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Outline of talk - part I

The “prototype” problem:

• from a retarded functional differential equation...

• ...to a derivative operator A with boundary conditions

• asymptotic stability and eigenvalues of A
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Outline of talk - part II

Derivative operators with non-local boundary conditions:

• linear autonomous differential systems with multiple
discrete and distributed delays

• linear autonomous neutral retarded functional
differential equations

• linear abstract functional differential equations
• age-structured population models
• mixed-type functional differential equations
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Outline of talk - part III

Numerical methods:

• general structure
• pseudospectral differencing approach
• convergence analysis
• numerical results
• conclusions
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Collaboration

Research activity with
R. Vermiglio - Università di Udine
S. Maset - Università di Trieste
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I - RFDEs

“A retarded functional differential equation (RFDE) consists

of a rule to extend the initial function beyond its original

domain of definition”
[Diekmann et al, 1994]
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I - The protoype problem

• let C = C([−τ, 0], Cm) with supremum norm

‖ψ‖ = sup
θ∈[−τ,0]

|ψ(θ)|
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I - The protoype problem

• let C = C([−τ, 0], Cm) with supremum norm

‖ψ‖ = sup
θ∈[−τ,0]

|ψ(θ)|

• consider the initial value problem for the linear
autonomous RFDE
 x′(t) = L0x(t) + L1x(t − τ), L0, L1 ∈ C

m×m, t ≥ 0

x(t) = φ(t), φ ∈ C, t ∈ [−τ, 0]

• constant delay τ > 0
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I - State

From a dynamical system point of view:

• initial state: φ ∈ C
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I - State

From a dynamical system point of view:

• initial state: φ ∈ C
• state at time t > 0: “piece of information needed to

uniquely fix the future”, i.e. x(θ), θ ∈ [t − τ, t]
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I - State

From a dynamical system point of view:

• initial state: φ ∈ C
• state at time t > 0: “piece of information needed to

uniquely fix the future”, i.e. x(θ), θ ∈ [t − τ, t]

• to use same space C, shift back to [−τ, 0]:

xt(θ) := x(t + θ), θ ∈ [−τ, 0]
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I - State

From a dynamical system point of view:

• initial state: φ ∈ C
• state at time t > 0: “piece of information needed to

uniquely fix the future”, i.e. x(θ), θ ∈ [t − τ, t]

• to use same space C, shift back to [−τ, 0]:

xt(θ) := x(t + θ), θ ∈ [−τ, 0]

• state space: C
• state at time t ≥ 0: xt ∈ C
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I - Abstract Cauchy problem

• analyze behavior of solution following time evolution of
initial state in C
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I - Abstract Cauchy problem

• analyze behavior of solution following time evolution of
initial state in C

• description by the abstract Cauchy problem


d
dt

u(t) = Au(t), t > 0

u(0) = φ,

where...
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I - derivative operator with boundary conditions

• ...A : D(A) ⊂ C → C linear unbounded operator

Aψ = ψ′ shift = derivative

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ′(0) = L0ψ(0) + L1ψ(−τ)
}

extension rule = boundary condition
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I - derivative operator with boundary conditions

• ...A : D(A) ⊂ C → C linear unbounded operator

Aψ = ψ′ shift = derivative

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ′(0) = L0ψ(0) + L1ψ(−τ)
}

extension rule = boundary condition

• φ ∈ D (A) ⇒ u(t) = xt ∈ C

Department of Mathematics and Statistics, McGill University - April 25, 2005 – p. 10/49



I - derivative operator with boundary conditions

• ...A : D(A) ⊂ C → C linear unbounded operator

Aψ = ψ′ shift = derivative

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ′(0) = L0ψ(0) + L1ψ(−τ)
}

extension rule = boundary condition

• φ ∈ D (A) ⇒ u(t) = xt ∈ C
NOTE: A is the infinitesimal generator of the C0-semigroup
{T (t)}t≥0 of linear bounded operators on C where T (t) is
the solution operator associated to the problem and
defined by T (t)ϕ = xt, t ≥ 0
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I - Stability and eigenvalues

• position on C of eigenvalues of A determine stability
properties of solution
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I - Stability and eigenvalues

• position on C of eigenvalues of A determine stability
properties of solution

• for λ ∈ C consider the linear operator D(λ) : D(A) → C:

D(λ)ψ = Aψ − λψ
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I - Stability and eigenvalues

• position on C of eigenvalues of A determine stability
properties of solution

• for λ ∈ C consider the linear operator D(λ) : D(A) → C:

