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The classHol(D)

Figure: The open unit disc D and its boundary T.

Hol(D) = { f : f is analytic on D}.
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Six questions on boundary behavior

Question 1:

Let f ∈ Hol(D), and let ζ ∈ T.

Does f have an analytic continuation to an open neighborhood of
ζ?
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Six questions on boundary behavior

Figure: Analytic continuation across ζ.
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Six questions on boundary behavior

Question 2:

Let f ∈ Hol(D), and let ζ ∈ T.

Does the (non-restrictive) limit

lim
z−→ζ
z ∈D

f (z)

exit?
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Six questions on boundary behavior

Figure: The (nonrestrictive) limit at ζ.
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Six questions on boundary behavior

Question 3:

Let f ∈ Hol(D), and let ζ ∈ T.

Does the nontangential limit

f ⊳∗(ζ) = lim
z
⊳

→ζ

f (z)

exit?
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Six questions on boundary behavior

Figure: The nontangential limit at ζ.
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Six questions on boundary behavior

Question 4:

Let f ∈ Hol(D), and let ζ ∈ T.

Does the radial limit
f ∗(ζ) = lim

r→1
f (rζ)

exit?
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Six questions on boundary behavior

Figure: The radial limit at ζ.
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Six questions on boundary behavior

Question 5:

Assuming that f ⊳∗ exists for almost all ζ ∈ T, can we recover f (z),
z ∈ D, from f ⊳∗?
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Six questions on boundary behavior

Question 5:

Assuming that f ⊳∗ exists for almost all ζ ∈ T, can we recover f (z),
z ∈ D, from f ⊳∗?

Question 6:

Assuming that f ∗ exists for almost all ζ ∈ T, can we recover f (z),
z ∈ D, from f ∗?
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Monsters!

Answer to Q1: No, T is a natural boundary, i.e. there is an analytic
function on D which cannot be analytically extended to any larger
domain.

Weierstrass

Let (zn)n≥1 be any sequence in D such that limn→∞ |zn| = 1, and
each point of T is an accumulation point of the sequence (zn)n≥1,
e.g.

zn = (1− εn) eiθn , (εn −→ 0),

where (θn)n≥1 is an enumeration of Q. Then there is a nonconstant
analytic function f on D such that f (zn) = 0.
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Monsters!

By the uniqueness theorem for analytic functions, f cannot be
analytically extended across any point of T.
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Monsters!

Blaschke (1915)

Let (zn)n≥1 any sequence in D such that

∞
∑

n=1

(1− |zn|) < ∞,

and each point of T is an accumulation point of the sequence
(zn)n≥1. Then

B(z) =
∏

n

|zn|

zn

zn − z
1− z̄n z

,

is a bounded analytic function on D with f (zn) = 0.
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Monsters!

Answer to Q2: Unrestricted limits of an analytic function may fail to
exist even at all points of T.

Lohwater–Piranian (1957), Littlewood (1927)

Let γ be a simple closed Jordan curve which is internally tangent
to T at the point 1. Then there exists a bounded analytic function f
on D such that

lim
z−→ζ

z ∈ ζγ

f (z)

does not exist for any ζ ∈ T.

Remark: “almost everywhere” version is due to Littlewood.
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Monsters!

Answer to Q3, Q4: Radial limits of an analytic function may fail to
exist even at all points of T.

Littlewood (1930)

Let (an)n≥1 be a sequence on complex numbers such that

lim sup
n→∞

|an|
1/n
= 1 and

∞
∑

n=1

|an|
2
= ∞.

Then for almost every choice of the signs εn = ±1, the function

f (z) =
∞
∑

n=1

εn an zn

has a radial limit almost nowhere on T.
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Monsters!

Bagemihl–Seidel (1954), Rudin (1954)

For any continuous function ϕ on D, and any set E of first category
on T, there is an analytic function f on D such that

lim
r→1

(

f (rζ) − ϕ(rζ)
)

= 0

for all ζ ∈ E.

