}{|1-\bar{\zeta}\,z_n|^2} + \int_{\mathbb{T}} \frac{d\sigma(\tau)}{|1-\bar{\zeta}\,\tau|^2} + \int_{\mathbb{T}} \frac{-\log|b^*(\tau)|}{|1-\bar{\zeta}\,\tau|^2} dm(\tau) < \infty.$$

2 For each $f \in \mathcal{H}(b)$, the radial limit $f^*(\zeta)$ exists.

Solution k_0^b is in the range of operator $I - \overline{\zeta} X_b^*$.

イロト イヨト イヨト

Boundary behavior questions Pathological and normal results Hardy spaces *H*^p Model subspaces spaces *K*_O de Branges–Rovnyak spaces *H*(*b*)

Boundary behavior

Fricain-M. (2008)

Let $b \in H^{\infty}$, b nonconstant, $||b||_{\infty} \leq 1$, and let $\zeta \in \mathbb{T}$. Let $N \geq 0$. Then the following are equivalent:

1

$$\sum_{n} \frac{1 - |z_{n}|^{2}}{|1 - \bar{\zeta} z_{n}|^{2N+2}} + \int_{\mathbb{T}} \frac{d\sigma(\tau)}{|1 - \bar{\zeta} \tau|^{2N+2}} + \int_{\mathbb{T}} \frac{-\log |b^{*}(\tau)|}{|1 - \bar{\zeta} \tau|^{2N+2}} dm(\tau) < \infty.$$

- Por each *f* ∈ H(*b*), the radial limits of *f* and its derivatives up to order *N* at ζ exist.
- Solution $X_b^{*N} k_0^b$ is in the range of operator $(I \overline{\zeta} X_b^*)^{N+1}$.

< ロト < 同ト < ヨト < ヨト

Boundary behavior questions Pathological and normal results Hardy spaces H^p Model subspaces spaces \mathcal{K}_{Θ} de Branges–Rovnyak spaces $\mathcal{H}(b)$

Our behavior!

Thank you.

Javad Mashreghi Boundary behavior

・ロト ・四ト ・ヨト ・ヨト

æ