D(λ)ψ = Aψ − λψ

• λ is eigenvalue of A iff there exists eigenvector
ψ ∈ D(A) \ {0} st (λ, ψ) satisfies the characteristic
equation

λ ∈ σ(A), ψ ∈ Mλ ⇔ D(λ)ψ = 0
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I - Prototype problem: characteristic equation

• λ ∈ C is eigenvalue of A iff there exists ψ ∈ C \ {0} st
 ψ′(θ) = λψ(θ), θ ∈ [−τ, 0]

ψ′(0) = L0ψ(0) + L1ψ(−τ)
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I - Prototype problem: characteristic equation

• λ ∈ C is eigenvalue of A iff there exists ψ ∈ C \ {0} st
 ψ′(θ) = λψ(θ), θ ∈ [−τ, 0]

ψ′(0) = L0ψ(0) + L1ψ(−τ)

• i.e. there exists ψ(0) ∈ C
m \ {0} such that

(
λI − L0 − L1e

−λτ
)
ψ(0) = 0

�
det
(
λI − L0 − L1e

−λτ
)

= 0
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I - Asymptotic stability

Let ρ be the smallest real number such that

	(λ) ≤ ρ

for all λ ∈ σ(A). Then
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I - Asymptotic stability

Let ρ be the smallest real number such that

	(λ) ≤ ρ

for all λ ∈ σ(A). Then

• if ρ < 0 then ‖u(t)‖ → 0 as t → ∞ for φ ∈ D(A)
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I - Asymptotic stability

Let ρ be the smallest real number such that

	(λ) ≤ ρ

for all λ ∈ σ(A). Then

• if ρ < 0 then ‖u(t)‖ → 0 as t → ∞ for φ ∈ D(A)

• if ρ = 0 then there exists φ ∈ D(A) \ {0} such that
‖u(t)‖ = ‖φ‖ for t ≥ 0
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I - Asymptotic stability

Let ρ be the smallest real number such that

	(λ) ≤ ρ

for all λ ∈ σ(A). Then

• if ρ < 0 then ‖u(t)‖ → 0 as t → ∞ for φ ∈ D(A)

• if ρ = 0 then there exists φ ∈ D(A) \ {0} such that
‖u(t)‖ = ‖φ‖ for t ≥ 0

• if ρ > 0 then there exists φ ∈ D(A) \ {0} such that
‖u(t)‖ → ∞ as t → ∞
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I - Rightmost eigenvalue

The zero solution is asymptotically stable iff ρ < 0
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I - Rightmost eigenvalue

The zero solution is asymptotically stable iff ρ < 0

In particular, the position on C
− of the rightmost eigenvalue

of A ensures the asymptotic stability of the zero solution of
the RFDE.
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I - Rightmost eigenvalue

The zero solution is asymptotically stable iff ρ < 0

In particular, the position on C
− of the rightmost eigenvalue

of A ensures the asymptotic stability of the zero solution of
the RFDE.

This theory represents an important mathematical tool to
investigate the behavior of solutions of more general
classes of linear autonomous RFDEs and other types of
functional differential systems.
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II - Delay differential equations (DDEs)

Let C = C([−τ, 0], Cm) and consider the linear autonomous
system of DDEs

x′(t) = L(xt), t ≥ 0,

with L : C → C
m given by

L(ψ) = L0ψ(0) +

k∑
l=1


Llψ(−τl) +

−τl∫
−τl−1

Ml(θ)ψ(θ)dθ




with 0 = τ0 < · · · < τk = τ , Ll ∈ C
m×m and

Ml : [−τl−1,−τl] → C
m×m suff. smooth for l = 1, . . . , k
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II - DDEs

• State space: C with supremum norm

• State: xt ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ′(0) = L(ψ)
}
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II - DDEs

• State space: C with supremum norm

• State: xt ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ′(0) = L(ψ)
}

NOTE: A is the infinitesimal generator of the C0-semigroup
{T (t)}t≥0 of solution operators on C given by T (t)x0 = xt,
t ≥ 0
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II - Neutral RFDEs

Let C = C([−τ, 0], Cm) and consider the linear autonomous
system of neutral RFDEs

d

dt
[x(t) + N (xt)] = L(xt), t ≥ 0,

with N ,L : C → Cm continuous, linear and N atomic at
zero given by

N (ψ) =

∫ 0

−τ

dη(θ)ψ(θ), L(ψ) =

∫ 0

−τ

dµ(θ)ψ(θ)

where η, µ have not singular part
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II - Neutral RFDEs

