Finding Traveling Wave Solutions to Lattice Differential Equations

R.P. Wilds & A.R. Humphries

wilds@math.mcgill.ca
http://www.roywilds.ca

McGill University

Functional Differential Equations Workshop

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 1/18

Lattice Differential Equations

Translationally Invariant, Finite Interaction, Lattice Differential Equation (LDE)

$$\dot{v}_i(t) = \sum_{j=-n}^n H_j(v_{i+j}(t)) \qquad i, j, n \in \mathbb{Z}, t \in \mathbb{R}$$

• $v_i \in \mathbb{C}^m$

Can relax above constraints

Lattice Differential Equations

Case Problem

Discrete Nagumo Equation

 $\dot{v}_i(t) = v_{i+1}(t) - 2v_i(t) + v_{i-1}(t) - \beta f(v_i(t))$

- β ∈ ℝ⁺ determines the relative strength between the coupling $v_{i+1} 2v_i + v_{i-1}$ and the forcing $f(v_i)$
- Bistable nonlinearity f(v) = v(v a)(v 1) with $a \in (0, 1)$.

Traveling Wave Solutions

Introduce a Traveling Wave (TW) ansatz:

• Let $\zeta = i - ct$, $\varphi(\zeta) = v_i(t)$

Traveling Wave Solutions

Introduce a Traveling Wave (TW) ansatz:

• Let $\zeta = i - ct$, $\varphi(\zeta) = v_i(t)$

 $-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta f(\varphi(\zeta))$

• $i \in \mathbb{Z}$. However, $\zeta \in \mathbb{R}$ since $t \in \mathbb{R}$.

Connecting Orbits

$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1)$ $- \beta\varphi(\zeta)[\varphi(\zeta) - a][\varphi(\zeta) - 1]$

Functional Differential Equations Workshop

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 4/18

Connecting Orbits

$$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta\varphi(\zeta)[\varphi(\zeta) - a][\varphi(\zeta) - 1]$$

Constant solutions

- Stable: $\varphi(\zeta) = 0, 1$
- Unstable: $\varphi(\zeta) = a$

We look for heteroclinic orbits which connect 0 to 1.

Advances/Delays

$$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta\varphi(\zeta)[\varphi(\zeta) - a][\varphi(\zeta) - 1]$$

- Delays/Advances: $\varphi(\zeta 1), \varphi(\zeta + 1)$.
- To know the dynamics in $\zeta \in [-1, 1]$ need to know the solution over $\zeta \in [-2, 2]$.

Advances/Delays

$$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta\varphi(\zeta)[\varphi(\zeta) - a][\varphi(\zeta) - 1]$$

- Delays/Advances: $\varphi(\zeta 1), \varphi(\zeta + 1)$.
- To know the dynamics in $\zeta \in [-1, 1]$ need to know the solution over $\zeta \in [-2, 2]$.

Advances/Delays

$$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta\varphi(\zeta)[\varphi(\zeta) - a][\varphi(\zeta) - 1]$$

- Delays/Advances: $\varphi(\zeta 1), \varphi(\zeta + 1)$.
- To know the dynamics in $\zeta \in [-1, 1]$ need to know the solution over $\zeta \in [-2, 2]$.

 $\begin{array}{ccc} \varphi(\zeta \to -\infty) &\approx & 0 \\ \varphi(\zeta \to +\infty) &\approx & 1 \end{array}$

Can obtain analytical approximation to solution when $\varphi \approx 0,1$ by linearizing the dynamics

Strain McGill

Linear MFDEs

$$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta a\varphi(\zeta)$$

- Obtain fundamental modes $e^{\lambda\zeta}$ by solving characteristic equation.
- Yields approximations to the solution where the linearization is valid.

Linear MFDEs

$$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta a\varphi(\zeta)$$

- Obtain fundamental modes $e^{\lambda\zeta}$ by solving characteristic equation.
- Yields approximations to the solution where the linearization is valid.

Continuum Formulation

$$\dot{v}_i(t) = v_{i+1}(t) - 2v_i(t) + v_{i-1}(t) - \beta f(v_i(t))$$

• Let $i \to \eta \in \mathbb{R}$, take on non-integer values too.

Continuum Formulation

 $\dot{v}_i(t) = v_{i+1}(t) - 2v_i(t) + v_{i-1}(t) - \beta f(v_i(t))$

• Let $i \to \eta \in \mathbb{R}$, take on non-integer values too.

 $\dot{v}(\eta, t) = v(\eta + 1, t) - 2v(\eta, t) + v(\eta - 1, t) - f(v(\eta, t))$

- Any solution with η restricted to \mathbb{Z} solves the discrete problem.

Traveling Waves of Continuum Problem

 $\dot{v}(\eta, t) = v(\eta + 1, t) - 2v(\eta, t) + v(\eta - 1, t) - \beta f(v(\eta, t))$

Introduce a TW ansatz as before:

Let $x = \eta - \hat{c}t$, $u(x, t) = v(\eta - \hat{c}t, t)$

Traveling Waves of Continuum Problem

 $\dot{v}(\eta, t) = v(\eta + 1, t) - 2v(\eta, t) + v(\eta - 1, t) - \beta f(v(\eta, t))$

Introduce a TW ansatz as before:

Let $x = \eta - \hat{c}t$, $u(x, t) = v(\eta - \hat{c}t, t)$

$$\frac{\partial u(x,t)}{\partial t} - \hat{c}\frac{\partial u(x,t)}{\partial x} = u(x+1,t) - 2u(x,t) + u(x-1,t) - \beta f(u(x,t))$$

Now have a PDE to solve!

