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Model Problems and Truncation of
Advanced-Retarded FDEsS

Advanced-Retarded Functional Differential Equations arise in a
wide range of applications, recently receiving attention because
travelling wave solutions to lattice differential equations are
defined by FDE boundary value problems on an unbounded
domain. The presence of advances as well as delays
complicates the analysis of these problems. As a first step
before computing a numerical solution the problem is usually
approximated on a bounded domain. This truncation can be
done Iin several ways, but the process is not well studied or
understood. We will discuss the issues that arise, including the
need for and construction of good model test problems with
known solutions.
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Introduction
Lattice Differential Equations

A typical LDE has the form
u; = gi({ujtjen), 1 €A

A C R" Is a lattice; a discrete subset of IR"™, finite or infinite
number of points, regular spatial structure
u;(t) for each ¢ € A may be scalar or vector
Continuous in time, discrete in space

In this talk we restrict attention to 1D lattices for simplicity of
explanation
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_eading Edge Model
Discrete Nagumo Equation

N0 = ;1) — f(u;)

Models leading edge behaviour of pulse. Two examples:
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_eading Edge Model
Discrete Nagumo Equation

N D0, v 1) — f(u;)
Models leading edge behaviour of pulse. Two examples:
1. Cubic nonlinearity

flu) = pu(u —a)(u—1)

2. McKean'’s caricature of cubic

([ Bu—1), u>a,
f(U,):< 5[/“_17”]7 u—=a,
| Ou, u < a.
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Functional Differential Equation Reduction
Travelling Waves for Discrete Nagumo Equation

U = (wjr1 — 2u; + ui—1) — f(u;)

Travelling Wave ansatz u;(t) = ¢(i — ct) = p(£) gives

—cp'(§) = o€+ 1) —2p(8) + p(§ — 1) — f(p(€))

Il il 2005 — p.6/2’



Functional Differential Equation Reduction
Travelling Waves for Discrete Nagumo Equation

U = (wjr1 — 2u; + ui—1) — f(u;)

Travelling Wave ansatz u;(t) = ¢(i — ct) = p(£) gives

—cp'(§) = o€+ 1) —2p(8) + p(§ — 1) — f(p(€))

1€ Zbuté =1 —ct € Ristime-like and ¢ : R — IR.

McGill April 2005 — p.6/2



Functional Differential Equation Reduction
Travelling Waves for Discrete Nagumo Equation

U = (wjr1 — 2u; + ui—1) — f(u;)

Travelling Wave ansatz u;(t) = ¢(i — ct) = p(£) gives
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Functional Differential Equation Reduction
Travelling Waves for Discrete Nagumo Equation

U = (wjr1 — 2u; + ui—1) — f(u;)

Travelling Wave ansatz u;(t) = ¢(i — ct) = p(£) gives

—cp'(§) = o€+ 1) —2p(8) + p(§ — 1) — f(p(€))

1€ Zbuté =1 —ct € Ristime-like and ¢ : R — IR.
p(& — 1) = delay, (£ + 1) = advance.

Both nonlinearities have three constant solutions ¢ = 0, a
and 1. Seek solutions with p(—oc0) = 0, p(co0) = 1.
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Functional Differential Equation Reduction
Travelling Waves for Discrete Nagumo Equation

U = (wjr1 — 2u; + ui—1) — f(u;)

Travelling Wave ansatz u;(t) = ¢(i — ct) = p(£) gives

—cp'(§) = o€+ 1) —2p(8) + p(§ — 1) — f(p(€))

1€ Zbuté =1 —ct € Ristime-like and ¢ : R — IR.
p(& — 1) = delay, (£ + 1) = advance.

Both nonlinearities have three constant solutions ¢ = 0, a
and 1. Seek solutions with p(—oc0) = 0, p(co0) = 1.

TW ansatz “reduces” LDE to an FDE (cf TW ansatz reduces
PDE to ODE)
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Linear
Advanced-Retarded FDEs

Consider linear FDE:
—cp'(§) = p(§ +1) — 20(8) + (€ — 1) — Be(§)
admits solutions of form p(&) = e
where IERERE RN G — ¢\ - 2cosh A — (2 + ).
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Linear
Advanced-Retarded FDEs

Consider linear FDE:
—cp'(§) = p(§ +1) — 20(8) + (€ — 1) — Be(§)
admits solutions of form p(&) = e
where IERERE RN G — ¢\ - 2cosh A — (2 + ).

One positive real and one negative real .