• State space: C with supremum norm

• State: xt ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ′(0) + N (ψ′) = L(ψ)
}
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II - Neutral RFDEs

• State space: C with supremum norm

• State: xt ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ′(0) + N (ψ′) = L(ψ)
}

NOTE: A is the infinitesimal generator of the C0-semigroup
{T (t)}t≥0 of solution operators on C given by T (t)x0 = xt,
t ≥ 0

Department of Mathematics and Statistics, McGill University - April 25, 2005 – p. 18/49



II - Abstract FDEs

Let X and C = C([−τ, 0], X) be Banach spaces and
consider the system of linear abstract FDEs

dx(t)

dt
= AT x(t) + L(xt), t ≥ 0,

where AT : D(AT ) ⊂ X → X is the infinitesimal generator
of a C0-semigroup of linear bounded operators on X and
L : C → X is a linear mapping

Department of Mathematics and Statistics, McGill University - April 25, 2005 – p. 19/49



II - Abstract FDEs

• State space: C with supremum norm

‖ψ‖ = sup
θ∈[−τ,0]

|ψ(θ)|, | · | norm ofX

• State: xt ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ(0) ∈ D(AT ),

ψ′(0) = AT ψ(0) + L(ψ)
}
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II - Abstract FDEs

• State space: C with supremum norm

‖ψ‖ = sup
θ∈[−τ,0]

|ψ(θ)|, | · | norm ofX

• State: xt ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ(0) ∈ D(AT ),

ψ′(0) = AT ψ(0) + L(ψ)
}

NOTE: A is the infinitesimal generator of...
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II - Age-structured population models

Let C = C([0, a†], Cm) and consider the age-structured
population model


∂x
∂t

(a, t) + ∂x
∂a

(a, t) = 0, a ∈ [0, a†], t ≥ 0,

x(0, t) = Kx(·, t), t ≥ 0,

x(a, 0) = ϕ(a), a ∈ [0, a†],

where x ∈ C ([0, a†] × [0,+∞), Cm), ϕ ∈ C and K : C → C
m:

Kψ =
d∑

l=1

al∫
al−1

k(l)(a)ψ(a)da, 0 = a0 < a1 < · · · < ad = a†,

with sufficiently smooth matrix kernels k(l), l = 1, . . . , d
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II - Age-structured population models

• State space: C with supremum norm

• State: x(·, t) ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = −ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ(0) = Kψ
}
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II - Age-structured population models

• State space: C with supremum norm

• State: x(·, t) ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = −ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ(0) = Kψ
}

NOTE: A is the infinitesimal generator of the C0-semigroup
{T (t)}t≥0 of solution operators on C given by
T (t)x(·, 0) = x(·, t), t ≥ 0
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II - Mixed-type FDEs

Let C = C([−p, q], Cm), p, q > 0, and consider the system of
linear autonomous FDEs of mixed-type (i.e. advanced and
retarded)

dx(t)

dt
=

q∫
−p

dk(θ)x(t + θ),

where x(t) ∈ C
m and dk(θ) is an m × m matrix of

Lebesgue-Stiltjes measures on [−p, q].

Department of Mathematics and Statistics, McGill University - April 25, 2005 – p. 23/49



II - Mixed-type FDEs

Let C = C([−p, q], Cm), p, q > 0, and consider the system of
linear autonomous FDEs of mixed-type (i.e. advanced and
retarded)

dx(t)

dt
=

q∫
−p

dk(θ)x(t + θ),

where x(t) ∈ C
m and dk(θ) is an m × m matrix of

Lebesgue-Stiltjes measures on [−p, q].
Although such equations do not generate semigroups, it is
still useful to take...
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II - Mixed-type FDEs

• State space: C with supremum norm

• State: xt ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ(0) =

q∫
−p

dk(θ)ψ(θ)
}
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II - Mixed-type FDEs

• State space: C with supremum norm

• State: xt ∈ C, t ≥ 0

• Operator: A : D(A) ⊂ C → C given by

Aψ = ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C, ψ(0) =

q∫
−p

dk(θ)ψ(θ)
}

NOTE: under suitable hypothesis on σ(A), A is exponential
dichotomous, i.e. there exists a direct sum C = P ⊕ Q,
such that AP : D(A) ∩ P → P , AQ : D(A) ∩ Q → Q are
infinitesimal generators of (exp.ly stable) semigroups.
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III - General structure

• all problems presented can be reformulated as
abstract Cauchy problems
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III - General structure

