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Lattice Differential Equations

Translationally Invariant, Finite Interaction, Lattice Differential
Equation (LDE)

v̇i(t) =
n∑

j=−n

Hj(vi+j(t)) i, j, n ∈ Z, t ∈ R

• vi ∈ C
m

• Can relax above constraints
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Lattice Differential Equations

Case Problem
Discrete Nagumo Equation

v̇i(t) = vi+1(t) − 2vi(t) + vi−1(t) − βf(vi(t))

• β ∈ R
+ determines the relative strength between the

coupling vi+1 − 2vi + vi−1 and the forcing f(vi)

• Bistable nonlinearity f(v) = v(v − a)(v − 1) with a ∈ (0, 1).
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Traveling Wave Solutions

• Introduce a Traveling Wave (TW) ansatz:
• Let ζ = i − ct, ϕ(ζ) = vi(t)
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Traveling Wave Solutions

• Introduce a Traveling Wave (TW) ansatz:
• Let ζ = i − ct, ϕ(ζ) = vi(t)

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1) − βf(ϕ(ζ))

• i ∈ Z. However, ζ ∈ R since t ∈ R.
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Connecting Orbits

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1)

− βϕ(ζ)[ϕ(ζ) − a][ϕ(ζ) − 1]
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Connecting Orbits

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1)

− βϕ(ζ)[ϕ(ζ) − a][ϕ(ζ) − 1]

Constant solutions
• Stable: ϕ(ζ) = 0, 1

• Unstable: ϕ(ζ) = a
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We look for heteroclinic orbits which connect 0 to 1.
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Advances/Delays

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1)

− βϕ(ζ)[ϕ(ζ) − a][ϕ(ζ) − 1]

• Delays/Advances: ϕ(ζ − 1),ϕ(ζ + 1).

• To know the dynamics in ζ ∈ [−1, 1] need to know the
solution over ζ ∈ [−2, 2].
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Advances/Delays

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1)

− βϕ(ζ)[ϕ(ζ) − a][ϕ(ζ) − 1]

• Delays/Advances: ϕ(ζ − 1),ϕ(ζ + 1).

• To know the dynamics in ζ ∈ [−1, 1] need to know the
solution over ζ ∈ [−2, 2].
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Dependence Range 

Dynamics 
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Advances/Delays

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1)

− βϕ(ζ)[ϕ(ζ) − a][ϕ(ζ) − 1]

• Delays/Advances: ϕ(ζ − 1),ϕ(ζ + 1).

• To know the dynamics in ζ ∈ [−1, 1] need to know the
solution over ζ ∈ [−2, 2].

ϕ(ζ → −∞) ≈ 0

ϕ(ζ → +∞) ≈ 1

Can obtain analytical approximation to solution when ϕ ≈ 0, 1 by
linearizing the dynamics
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Linear MFDEs

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1)

− βaϕ(ζ)

• Obtain fundamental modes eλζ by solving characteristic
equation.

• Yields approximations to the solution where the linearization
is valid.
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Linear MFDEs

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1)

− βaϕ(ζ)

• Obtain fundamental modes eλζ by solving characteristic
equation.

• Yields approximations to the solution where the linearization
is valid.

φ≈0 φ≈1 

Dynamics 

1 −1 2 −2 0 
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Continuum Formulation

v̇i(t) = vi+1(t) − 2vi(t) + vi−1(t) − βf(vi(t))

• Let i → η ∈ R, take on non-integer values too.
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Continuum Formulation

v̇i(t) = vi+1(t) − 2vi(t) + vi−1(t) − βf(vi(t))

• Let i → η ∈ R, take on non-integer values too.

v̇(η, t) = v(η + 1, t) − 2v(η, t) + v(η − 1, t) − f(v(η, t))

• Any solution with η restricted to Z solves the discrete
problem.

