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DDEs intro: a few words about...

* systems with time delay widely appear in control
theory, biology, engineering, economics, population
dynamics...
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DDEs intro: a few words about...

* systems with time delay widely appear in control
theory, biology, engineering, economics, population
dynamics...

* present evolution is influenced by past information

° on instants: discrete or point delays
o on intervals: distributed delays

* delays can be constant, time- and/or state-dependent,
single or multiple, commensurate or not...

* mathematical formulation by retarded functional
differential equations (RFDES)
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DDEs intro: remember ODEs

e let X =C™

° let(t,y) e D CR x X and f: D — C™ continuous. An
ordinary differential equation (ODE) is a relation

y'(t) = ft,y(t), t=to
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DDEs intro: remember ODEs

e let X =C™

° let(t,y) e D CR x X and f: D — C™ continuous. An
ordinary differential equation (ODE) is a relation

y'(t) = ft,y(t), t=to

e stateatt > ty: y(t) € X

A
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DDEs intro: IVP for ODEs

* initial value problem (IVP) for ODEs:

/

y'(t) = f(t,yt), t=to
y(to) = Yo, Yo € X

\
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DDEs intro: IVP for ODEs

* initial value problem (IVP) for ODEs:

/

y'(t) = f(t,y(t), t=>to
y(to) =v0, Yo € X

\

* state y(t*) € X att* > ¢, is finite dimensional and
depends on initial vector y, € X:

A

% 5

Department of Mathematics and Statistics, McGill University - April 18, 2005 — p. 5/47



DDEs intro: and now RFDEs

° lett >0and X =C([-7,0],C™)

° let (t,y) ¢ D CR x X and f: D — C™ continuous. A
retarded functional differential equation (RFDE) is a
relation

y/(t) — f(tayt)a t Z tO
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DDEs intro: and now RFDEs

° lett >0and X =C([-7,0],C™)

° let (t,y) ¢ D CR x X and f: D — C™ continuous. A
retarded functional differential equation (RFDE) is a

relation

y/(t) — f(tayt)a t Z tO

o state y, € X att > to: y:,(0) = y(t +0), 0 € [—7,0]

J

\

—T t
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DDEs intro: examples

e discrete delay: f(t,v) = Loy(0) + L1y(—7), then for
(0) = y:(0) on [—7,0]:

y'(t) = Loy(t) + Liy(t — 7)
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DDEs intro: examples

e discrete delay: f(t,v) = Loy(0) + L1y(—7), then for
(0) = y:(0) on [—7,0]:

y'(t) = Loy(t) + Liy(t — 7)

e distributed delay: f(t,v) = Lo (0) + fo My (0)w(6)d8,
then for ¢ (0) = y,(6) on |—7,0]: -

0

J/(t) = Loy(t) + / M, (B)y(t + 0)d#

—T
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DDEs intro: IVP for RFDEs

* |IVP for RFDEs:

f(ta yt)

) t>t0
o(t), telto—T1,t], o€X

V-
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DDEs intro: IVP for RFDEs

* |IVP for RFDEs:

f(ta yt)

) t>t0
o(t), telto—rT1,ty], 9p€X

" -

e state y;« € X at t* > t; Is infinite dimensional and
depends on initial function ¢ € X

Y. y(t)
q) \—/—
o -

tg~T

t*—T t*
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Stability: linear ODEs

* |VP for linear ODEs:

y'(t) = Ly(t), LeC™™ t>0
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Stability: linear ODEs

* |VP for linear ODEs:

* look for exponential solution y(t) = e*v, A € C, v # 0,
and get the characteristic equation

det A\ — L) =0 & ) € o(L)
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det A\ — L) =0 & ) € o(L)
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y'(t) = Loy(t) + Liy(t —7), Lo, L1 € C™™, ¢t >0
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Stability: linear DDEs

* |VP for linear delay differential equations (DDES):

y'(t) = Loy(t) + Liy(t —7), Lo, L1 € C™™, ¢t >0
y(t) = o(t), te[-T,0]

* look for exponential solution y(t) = e*v, A € C, v # 0,
and get the characteristic equation

det (M — Ly — L1e”*") = 0 < )\ characteristic root (CR)

* y asymptotically stable < J()\) < 0 for all CRs A
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Stability: question

* question: there exists an operator, such as matrix L for
ODEs, whose eigenvalues are the CRs?
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Stability: question

* question: there exists an operator, such as matrix L for
ODEs, whose eigenvalues are the CRs?