Infinitely many complex \ with Re(\) < 0 and with
Re(\) > 0.

As |\| — oo eigenvalues lie on Re(A\) = +1n|c)|.
Re()\) — H+oo as || — oo.

McGill April 2005 — p.7/2



Linear
Advanced-Retarded FDEs

Consider linear FDE:

—c'(§) = p(§+1) — 2¢(§) + ¢(§ — 1) — Bo(§)

admits solutions of form p(&) = e
where IERERE RN G — ¢\ - 2cosh A — (2 + ).

Bi-infinite sums of eigenfunctions define solutions.

A solution with infinitely many eigenfunctions with Re(\) > 0
will have faster than exponential growth forwards in time.

A solution with infinitely many eigenfunctions with Re(\) < 0
will have faster than exponential growth backwards in time.

0 Is a saddle point with infinite dimensional stable and
unstable manifolds.

Not well-posed as IVP.
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Nonlinear FDE BVP
Existence and Uniqueness

—cp'(§) = p(§+1) —20(8) + (£ — 1) — Be(&)(w(§) — a)(v(§) — 1)

p(—00) =0, ¢(o0) =1.
[ZINNER 1991]: Uniqueness and Stability of Monotonic TWs
[ZINNER 1992]. EXistence of Monotonic TWs for 3 large.

Zinner’s theory covers larger class of f. More recent
extensions of theory to wider class of problems, in particular
work of [MALLET-PARET 1999A],[MALLET-PARET 19998].

Of interest in this and more general problems is what
happens when £ is not sufficiently large.
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Functional Differential Equation
Truncated Boundary Value Problem

To solve

—cp' (&) = p(E+1)—20(§)+0(§—1)—f(0(£)), @(—00) =0, p(co) =1

numerically must truncate to finite interval:

—cp'(§) = (€ +1) —20(&) + (€ = 1) — f(w(§)), &€ [T-,T4]

What are suitable boundary terms ?

To evaluate (&) for £ € [T, T ] need (&) defined for
Ee|T_ — 1,7, + 1] and ideally we want it defined for
£ € (—o0,00).

We consider 6 possibilities:
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Functional Differential Equation
Truncated Boundary Value Problem

—cp'(§) = (€ +1) —20(&) + o(§ — 1) — f(w(§)), &€ [T, T4]

Boundary Conditions/Functions:
1. Dirichlet
Neumann
Dominant Characteristic value
Dominant Characteristic value + Nonlinear Correction
Projected BCs
Dominant Real part Characteristic value

CCRE R

McGill April 2005 — p.9/2



Functional Differential Equation
Truncated Boundary Value Problem

—cp'(§) = (€ +1) —20(&) + o(§ — 1) — f(w(§)), &€ [T, T4]

1. Dirichlet BCs
Since f(0) = f(1) =0 and

lim () =0,  lim o(¢) =1,

£——o0 £—o0

we could try

Pp(I-) =0, (Ty) =1
p&) =0, <T_and p(&) =1,¢ > Ty

Many people do this !
Solution does not always converge as |T_|, |1} | — oo !l
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Functional Differential Equation
Truncated Boundary Value Problem

—cp'(§) = p(E +1) —20(&) + p(§ = 1) — f(p(§)), &€, T4]
2. Neumann

Since limg_,_ ¢(§) =0, lim¢_. p(§) = 1, we could try
P(T-) =0, ¢'(T}+)=0

p(§) = p(T-), § <T- and p(§) = p(14), £ > Ty

Constant 'solutions’ for ¢ < T and & > T, are not actually
constant solutions of original equation.

But if o(7_) ~ 0 and ¢(7.) ~ 1 close, then |o(7T_)| and
lo(T'L) — 1| give a measure of the approximation error.
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Functional Differential Equation
Truncated Boundary Value Problem

—cp'(§) = (€ +1) —20(&) + o(§ — 1) — f(w(§)), &€ [T, T4]

3. Linearization: For £ < T'_ consider the linearization

—cp'(§) = p(§+1) — 2p(§) + (€ — 1) — f(0)p(§)

which has monotonic solutions of the form ¢(&) = e
where A > 0 given by 0 = ¢\ + 2cosh A — (2 + 3). Now

o(€) = p(T)eMe~T-), £ e (—o0,T_].