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 7/18



Functional Differential Equations Workshop April 25, 2005

Traveling Waves of Continuum Problem

v̇(η, t) = v(η + 1, t) − 2v(η, t) + v(η − 1, t) − βf(v(η, t))

• Introduce a TW ansatz as before:

Let x = η − ĉt, u(x, t) = v(η − ĉt, t)
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Traveling Waves of Continuum Problem

v̇(η, t) = v(η + 1, t) − 2v(η, t) + v(η − 1, t) − βf(v(η, t))

• Introduce a TW ansatz as before:

Let x = η − ĉt, u(x, t) = v(η − ĉt, t)

∂u(x, t)

∂t
−ĉ

∂u(x, t)

∂x
= u(x+1, t)−2u(x, t)+u(x−1, t)−βf(u(x, t))

• Now have a PDE to solve!
• Have we gained anything?
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Correspondence of Solutions

Compare the 2 TW equations

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1) − βf(ϕ(ζ))

∂u(x, t)

∂t
− ĉ

∂u(x, t)

∂x
= u(x + 1, t) − 2u(x, t) + u(x − 1, t)

− βf(u(x, t))
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Correspondence of Solutions

Compare the 2 TW equations

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1) − βf(ϕ(ζ))

∂u(x, t)

∂t
− ĉ

∂u(x, t)

∂x
= u(x + 1, t) − 2u(x, t) + u(x − 1, t)

− βf(u(x, t))

• A fixed point solution of the PDE with ĉ = c yields ϕ.
• Furthermore, for the Discrete Nagumo Equation...
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Correspondence of Solutions

Compare the 2 TW equations

−cϕ′(ζ) = ϕ(ζ + 1) − 2ϕ(ζ) + ϕ(ζ − 1) − βf(ϕ(ζ))

∂u(x, t)

∂t
− ĉ

∂u(x, t)

∂x
= u(x + 1, t) − 2u(x, t) + u(x − 1, t)

− βf(u(x, t))

• A fixed point solution of the PDE with ĉ = c yields ϕ.
• Furthermore, for the Discrete Nagumo Equation...

If a monotone fixed point solution of this PDE exists then it is t he unique,
asymptotically stable, monotonic solution of our original TW equation.
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Algorithm in Action

Our new approach is
• Take an Initial Condition and guess ĉ.

• Adjust ĉ so that ∂u
∂t

→ 0.

• Resulting fixed point solution is ϕ(ζ) and ĉ = c.

Details
• A finite difference approach is used to evolve the solution.
• For the computations shown here, an explicit method is

used with the time step ∆t a fixed ratio of the spatial mesh
size ∆x.
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Algorithm in Action

Advances and Delays

• Handled in an analagous fashion to the earlier approach.
• Linearizing the dynamics still yields a PDE.
• Assuming that the fixed point dynamics hold u̇(x, t) = 0 then

−ĉ
∂u

∂x
(x, t) = u(x + 1, t) − 2u(x, t) + u(x − 1, t)

− βf ′(0)u(x, t)

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 10/18



Functional Differential Equations Workshop April 25, 2005

Algorithm in Action

• Fundamental modes can be obtained exλ by solving the
characteristic equation.

• Approximation solution to the linearized dynamics is
obtained.

u(x, t) ≈
M∑

j=0

κje
xλj

• The κj are chosen at each time t to satisfy matching
conditions
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Sample Computations

Step Function IC
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Sample Computations

Non-monotonic
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Capture Propagation Failure

• Increasing β and adjusting the de-tuning parameter a so
that c → 0

Smooth tanh IC with β = 8, a = 0.52
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Quintic Nonlinearity

f(x) = x(x − b)(x −
1

2
)(x − a)(x − 1) a, b ∈ (0, 1)

Smooth tanh IC with β = 10, a = 0.9, b = 3/8
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Quintic Nonlinearity

Capture Propagation Failure
Smooth tanh IC with β = 40, a = 5/8 + 0.1, b = 3/8

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

t= 0

0 10 20 30 40 50 60 70 80 90 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t

c

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 13/18



Functional Differential Equations Workshop April 25, 2005

Convergence Results

Using a slightly modified function fe(u) we have access to an
exact solution of our problem.
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Convergence Results

1st order method
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Convergence Results

2nd order method
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Conclusions

• The new continuum method allows an explicit approach (via
Finite Differences) to obtain solutions.

• Our method may be applied to a variety of Lattice
Differential Equations.

• Approach is restricted to finding monotonic, stable solutions.

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 15/18



Functional Differential Equations Workshop April 25, 2005

Acknowledgments

• Supervisor: Tony Humphries
• The Applied Math Group at McGill University

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 16/18



Functional Differential Equations Workshop April 25, 2005

Thank you

Any Questions?
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Multiple Traveling Fronts

f(ϕ) = sin(4πϕ) + sin(3πϕ)

Smooth tanh IC
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