* answer: YES!
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Stability: solution operator semigroup

* define solution operator (SO) T'(¢t) : X — X, t > 0:

T(t)¢ = yr
T(t*)
Ty, y(®)
e
= 0 t’lk—t v+ -t
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Stability: solution operator semigroup

* define solution operator (SO) T'(¢t) : X — X, t > 0:

T(t)¢ = yr
T(t*)
Ty, y(®)
e
= 0 t’lk—t v+ -t

* {T'(t)}>0 is a Cy-semigroup
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Stability: infinitesimal generator

* {T'(t)}+>0 has infinitesimal generator (IG)
A: DA CX — X:

Ay =)', € D(A)
D(A)={yY € X |y € X andy'(0) = Lop(0) + L19)(—7)}
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* {T'(t)}+>0 has infinitesimal generator (IG)
A: DA CX — X:

Ay =)', € D(A)
D(A)={yY € X |y € X andy'(0) = Lop(0) + L19)(—7)}

* rewrite DDE as abstract Cauchy problem:

y

Lu(t) = Au(t), t>0
u0) =¢, ¢€X

/"

\
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* {T'(t)}+>0 has infinitesimal generator (IG)
A: DA CX — X:

Ay =)', € D(A)
D(A)={yY € X |y € X andy'(0) = Lop(0) + L19)(—7)}

* rewrite DDE as abstract Cauchy problem:

y

Lu(t) = Au(t), t>0
u0) =¢, ¢€X

/"

\

* if ¢ € D(A) then u(t) =y,

Department of Mathematics and Statistics, McGill University - April 18, 2005 — p. 13/47



Stability: infinitesimal generator

* {T'(t)}+>0 has infinitesimal generator (IG)
A: DA CX — X:

D(A)={¢ e X |¢' € X and ¢/(0) = Loy(0) + L1p(—7)}

{ Ap =1, e DA

* rewrite DDE as abstract Cauchy problem:

y

Lu(t) = Au(t), t>0
u0) =¢, ¢€X

* if ¢ € D(A) then u(t) =y,

* evolution of ¢, depends on eigenvalues of A
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Stability: theorems

e A€ CCR & det (\] — Ly — Lie™>) = 0
11 € C characteristic multiplier (CM) < 1 = e, A CR
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Stability: theorems

e A€ CCR & det (\] — Ly — Lie™>) = 0
11 € C characteristic multiplier (CM) < 1 = e, A CR

ASYMPTOTIC STABILITY & R(\) <0 < |u| <1

* A\CR& Aeo(A)
* uCM & peo(T(t))

oo dimension!
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Numerics: basics

* discretize A with matrix Ay: |G approach
° numerical differentiation + splicing condition in
D(A)
o eigenvalues of Ay approximate CRs — rightmost
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Numerics: basics

* discretize A with matrix Ay: |G approach
° numerical differentiation + splicing condition in
D(A)
o eigenvalues of Ay approximate CRs — rightmost
* discretize T'(t*) with matrix T: SO approach
o numerical solution of DDEs (step t*)
o eigenvalues of T approximate CMs — dominant

* past: linear multistep (LMS) and Runge-Kutta (RK)
methods

* present: pseudospectral differentiation (PSD)
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Numerics: IG/PSD

* replace [—7, 0] with Chebyshev mesh Qy = {6;}Y,

Department of Mathematics and Statistics, McGill University - April 18, 2005 — p. 16/47