• all problems presented can be reformulated as
abstract Cauchy problems

• asymptotic behavior of solutions depends on the
position on C of the eigenvalues of a derivative
operator A
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III - General structure

• all problems presented can be reformulated as
abstract Cauchy problems

• asymptotic behavior of solutions depends on the
position on C of the eigenvalues of a derivative
operator A

• A has non-local boundary conditions contained in its
domain
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III - General structure

• State space: C := C([α, β], X) with supremum norm

‖ψ‖ = sup
θ∈[α,β]

|ψ(θ)|, | · | norm of the Banach spaceX
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III - General structure

• State space: C := C([α, β], X) with supremum norm

‖ψ‖ = sup
θ∈[α,β]

|ψ(θ)|, | · | norm of the Banach spaceX

• State: xt(θ) = x(θ, t), θ ∈ [α, β], t ≥ 0
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III - General structure

• State space: C := C([α, β], X) with supremum norm

‖ψ‖ = sup
θ∈[α,β]

|ψ(θ)|, | · | norm of the Banach spaceX

• State: xt(θ) = x(θ, t), θ ∈ [α, β], t ≥ 0

• Derivative operator: A : D (A) ⊂ C → C given by

Aψ = (±)ψ′

D (A) =
{

ψ ∈ C | ψ′ ∈ C,

ψ′(θ̄) + N (ψ′) = L(ψ) or ψ(θ̄) = L(ψ)
}

with θ̄ ∈ [α, β] and L,N : C → X linear
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III - Infinite dimension

• A is an∞-dimensional linear operator
• how to compute its infinitely many eigenvalues?
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III - Infinite dimension

• A is an∞-dimensional linear operator
• how to compute its infinitely many eigenvalues?
• need of numerical approximation
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III - Pseudospectral methods

• Idea: turn eigenvalue problem for operator A into
corresponding eigenvalue problem for matrix AN
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III - Pseudospectral methods

• Idea: turn eigenvalue problem for operator A into
corresponding eigenvalue problem for matrix AN

• Proposal: discretize A into AN by pseudospectral
differencing methods:
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III - Pseudospectral methods

• Idea: turn eigenvalue problem for operator A into
corresponding eigenvalue problem for matrix AN

• Proposal: discretize A into AN by pseudospectral
differencing methods:

◦ approximate functions of C by interpolating
polynomials on certain nodes
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III - Pseudospectral methods

• Idea: turn eigenvalue problem for operator A into
corresponding eigenvalue problem for matrix AN

• Proposal: discretize A into AN by pseudospectral
differencing methods:

◦ approximate functions of C by interpolating
polynomials on certain nodes

◦ approximate exact derivative with that of
interpolating polynomials
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III - Pseudospectral methods

• Idea: turn eigenvalue problem for operator A into
corresponding eigenvalue problem for matrix AN

• Proposal: discretize A into AN by pseudospectral
differencing methods:

◦ approximate functions of C by interpolating
polynomials on certain nodes

◦ approximate exact derivative with that of
interpolating polynomials

◦ use boundary condition applied to the polynomials
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III - Mesh

Given a positive integer N , discretize [α, β] with the mesh

ΩN = {θi | i = 0, . . . , N}
of N + 1 distinct points
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III - State space

• replace the continuous space C by the space
CN = (Cm)ΩN ∼= C

m(N+1) of the discrete functions
defined on the mesh ΩN
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III - State space

• replace the continuous space C by the space
CN = (Cm)ΩN ∼= C

m(N+1) of the discrete functions
defined on the mesh ΩN

• i.e. any ψ ∈ C is discretized into the block-vector
x ∈ CN of components

xi = ψ(θi) ∈ C
m, i = 0, . . . , N
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III - Operator: ψ′(θ̄) + N (ψ′) = L(ψ)

• assume θ̄ ∈ ΩN , i.e. θī = θ̄ for some ī ∈ {0, 1, . . . , N}
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III - Operator: ψ′(θ̄) + N (ψ′) = L(ψ)

• assume θ̄ ∈ ΩN , i.e. θī = θ̄ for some ī ∈ {0, 1, . . . , N}
• let PNx, x ∈ CN , be the unique C

m-valued interpolating
polynomial of degree ≤ N such that

(PNx)(θi) = xi, i = 0, 1, . . . , N
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III - Operator: ψ′(θ̄) + N (ψ′) = L(ψ)