Have we gained anything?

Correspondence of Solutions

Compare the 2 TW equations

$$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta f(\varphi(\zeta))$$
$$\frac{\partial u(x,t)}{\partial t} - \hat{c}\frac{\partial u(x,t)}{\partial x} = u(x+1,t) - 2u(x,t) + u(x-1,t)$$
$$- \beta f(u(x,t))$$

unctional Differential Equations Workshop

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 9/18

Correspondence of Solutions

Compare the 2 TW equations

$$-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta f(\varphi(\zeta))$$

$$\frac{\partial u(x,t)}{\partial t} - \hat{c}\frac{\partial u(x,t)}{\partial x} = u(x+1,t) - 2u(x,t) + u(x-1,t)$$

$$- \beta f(u(x,t))$$

- A fixed point solution of the PDE with $\hat{c} = c$ yields φ .
- Furthermore, for the Discrete Nagumo Equation...

Correspondence of Solutions

Compare the 2 TW equations

 $-c\varphi'(\zeta) = \varphi(\zeta+1) - 2\varphi(\zeta) + \varphi(\zeta-1) - \beta f(\varphi(\zeta))$ $\frac{\partial u(x,t)}{\partial t} - \hat{c}\frac{\partial u(x,t)}{\partial x} = u(x+1,t) - 2u(x,t) + u(x-1,t)$ $- \beta f(u(x,t))$

• A fixed point solution of the PDE with $\hat{c} = c$ yields φ .

Furthermore, for the Discrete Nagumo Equation...

If a monotone fixed point solution of this PDE exists then it is the unique, asymptotically stable, monotonic solution of our original TW equation.

Algorithm in Action

Our new approach is

- Take an Initial Condition and guess \hat{c} .
- Adjust \hat{c} so that $\frac{\partial u}{\partial t} \to 0$.
- Resulting fixed point solution is $\varphi(\zeta)$ and $\hat{c} = c$.

Details

- A finite difference approach is used to evolve the solution.
- For the computations shown here, an explicit method is used with the time step Δt a fixed ratio of the spatial mesh size Δx .

Algorithm in Action

Advances and Delays

- Handled in an analagous fashion to the earlier approach.
- Linearizing the dynamics still yields a PDE.
- Assuming that the fixed point dynamics hold $\dot{u}(x,t) = 0$ then

$$-\hat{c}\frac{\partial u}{\partial x}(x,t) = u(x+1,t) - 2u(x,t) + u(x-1,t)$$
$$- \beta f'(0)u(x,t)$$

Algorithm in Action

- Fundamental modes can be obtained $e^{x\lambda}$ by solving the characteristic equation.
- Approximation solution to the linearized dynamics is obtained.

$$u(x,t) \approx \sum_{j=0}^{M} \kappa_j e^{x\lambda_j}$$

• The κ_j are chosen at each time t to satisfy matching conditions

Sample Computations

Step Function IC

🐯 McGill

Functional Differential Equations Workshop

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 11/18

April 25, 2005

Sample Computations

Non-monotonic

🐯 McGill

unctional Differential Equations Worksho

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 11/18

April 25 2005

Capture Propagation Failure

Increasing β and adjusting the de-tuning parameter a so that c → 0
 Smooth tanh IC with β = 8, a = 0.52

🐯 McGill

Functional Differential Equations Workshop

Finding Traveling Wave Solutions to Lattice Differential Equations - p. 12/18

Quintic Nonlinearity

$$f(x) = x(x-b)(x-\frac{1}{2})(x-a)(x-1) \quad a,b \in (0,1)$$

Smooth tanh IC with $\beta = 10, a = 0.9, b = 3/8$

🐯 McGill

Functional Differential Equations Workshop

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 13/18

April 25 2005

Quintic Nonlinearity

Capture Propagation Failure Smooth tanh IC with $\beta = 40, a = 5/8 + 0.1, b = 3/8$

🐯 McGill

Functional Differential Equations Workshop

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 13/18

Convergence Results

Using a slightly modified function $f_e(u)$ we have access to an exact solution of our problem.

Convergence Results

Functional Differential Equations Worksho

 Workshop
 April 25, 2005

 Finding Traveling Wave Solutions to Lattice Differential Equations – p. 14/18

Ť

Convergence Results

April 25 2005 Finding Traveling Wave Solutions to Lattice Differential Equations - p. 14/18

Conclusions

- The new continuum method allows an explicit approach (via Finite Differences) to obtain solutions.
- Our method may be applied to a variety of Lattice Differential Equations.
- Approach is restricted to finding monotonic, stable solutions.

Acknowledgments

- Supervisor: Tony Humphries
- The Applied Math Group at McGill University

Thank you

Any Questions?

Functional Differential Equations Worksho

Finding Traveling Wave Solutions to Lattice Differential Equations - p. 17/18

Multiple Traveling Fronts

$f(\varphi) = \sin(4\pi\varphi) + \sin(3\pi\varphi)$

Smooth tanh IC

🐯 McGill

unctional Differential Equations Worksho

Finding Traveling Wave Solutions to Lattice Differential Equations – p. 18/18

April 25 2005