Is this such a good idea ??
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Functional Differential Equation
Truncated Boundary Value Problem

—cp'(§) = (€ +1) —20(&) + o(§ — 1) — f(w(§)), &€ [T, T4]

3. Linearization: 0 = cA + 2cosh A — (2 4 3):
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Functional Differential Equation
Truncated Boundary Value Problem

—cp'(§) = p(€+1) —20(§) + (§ — 1) — f(p(§)), &€ T-,T4]
3. Linearization: 0 = cA + 2cosh A — (2 4 3):

Since Re(A.) > A > 0 will be okay for T < 0.

1D approx to linear stable manifold better than previous Od
approximations

Infinitely many stable directions missed......
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Nonlinear Nagumo Problem
Truncated Boundary Value Problem

Travelling Wave Equation:

—cp'(§) = p(€+1) —20(&) + (€ — 1) — f(w(§)), &€[T-,T4]

Phase condition: p(0) =a
Boundary Conditions, LHS:
Ay IS positive root of 0 = cA; + 2cosh(A4) —2 — f/(0).
o(6) — o(TL)e e, ¢ € (—o00, T_]

Ar()p(TL) + ¢/ (T-) =0
RHS has delays and

Solve these equations numerically using a mixed-type DDE
collocation code written for the purpose [ ABeLL, ET AL 2004], (built
on colmod [CasH ET AL 1995]).
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Nonlinear Nagumo Equation
a-c CUrves

PR — D + U — 5%‘(%‘ . a)(ui - 1), B >0

—cp'(§) = p(§+1) —20(&) + (€ — 1) — B(§) (v(§) —a)(v(§) — 1),

g small —
c=0 <= a=1/27???

g large —
¢ = 0 for growing range of a:
= Propagation Failure

. -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5
C
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Nonlinear Nagumo Equation
Evolution of Wave Profile for 6 = 1 and § = 8.

—cp'(§) = p(§+1) —2¢(8) + (£ — 1) — B(§)(w(§) — a)(w(§) — 1)

Consider evolution of wave profile as ¢ — 0
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Nonlinear Nagumo Equation
Evolution of Wave Profile for 6 = 1 and § = 8.

—cp'(§) = p(§+1) —2¢(8) + (£ — 1) — B(§)(w(§) — a)(w(§) — 1)

Consider evolution of wave profile as ¢ — 0

TW equation becomes a difference equation

Step profile explains
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Propagation Failure & Standing Waves
¢ = 0: A difference Equation
0=—cp'(§) = p(+1) —20(8) + p(§ — 1) — Bf(p(§))
0= = U1 — 2u; + ui—1 — Bf(w)




Propagation Failure & Standing Waves
¢ = 0: A difference Equation
0=—cp'(§) = p(+1) —20(8) + p(§ — 1) — Bf(p(§))
0=t = uip1 — 2u; +ui—1 — Bf(u;)

Solution of Difference Equation defines solution of
Functional Difference Equation.
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Evolution of Characteristic Equation Roots

Step function, does not resemble e*¢
Check assumption that Re(A.) > A > 0 in limit as ¢ — 0.

Compute roots by approximating the infinitesimal generator,
using approach of [BREDA,MASET,VERMIGLIO].
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Evolution of Characteristic Equation Roots

0=cA+2cosh\ — (2 + ():
No dominant A as ¢ — 0
Smooth approximation e*¢ to tail of wave not valid
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Functional Differential Equation
Truncated Boundary Value Problem

More boundary conditions:

—cp'(§) = (€ +1) —20(&) + (€ — 1) — f(w(§)), &€ [T, TY]

4. Nonlinear Correction

[CHI,BELL,HASSARD,1986] and other authors apply nonlinear
corrections to the linear term

Seemingly pointless: leading error terms are linear !
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Functional Differential Equation
Truncated Boundary Value Problem

More boundary conditions:
—cp'(§) = (€ + 1) —20(8) + p(§ = 1) — f(p(€)), &€ [T, T4]

4. Nonlinear Correction

[CHI,BELL,HASSARD,1986] and other authors apply nonlinear
corrections to the linear term

Seemingly pointless: leading error terms are linear !
5. Projection BCs: Project into invariant subspace

[BEYN 1990],[FRIEDMAN,DOEDEL 1991],[DEMMEL,DIECI,FRIEDMAN
2000],...

State of the art for ODEs
Difficult in our case, as all manifolds oco-dim.
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c = 0:
Approximating Steps

Can compute eigenfunctions so could use more of them. Would
that work ?
Linearized equation with ¢ = 0:

0=—c'(§) = (€ +1) —20(&) + (£ — 1) — Bf(0)
Characteristic Equation:
0=—cA=2cosh\ — (2+ K)

has roots
Ap = a+ 2nmi, n € Z.