Remark: There is a set E of first category such that |E| = 2π.
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Monsters!

Maclane (1962)

There exists an analytic function f on D (even without any zeros
and satisfying a certain growth condition) such that

lim inf
r→1

| f (rζ)| = 0 and lim sup
r→1

| f (rζ)| = ∞

for all ζ ∈ T.
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Monsters!

Answer to Q6: No. But, there is hope!

Littlewood (1927)

There exists a nonzero analytic function f on D such that

f ∗(ζ) = lim
r→1

f (rζ) = 0, (a.e. ζ ∈ T).
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Monsters!

Answer to Q6: No. But, there is hope!

Littlewood (1927)

There exists a nonzero analytic function f on D such that

f ∗(ζ) = lim
r→1

f (rζ) = 0, (a.e. ζ ∈ T).

F. and M. Riesz (1916)

Let f be a bounded analytic function on D. Assume that there is a
set E ⊂ T, with |E| > 0, such that

f ∗(ζ) = lim
r→1

f (rζ) = 0, (ζ ∈ E).

Then f ≡ 0.
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Monster of monsters!!!

Frostman (1942)

There is a Blaschke product B such that

(i) For each ζ ∈ T,
lim
z→ζ

B(z) = D.

(ii) For each ζ ∈ T,
B⊳∗(ζ) = lim

z
⊳

→ζ

B(z)

exists and, moreover,

|B⊳∗(ζ)| = 1.
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Positive results

Answer to Q5: In principle ‘Yes’.

Lusin–Privalov (1925)

Let f be an analytic function on D such that

f ⊳∗(ζ) = lim
z
⊳

→ζ

f (z) = 0

for all ζ ∈ E, where E is a Borel subset of T with |E| > 0. Then

f ≡ 0.

Recovering f from f ⊳∗ is a more delicate problem.
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Positive results

Fatou (1906)

Let f be a bounded analytic function on D. Then

f ⊳∗(ζ) = lim
z
⊳

→ζ

f (z)

exists for all ζ ∈ T. Moreover,

f (z) =
∫ 2π

0

1− |z|2

|z − ζ |2
f ∗(ζ) dm(ζ), (z ∈ D).
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Positive results

Lindelöf (1915)

Let f be a bounded analytic function on D. Assume that

lim
z−→ζ
z ∈ γ

f (z),

where γ is a curve inside T terminating at ζ ∈ T, exists. Then

f ⊳∗(ζ) = lim
z
⊳

→ζ

f (z)

exists.
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Positive results

Plessner (1927)

Let f be an analytic (even meromorphic) function on D, and let
ζ ∈ T. Then one of the following situations hold:

1 f ⊳∗(ζ) exists.

2 f
(

Γα(ζ)
)

is dense in the Riemann sphere for all α.
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Definition

Put

mp( f , r) =

(∫ 2π

0
| f (rζ)|p dm(ζ)

)1/p

, (0 < p < ∞)

m∞( f , r) = max
ζ∈T
| f (rζ)|

and
‖ f ‖p = sup

0<r<1
mp( f , r).

Then
Hp
= { f : ‖ f ‖p < ∞}.
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The first brick

Hardy (1914)

Let f be an analytic function on D, and let 0 < p ≤ ∞. Then the
following hold:

1 mp( f , r) is an increasing function of r;
2 logmp( f , r) is is a convex function of logr.

Remark: The case p = ∞ is due to Hadamard and is known as the
Hadamard’s three circle theorem.
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Boundary behavior

Riesz (1923), Smirnov (1929)

Let f ∈ Hp, 0 < p ≤ ∞, f . 0. Then f has a unique canonical
factorization of the form f = B S h, where

B(z) = γ
∏

n

|zn|

zn

zn − z
1− z̄n z

,

is the Blaschke product formed with the zeros of f ,

S (z) = exp

(

−

∫

T

ζ + z
ζ − z

dσ(ζ)

)

,

is an inner function formed with the singular measure σ, and

h(z) = exp

(∫

T

ζ + z
ζ − z

log | f ∗(ζ)| dm(ζ)

)

.
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Boundary behavior

There are some results hidden in the previous theorem which are
important by themselves:

1 the zeros of f satisfy the Blaschke condition
∑

n

(1− |zn|) < ∞;

2 f ⊳∗(ζ) exists for almost all ζ ∈ T;
3 log | f ∗| ∈ L1(T), i.e.