• assume θ̄ ∈ ΩN , i.e. θī = θ̄ for some ī ∈ {0, 1, . . . , N}
• let PNx, x ∈ CN , be the unique C

m-valued interpolating
polynomial of degree ≤ N such that

(PNx)(θi) = xi, i = 0, 1, . . . , N

• approximate A by the matrix AN : CN → CN given by
 (ANx)ī = LN(PNx) −NN((PNx)′)

(ANx)i = (PNx)′(θi), i = 0, 1, . . . , N, i �= ī

with LN and NN possibly approximating L and N
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III - Operator: ψ′(θ̄) + N (ψ′) = L(ψ)

• use Lagrange representation

(PNx)(θ) =

N∑
j=0

lj(θ)xj, θ ∈ [α, β],

with lj ’s the Lagrange polynomials on ΩN
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III - Operator: ψ′(θ̄) + N (ψ′) = L(ψ)

• use Lagrange representation

(PNx)(θ) =

N∑
j=0

lj(θ)xj, θ ∈ [α, β],

with lj ’s the Lagrange polynomials on ΩN

• the matrix AN is defined by the relations


(PNx)′(θī) =
N∑

j=0

(LN ((lj(·)I) −NN

(
(l′j(·)I

))
xj

(PNx)′(θi) =
N∑

j=0

l′j(θi)xj, i = 0, 1, . . . , N, i �= ī
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III - Operator: ψ(θ̄) = L(ψ)

• assume θ̄ ∈ [α, β] \ ΩN , set θN+1 = θ̄
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III - Operator: ψ(θ̄) = L(ψ)

• assume θ̄ ∈ [α, β] \ ΩN , set θN+1 = θ̄

• let QN+1x, x ∈ CN , be the unique C
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III - Operator: ψ(θ̄) = L(ψ)

• assume θ̄ ∈ [α, β] \ ΩN , set θN+1 = θ̄

• let QN+1x, x ∈ CN , be the unique C
m-valued

interpolating polynomial of degree ≤ N + 1 such that
 (QN+1x)(θi) = xi, i = 0, 1, . . . , N,

(QN+1x)(θ̄) = LN(QN+1x) (= xN+1)

with LN possibly approximating L
• approximate A by the matrix AN : CN → CN given by

(ANx)i = (QN+1x)′(θi), i = 0, 1, . . . , N
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III - Operator: ψ(θ̄) = L(ψ)

• use Lagrange representation

(QN+1x)(θ) =

N∑
j=0

mj(θ)xj + mN+1(θ)xN+1, θ ∈ [α, β],

with mj ’s the Lagrange polynomials on ΩN ∪ {θN+1}
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III - Operator: ψ(θ̄) = L(ψ)

• use Lagrange representation

(QN+1x)(θ) =

N∑
j=0

mj(θ)xj + mN+1(θ)xN+1, θ ∈ [α, β],

with mj ’s the Lagrange polynomials on ΩN ∪ {θN+1}

• solve boundary condition to get xN+1 =
N∑

j=0

γjxj

• the matrix AN is defined by the relations

(QN+1x)′(θi) =
N∑

j=0

(m′
j(θi)+m′

N+1(θi)γj)xj, i = 0, 1, . . . , N
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III - Convergence assumptions

Eigenvalues of AN approximate a finite number of the
eigenvalues of A. How accurate are these approximations?
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III - Convergence assumptions

Eigenvalues of AN approximate a finite number of the
eigenvalues of A. How accurate are these approximations?

• choose θi, i = 0, 1, . . . , N , as the Chebyshev extremal
nodes in [α, β]

• possibly assume

sup
N∈N

‖LN‖ < +∞

and

sup
N∈N

‖NN‖ < +∞
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III - Convergence: spectral accuracy

• let λ ∈ C be an exact eigenvalue of A with multiplicity ν
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III - Convergence: spectral accuracy

• let λ ∈ C be an exact eigenvalue of A with multiplicity ν

• AN has ν eigenvalues λi, i = 1, . . . , ν, such that

max
i=1,...,ν

|λ − λi| ≤ C
1/ν
2

(
εN (L) + εN(N ) +

1√
N

(
C1

N

)N
)1/ν

εN(L) = sup
λ∈B(λ,r)

|L (e−λ·u
)−LN

(
e−λ·u

) |
|u| , u ∈ C

m

εN(N ) = sup
λ∈B(λ,r)

|N (
e−λ·u

)−NN

(
e−λ·u

) |
|u| , u ∈ C

m

Department of Mathematics and Statistics, McGill University - April 25, 2005 – p. 36/49