Numerics: IG/PSD

* replace [—7, 0] with Chebyshev mesh Qy = {6;}Y,
* replace ¢ € X withz € Xy stax; =¢(6;),i=0,...,N

Department of Mathematics and Statistics, McGill University - April 18, 2005 — p. 16/47



Numerics: IG/PSD

* replace [—7, 0] with Chebyshev mesh Qy = {6;}Y,
* replace ¢ € X withz € Xy stax; =¢(6;),i=0,...,N

* let ¢ be the unique polynomial interpolating = on Q

Department of Mathematics and Statistics, McGill University - April 18, 2005 — p. 16/47



Numerics: IG/PSD

* replace [—7, 0] with Chebyshev mesh Qy = {6;}Y,
* replace ¢ € X withz € Xy stax; =¢(6;),i=0,...,N
* let ¢ be the unique polynomial interpolating = on Q

* discretize splicing condition:

(AP)(0) = 9'(0) = Loy (0) + L1gpn(—7) = (Anz)o
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Numerics: IG/PSD

* replace [—7, 0] with Chebyshev mesh Qy = {6;}Y,

* replace ¢ € X withz € Xy stax; =¢(6;),i=0,...,N
* let ¢ be the unique polynomial interpolating = on Q
* discretize splicing condition:

(AP)(0) = 9'(0) = Loy (0) + L1gpn(—7) = (Anz)o

* approximate derivative:

(AY)(6;) = V' (6;) = Yn(0;) = (Anz);, i=1,..., N
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Numerics: IG/PSD

* replace [—7, 0] with Chebyshev mesh Qy = {6;}Y,

* replace ¢ € X withz € Xy stax; =¢(6;),i=0,...,N
* let ¢ be the unique polynomial interpolating = on Q
* discretize splicing condition:

(AP)(0) = 9'(0) = Loy (0) + L1gpn(—7) = (Anz)o

* approximate derivative:

(AY)(6:;) = '(6;) = Yy(0:) = (Anz)s, i=1,...,N
* Lagrange representation of ¢y leads to...
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Numerics: approximated IG

(Lo 0 -+ 0 L )

AN _ le dll . dlltf—l le c (Cm(N—i—l)Xm(N—l—l)

\ G G o0 G Oy

where d;; = [’(0;) ® I with [;’s the Lagrange coefficients
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Numerics: convergence

* let \* € C be an exact CR with multiplicity v
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Numerics: convergence

* let \* € C be an exact CR with multiplicity v

e exist v approximated CRs A\, € C,1=1,...,v
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Numerics: convergence

* let \* € C be an exact CR with multiplicity v
* exist v approximated CRs \; e C,7=1,....v

* spectral accuracy

. C, [(Co\"
EEAE m(w)

1/v
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Numerics: convergence

* let \* € C be an exact CR with multiplicity v
* exist v approximated CRs \; e C,7=1,....v

* spectral accuracy

. C, (Co\"
EEAE m(w)

e ()5 proportional to |\*| and 7

1/v
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Numerics: convergence

* let \* € C be an exact CR with multiplicity v
* exist v approximated CRs \; e C,7=1,....v

* spectral accuracy

. C, (Co\"
EEAE m(w)

e ()5 proportional to |\*| and 7

1/v

* analogous result for CMs
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Numerics: example

0.1 ~0.5
T’ (t) = Lox(t)+L1x(t—1)—|—/ Mlzc(H—@)d@Jr/ Msx(t+0)do
0.3 1
—3 1 1 0
Lo = ., Ly =
—24.646 —35.430 2.39993 2.00365
2 2.9 —1 0
Ml — ) M2 —
0 —0.5 0 -1
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Numerics:

example

100

80

40

I
o

-100

-5
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Numerics: generalization

* linear multiple discrete/distributed DDEs:

J() = Loy)+> " | Lyt —m) + / Mi(B)y(t + 0)d#

—Ti—1

Department of Mathematics and Statistics, McGill University - April 18, 2005 — p. 21/47



Numerics: generalization

* linear multiple discrete/distributed DDEs:

J() = Loy)+> " | Lyt —m) + / Mi(B)y(t + 0)d#

—Ti—1

* but also extension to more general linear time delay
systems (LTDS):

° neutral DDEs

o periodic coefficients DDEs

o age-structured population dynamics
° mixed-type FDEs

o PDEs with delay
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Stability charts: what?