∫

T

∣

∣

∣

∣

∣

log | f ∗(ζ)|
∣

∣

∣

∣

∣

dm(ζ) < ∞.
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Boundary behavior

More comments:

1 The function Θ = BS is called the inner part of f . Generally
speaking, any bounded function whose boundary values are
unimodular almost everywhere on T is called an inner
function. The theorem reveals that each inner function Θ has
the unique decomposition Θ = BS .

2 h is called the outer part of f .
3 given any ϕ ≥ 0, ϕ ∈ Lp(T), logϕ ∈ L1(T), we can construct

the outer function

h(z) = exp

(∫

T

ζ + z
ζ − z

logϕ(ζ) dm(ζ)

)

∈ Hp.

Javad Mashreghi Boundary behavior



Boundary behavior questions
Pathological and normal results

Hardy spaces Hp

Model subspaces spaces KΘ
de Branges–Rovnyak spaces H (b)

Boundary behavior

Fatou–Riesz–Smirnov

Let f ∈ H1. Then
f ∗(ζ) = lim

r→1
f (rζ)

exists for almost all ζ ∈ T and, moreover,

f (z) =
∫ 2π

0

1− |z|2

|z − ζ |2
f ∗(ζ) dm(ζ), (z ∈ D).
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Definition

Consider the forward shift operator

S : H2 −→ H2

f 7−→ z f .

Question: What are the ‘closed invariant’ subspaces of H2, i.e.
M ⊂ H2 with

S M ⊂ M?
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Definition

It is clear that if Θ is an inner function, then M = ΘH2 is a closed
invariant subspace of H2.

Beurling (1949)

Let M be closed invariant subspace of H2. Then there exists a
(unique) inner function Θ such that M = ΘH2.
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Definition

It is clear that if Θ is an inner function, then M = ΘH2 is a closed
invariant subspace of H2.

Beurling (1949)

Let M be closed invariant subspace of H2. Then there exists a
(unique) inner function Θ such that M = ΘH2.

Corollary

Let M be closed subspace of H2. Then M is invariant under S ∗ if
and only if there exists an inner function Θ such that M = (ΘH2)⊥.
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Definition

It is clear that if Θ is an inner function, then M = ΘH2 is a closed
invariant subspace of H2.

Beurling (1949)

Let M be closed invariant subspace of H2. Then there exists a
(unique) inner function Θ such that M = ΘH2.

Corollary

Let M be closed subspace of H2. Then M is invariant under S ∗ if
and only if there exists an inner function Θ such that M = (ΘH2)⊥.

Model subspace

KΘ = (ΘH2)⊥.
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Boundary behavior

A general principle:

Each f ∈ KΘ is nice at ζ ∈ T⇐⇒ Θ is nice at ζ ∈ T.

What does this mean?!
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Boundary behavior

Put SΘ = PΘ S iΘ:

KΘ
iΘ
−→ H2 S

−→ H2 PΘ
−→ KΘ.

Helson (1964)

Let Θ be an inner function, and let ζ ∈ T. Then the following are
equivalent:

1 Θ has an analytic continuation across ζ.
2 Each f ∈ KΘ has an analytic continuation across ζ.
3 The operator I − ζ̄ SΘ is invertible.
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Boundary behavior

Ahern–Clark (1969)

Let Θ = BS be an inner function, and let ζ ∈ T. Then the following
are equivalent:

1

∑

n

1− |zn|
2

|1− ζ̄ zn|2
+

∫

T

dσ(τ)

|1− ζ̄ τ|2
< ∞.