III - Convergence: spectral accuracy

• let λ ∈ C be an exact eigenvalue of A with multiplicity ν

• AN has ν eigenvalues λi, i = 1, . . . , ν, such that

max
i=1,...,ν

|λ − λi| ≤ C
1/ν
2

(
εN (L) + εN(N ) +

1√
N

(
C1

N

)N
)1/ν

εN(L) = sup
λ∈B(λ,r)

|L (e−λ·u
)−LN

(
e−λ·u

) |
|u| , u ∈ C

m

εN(N ) = sup
λ∈B(λ,r)

|N (
e−λ·u

)−NN

(
e−λ·u

) |
|u| , u ∈ C

m

• C1 = C1(λ), C2 = C2(λ) constants independent of N
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III - Ghost roots

• sure that approximated roots converge to exact ones?
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III - Ghost roots

• sure that approximated roots converge to exact ones?
• let {ΩN(i)}i≥1 be a sequence of meshes on [α, β] such
that N (i) → ∞ as i → ∞

• if λ(i) → λ as i → ∞ for λ(i) eigenvalue of A(i)
N , then λ is

eigenvalue of A
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III - Results: DDEs

x′(t) = L0x(t)+L1x(t−1)+

−0.1∫
−0.3

M1x(t+θ)dθ+

−0.5∫
−1

M2x(t+θ)dθ

L0 =


 −3 1

−24.646 −35.430


 , L1 =


 1 0

2.35553 2.00365




M1 =


 2 2.5

0 −0.5


 , M2 =


 −1 0

0 −1



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III - Results: DDEs, spectrum and convergence
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III - Results: NDDEs, spcetrum

x′(t) =


 0 1

−a −b


x(t) +


 0 0

0 h


x′(t − τ)

a = 1, b = 0.5, h = 0.8, τ = 5, a = 1, b = 4, h = 0.5, τ = 5
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III - Results: abstract RFDEs




∂x
∂t

(a, t) = ∂2x
∂a2 (a, t) − bx(a, t) − cx(a, t − τ), a ∈ [0, π], t > 0

x(0, t) = x(π, t) = 0, t ≥ 0

x(a, t) = ϕ(t)(a), a ∈ [0, π], t ∈ [−τ, 0], ϕ ∈ C([−τ, 0], X)

X := L2([0, π], R)

AT : D(AT ) ⊂ X → X

AT y = y′′

D(AT ) :
{

y ∈ C2([0, π], R) | y(0) = y(π) = 0
}
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III - Results: abstract RFDEs, spectrum

b = −3 − e−2, c = 1, τ = 1
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III - Results: population model, spectrum




∂x
∂t

(a, t) + ∂x
∂a

(a, t) = 0, a ∈ [0, a†], t ≥ 0

x(0, t) =
a†∫
0

8 [1 − ln R0] (1 − a)χ[ 1
2
,1](a)x(a, t)da, t ≥ 0

x(a, 0) = ϕ(a), a ∈ [0, a†]

−12 −10 −8 −6 −4 −2 0
−300

−200

−100

0

100

200

300

ℜ(λ)

ℑ(
λ)

Department of Mathematics and Statistics, McGill University - April 25, 2005 – p. 43/49



III - Results: population model, spectrum variation
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III - Results: mixed-type RFDEs, spectrum

x′(t) = ax(t + 1) + bx(t) + cx(t − 1)

a = c = −0.714, b = 7.5
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III - Results: space discretized PDE, delay in diffusion

x′(t) = L0x(t) + L1x(t − τ), L0, L1 ∈ C
m×m

L0 =
1
h2

(
1 − α

β
+ α

)



−2 1

1
. . .

. . .
. . .

. . . 1

1 −2




+ RIm

L1 =
1
h2

1 − α

β




−2 1

1
. . .

. . .
. . .

. . . 1

1 −2



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III - Results: space discretized PDE, delay in diffusion

m = 20, h = π
m+1

, α = 0.1, β = 2, R = 0.08
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Conclusions

• describe RFDEs as abstract Cauchy problem:
derivative operators with boundary conditions
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Conclusions

• describe RFDEs as abstract Cauchy problem:
derivative operators with boundary conditions

• behavior of solution as time-evolution of state
• asymtpotic stability depends on eigenvalues of
derivative operator

• holds for more than DDEs
• ∞ eigenvalues: discretization via pseudospectral
methods

• fast convergence
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The end

...and thanks for your attention!
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