Lets approximate step function e*l#) using these characteristic
functions.
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c = 0:
Approximating Steps

00 N )\
1l —e 7
etolzl — E o, e E ane™?. oy, = :

n=—oo n=—N

How good is the approximation ?
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c = 0:
Approximating Steps

00 N
1 — e Mo
etolzl — E o, e E ane™?. oy, = :

NnN=—0o0 n=—N

Need 201 dimension approx to manifold ! Try something else.
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Boundary Conditions:
6. Dominant Real-part of Characteristic Value

Smooth exponential function ¢(¢) = e*¢ satisfies:
©'(€) = Ap(6) =0, (¢ +1) = e p(6),
Step exponential function ¢ (&) = e*l¢) satisfies:

P(€) =0, ae.  pE+1)=ep(é).

This suggests new boundary functions/conditions

p&) =e o +1), e[l -1,T]
And for continuity BC: (7)) = e (T + 1).

These apply equally well for smooth and step tails.
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Simulations with New Boundary Conditions
f=1and g =8
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Simulations with New Boundary Conditions
f=1and g =8

For smooth solution as ¢ — 0, new BCs as good as old.

For step solutions as ¢ — 0, new BCs allow computation to
smaller ¢ and obtain flatter steps.

Why not always steps? Is this computation better?
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Test Problem 1
McKean’s caricature of the cubic

McKean’s caricature of cubic

2

6(90_1)7 90>CL,
flo) =19 Ble—1,¢, p=a,
. Oy, p < a.
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Test Problem 1
McKean’s caricature of the cubic

McKean’s caricature of cubic

2

5(90_1)7 QO>CL,
flo)=9 Ble—1,¢], ¢o=a, =p—H(p—a),
. Oy, p < a.

where H Is heaviside function.
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Test Problem 1
McKean’s caricature of the cubic

McKean’s caricature of cubic

f(o) =9 —H(p—a),

where H Is heaviside function.

For monotonic travelling wave solutions ¢ (&) 3£ : p(§) = a.
Wilog let ¢©(0) = a. Then

Fp(€)) = o(€) — H(p(§) —a) = p(§) — H(E) = linear.

Travelling wave equation in this case is

—cp'(§) = p(E+1) —20(&) + p(§ — 1) — (&) + H()

Can be studied using transforms etc.
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Test Problem 1
McKean’s caricature of the cubic

McKean’s caricature of cubic

1 1 [ A(s)sins{ c [  cossé
Ple) = 2 " ;/0 s(A(s)? + CZSZ)dS i ;/o A(s)? + c?s? -

where A(s) =1+ 2a(1 — cos s), and phase condition ¢(0) = a,
relates a to c.

Convergence of integrals subtle especially as ¢ — 0, and
good numerical evaluation is not a fun problem.

Like cubic f has 'zeros’ at 0, a and 1,

But for McKean ' f'(a) = —oo’ completely changes
propagation failure characteristics

£1(0) = f'(1) leads to symmetry p(—&) = 1 — (&) for
standing waves ¢ = 0.
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Propagation Failure
McKean and Cubic Nonlinearities

McKean: VG >0de >0:c=0forae[1/2—¢,1/2 + €]

Cubic: Only true for ¢ sufficiently large, or range of a
exponentially small for small 5 ??
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Standing Waves ¢ = 0
As Hamiltonian Discretizations

0=1u; =ui+1 — 2u; + ui—1 — Bf(us,a)
Let h = /B and vj11 = (uj+1 — u;)/h. Then
Uil = Uj — hvjtq, viy1 = v + hf(u;,a)
Which is symplectic Euler applied to the Hamiltonian system
v =—H,(u,v,a), uw = Hy(u,v,a)

where 5
(¥

H(u,v,a) = el W(u,a), W' (u,a)= f(u,a)

The standing wave is a numerical heteroclinic connection
between (0,0) and (1,0).
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Standing Waves ¢ = 0
As Hamiltonian Discretizations

In general

ODE will have heteroclinic connection for isolated
parameter value

Expect heteroclinic connection for discretization for nearby
parameter value [BEYN,1990],[DOEDEL&FRIEDMAN,1990]

In general stable-unstable manifold intersection for discrete
map will be transversal; so heteroclinic orbit will persist over
(exponentially) small parameter range [FIEDLER & SCHEURLE,
1996]

So we should expect to see propagation failure for 5 small
too.
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Test Problem 2
The tanh Solution

Approach dates at least to [CHI,BELL,HASSARD,1986]
Choose solution:

62£

1+ e% 1 — (&)

p(€) = 5(1+ tanh &) =
Now

—cp'(§) = (€ +1) —2p(&) + (€ — 1) — Bf(0(§)) =

Bf(p) = 2co(l — ) + —2¢ +

@+ e2(1 — ) p+e2(1— )

with ¢ determined by f(a) =0
(f(0) = f(1) = 0 follows from choice of solution)
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Test Problem 2
The tanh Solution
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Test Problem 2
The tanh Solution
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Problems with
The Tanh Test Problem

No propagation failure
Wave speed determined by

g(a,c) :=2ca(l—a)+ . —2a+ — =0

Has solution with ¢ = 1/2 and ¢ = 0 and simple application
of implicit function theorem shows %\a:m > 0.
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Problems with
The Tanh Test Problem

No propagation failure

Symmetric Talls
(&) + o(—&) = 1 like McKean, not like cubic.
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Problems with
The Tanh Test Problem

No propagation failure
Symmetric Talls
Non-generic connecting orbit?

P >0)=(14+e %) Z 1)fe=2% =1 — % + h.o.t.
k=0

(€ <0) = eX(14 %)L =% Z )Pe2ke = €28 4 hoot.
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Problems with
The Tanh Test Problem

No propagation failure
Symmetric Tails

Non-generic connecting orbit?
But for £ < 0 (£ > 0 is similar) linearizing about ¢ = 0 gives

—cp' (&) = p(E+1) —20(&) + (& — 1) — Bf(0)p(€)

with solutions (&) = 2% | ke’ where each ) satisfies
R(A) < 0and

e =2 " 3f(0).
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Problems with
The Tanh Test Problem

No propagation failure
Symmetric Tails

Non-generic connecting orbit?
But for £ < 0 (£ > 0 is similar) linearizing about ¢ = 0 gives

—cp' (&) = p(E+1) —20(&) + (& — 1) — Bf(0)p(€)

with solutions (&) = 2% | ke’ where each ) satisfies
R(A) < 0and

O=cA+e*—2+e?—[2c+e?2—2+¢e77

Which has real root A = 2, and infinitely many complex roots
with Re(\,) > 2, Re(\,) — oo as n — oo.
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Problems with
The Tanh Test Problem

No propagation failure
Symmetric Tails

Non-generic connecting orbit?

Linear unstable manifold of 0 consists of functions e and
infinitely many e*¢ with Re(\) > 2, Im(\) # 0. Heteroclinic
orbit will be tangent to this space, with e?¢ as dominant
component, but also with other components

But nonlinear solution has e%¢ as dominant component with

other components (e?¢)*, k = 2, 3, ... These are Chi,Bell,
Hassard nonlinear corrections to linear boundary function
This Is a very special solution. Approaches fixed point
exactly in direction of dominant linear component with no
oscillatory components
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Problems with
The Tanh Test Problem

No propagation failure
Symmetric Talls
Non-generic connecting orbit

This Is not a good test problem to compare our truncated
problems

Does not have behaviour like cubic f

Special solution matches one truncation method, but no
reason why general solutions should be like this
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An Exact Solution with Propagation Failure
[EImer,Rodrigo,Muira]

p(€) = (1 + tanh(b€ + 9(¢)
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An Exact Solution with Propagation Failure
[EImer,Rodrigo,Muira]

Propagation failure

But symmetric and f’(£) has discontinuities at £ = ¢(z),
z € Z, with accumulation points at 0 and 1.
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An Exact Solution for Cubic-like f

p(§) = (1 jbibg)r

p(€ <0) = e’s + h.o.t. pe(&>0)=1-— re® + h.o.t.

Characteristic equation
0=chA+e*—2+e*—Gf(0orl).
implies b, ¢, r determined by f(a) = 0 and
0=chr+e” —2+¢ " — ja

O=cb+e®—2+e?—B(1—a)
satisfies f(0) = f(a) = f(1) =0, f/(0) =a, f(1)=1—a
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An Exact Solution for Cubic-like f

. (ac)=(0.98,0.64) (a,c) = (0.98,0.64)
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An Exact Solution for Cubic-like f

Symmetry is broken, f'(0) =a, f'(1)=1—-a
Propagation Failure Missing, as yet......
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Future Directions &
Conclusions

Mixed type FDE theory Is incomplete
Good numerics are needed to inform analysis
Good analysis is needed to inform the numerics

Development of suitable test problems, will allow
benchmarking of numerical solution algorithms
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