* consider a LTDS depending on two parameters p; and
po (e.g. delays, but not only...) varying in given intervals

* determine where the system is stable or not in the
(pl,pg)-plane

* how?
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Stability charts: what?

* consider a LTDS depending on two parameters p; and
po (e.g. delays, but not only...) varying in given intervals

* determine where the system is stable or not in the
(p1, p2)-plane
°* how?
° point-by-point investigation of the (p;, p»)-plane

determining the real part of the rightmost CR
rcr(p1, p2) (or the absolute value of the dominant

CM dcns(p1,p2))
o also other approaches...
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Stability charts: example

A stability boundary (SB) is a curve rogr(p1,p2) =0
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Stability charts: example

A stability boundary (SB) is a curve rogr(p1,p2) =0

y'(t) = Loy(t) + Lyt —m1) + L1y(t — 72) + Lay(t — 271)+
+ Lgy(t—272)+L3y(t—Tl —7'2), Lz ECSXS
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Stability charts: point-by-point investigation

* consider a square cell in the (p1, p2)-plane
* evaluate stability of the four vertices by computing rcr

* if a sign change occurs, a SB passes through the cell

+ o —

* a sort of 2d-bisection
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Stability charts: location of SB

* consider edges with sign change in ro i at the vertices

* for each edge, determine the point (p;, p2) such that
rcr(p1, p2) = 0 by linear interpolation of vertex values

e approximate SB by joining the zeros

+ = ©
P
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Stability charts: uniform square grid

* set a uniform square grid on the (py, p2)-plane
* determine SB on each cell

* accuracy of SB depends on the grid size
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Stability charts: uniform square grid

* set a uniform square grid on the (py, p2)-plane

* determine SB on each cell

* accuracy of SB depends on the grid size

* this is behind MATLAB’s contour for surface level-curves

* not efficient: each stability evaluation is expensive,
hence uniform grid is not a good choice
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Stability charts: adaptive square refinement

* start from a coarse square grid

* refine only cells with sign change by dividing into four
square cells by the center point

* five new stability evaluations required
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Stability charts: adaptive triangulation 1

* start from a coarse square grid

* refine square cells with sign change by dividing into
four triangular cells by the center point

* only one new stability evaluation required
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Stability charts: adaptive triangulation 2

 start from a triangular cell with sign change

* refine by dividing into two triangular cells by the mid
point of the hypotenuse

* only one new stability evaluation required
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Stability charts: squares vs triangles

* start from a square with area A

* consider the number of stability evaluations necessary
to reduce the area to a
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Stability charts: squares vs triangles

* start from a square with area A

* consider the number of stability evaluations necessary
to reduce the area to a

* using square refinement

5 A
log —
a

e log 4

* using triangulation

2 A
log — — log4

e log 4

* |ess than half!
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Stability charts: if no sign change?

* if all vertices of a cell have same sign there might be a
SB crossing the cell (at only one edge)
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Stability charts: if no sign change?

* if all vertices of a cell have same sign there might be a
SB crossing the cell (at only one edge)

* how to recognize this possibility?
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Stability charts: slope test

* measure the minimum slope s = tan o = 2172l ot

|zo—x1 |

which rcr = 0 is reached from both edge vertices

g G\\

* if sis too large exclude refinement, else refine

* not a sufficient condition: heuristic test
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Stability charts: multiple evaluations

* possible multiple evaluations for neighboring cells

* considerable increase of computational time: not to
underestimate
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Stability charts: multiple evaluations

* possible multiple evaluations for neighboring cells

* considerable increase of computational time: not to
underestimate

* “easy” to avoid for square grid by storing stability
iInformation in a rectangular matrix with entries
corresponding to grid points