2 For each f ∈ KΘ, the nontangential limit f ⊳∗(ζ) exists.
3 The function SΘPΘ1 is in the range of operator I − ζ̄ SΘ.
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Boundary behavior

Ahern–Clark (1969)

Let Θ = BS be an inner function, let N ≥ 0, and let ζ ∈ T. Then the
following are equivalent:

1

∑

n

1− |zn|
2

|1− ζ̄ zn|2N+2
+

∫

T

dσ(τ)

|1− ζ̄ τ|2N+2
< ∞.

2 For each f ∈ KΘ, and its derivative up to order N, have
nontangential limits at ζ.

3 The function S N
Θ

PΘ1 is in the range of operator (I − ζ̄ SΘ)N+1.
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Definition

Let ϕ ∈ L∞(T). Then the Toeplitz operator Tϕ is

H2 i+
−→ L2 Mϕ

−→ L2 P+
−→ H2,

i.e. Tϕ = P+ Mϕ i+.

In particular,
S = Tz

and
S ∗ = Tz̄.
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Definition

Theorem

Let ϕ ∈ L∞(T ). Then
∥

∥

∥ Tϕ
∥

∥

∥

H2→H2 =

∥

∥

∥ϕ
∥

∥

∥

L∞(T).
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Definition

Theorem

Let ϕ ∈ L∞(T ). Then
∥

∥

∥ Tϕ
∥

∥

∥

H2→H2 =

∥

∥

∥ϕ
∥

∥

∥

L∞(T).

Corollary

Let ϕ ∈ L∞(T ), with ‖ϕ‖∞ ≤ 1. Then

I − Tϕ̄ Tϕ ≥ 0.
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Definition

Let b ∈ H∞, b nonconstant, ‖b‖∞ ≤ 1. Then

H(b) = R
(

(I − Tb Tb̄)1/2
)

= (I − Tb Tb̄)1/2H2,

endowed with the inner product

〈

(I − Tb Tb̄)1/2 f , (I − Tb Tb̄)1/2g
〉

H(b)
= 〈 f , g〉H2,

where f ⊥ ker(I − Tb Tb̄) and g ⊥ ker(I − Tb Tb̄).
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Some properties

(i) H(b) is a reproducing kernel Hilbert space, with kernel

kb
w(z) =

1− b(w) b(z)
1− w̄ z

.

(ii) H(b) is boundedly inside H2, i.e.

‖ f ‖H2 ≤ ‖ f ‖H(b), ( f ∈ H(b)).

(iii) H(b) is invariant under S ∗. Put Xb = S ∗|H(b).

(iv) H(b) is a closed subspace of H2 if and only if b is an inner.

(v) If b = Θ, an inner function, thenH(b) = KΘ.
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Boundary behavior

Fricain–M. (2008)

Let b ∈ H∞, b nonconstant, ‖b‖∞ ≤ 1, and let ζ ∈ T. Then the
following are equivalent:

1

∑

n

1− |zn|
2

|1− ζ̄ zn|2
+

∫

T

dσ(τ)

|1− ζ̄ τ|2
+

∫

T

− log |b∗(τ)|

|1− ζ̄ τ|2
dm(τ) < ∞.

2 For each f ∈ H(b), the radial limit f ∗(ζ) exists.
3 The function kb

0 is in the range of operator I − ζ̄ X∗b.
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Boundary behavior

Fricain–M. (2008)

Let b ∈ H∞, b nonconstant, ‖b‖∞ ≤ 1, and let ζ ∈ T. Let N ≥ 0.
Then the following are equivalent:

1

∑

n

1− |zn|
2

|1− ζ̄ zn|
2N+2
+

∫

T

dσ(τ)

|1− ζ̄ τ|2N+2
+

∫

T

− log |b∗(τ)|

|1− ζ̄ τ|2N+2
dm(τ) < ∞.

2 For each f ∈ H(b), the radial limits of f and its derivatives up
to order N at ζ exist.

3 The function X∗Nb kb
0 is in the range of operator (I − ζ̄ X∗b)N+1.
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Our behavior!

Thank you.
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