* pbefore evaluating a grid point check the matrix if it
already exists
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Stability charts: information storage

* more difficult with triangulation

* use a square matrix for each square cell

I I
I I
I T \T1
,,,,,,,,,,,,,,,,, > IR-- - -- A~ - -
I |
I I
(R IR N (N R Tﬁi ,,,,,,,
I I
I I
I I
*******************************
I I
I I
,,,,,,,,,,, N § Y A A
I I I
I I I
I I
*************** A NGl el R
I I
I I
,,,,,,,,,,, Y N N A AR
I
I
********************************

x O O O x O x O X
O O O O O x O O O
O O O O x O x O O
o o O o o0 O O O O
O O O O x O O O O
O o0 O o o O O O O
o o O o O O O O O
o o O o o O O O O
x O O O O O O O x
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Stability charts: information passing

* update matrix from square to square scanning the
whole grid in the usual reading/writing sense

2,max

——————————————————————————————————————

2,min

. 1,max
1,min

* avoid multiple evaluations in each step!
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Stability charts: location of SB

* improve using secant method on each edge

* better control of accuracy along the edge

Department of Mathematics and Statistics, McGill University - April 18, 2005 — p. 36/47



Stability charts: location of SB

* improve using secant method on each edge
* better control of accuracy along the edge

* but...no sense in find zeros with high accuracy and
then join them with a line: curvature of SB is
determining
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Stability charts: adaptive curvature determination

* take an extra mid edge and find its zero

* measure the height of the triangle formed by the zeros
of the three edges

* if this height is too large, refine by an extra mid edge
and iterate

Department of Mathematics and Statistics, McGill University - April 18, 2005 — p. 37/47



Examples: single delay

* consider the scalar single DDE

y'(t) = ay(t) + by(t — 1)

* stability chart analytically well-known
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multiple delays

Examples

e consider the 2d DDE
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Examples: multiple delays

e consider the 8d DDE

y'(t) = Loy(t) + Liy(t — m1) + Liy(t — m2) + Lay(t — 211 )+
+ Loy(t —2m) + Lsy(t — 1 — 12), L; € C*®
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Applications: metal cutting

* consider 1dof model of orthogonal metal cutting

—
= o

y(t—‘c ) /cutting tool
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Applications: regenerative effect

* relative vibrations between tool and workpiece
produces wavy surface
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Applications: regenerative effect

* relative vibrations between tool and workpiece
produces wavy surface

* after a round of the tool (or workpiece) chip thickness
will vary
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Applications: regenerative effect

* relative vibrations between tool and workpiece
produces wavy surface

* after a round of the tool (or workpiece) chip thickness
will vary

* cutting force depends on actual and delayed values of
relative displacement between tool and workpiece
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Applications: regenerative effect

* relative vibrations between tool and workpiece
produces wavy surface

* after a round of the tool (or workpiece) chip thickness
will vary

* cutting force depends on actual and delayed values of
relative displacement between tool and workpiece

* this is called regenerative effect
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Applications: delay model

* with regenerative effect the model becomes

K(t)w

(y(t) —y(t — 7))

y"(t) + 2Cwny' (t) + wpy(t) = —

* K (t) possibly time periodic (e.g. milling process)
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Applications: delay model

* with regenerative effect the model becomes

K(t)w

(y(t) —y(t — 7))

y"(t) + 2Cwny' (t) + wpy(t) = —

* K (t) possibly time periodic (e.g. milling process)

* reduce to a model similar to the damped delayed
Mathieu equation

y" () + ky'(t) + (0 + e cos 2t /T y(t) = by(t — 27)
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Applications: stability chart

* consider € = 0, 0 and b as varying parameters

* Hsu-Bhatt-Vyshnegradskii stability chart
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Applications: periodic case

* consider the periodic case ¢ = 1
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Conclusions

* increasing interest in time delay systems

e stability is an infinite dimensional problem
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Conclusions

* increasing interest in time delay systems
e stability is an infinite dimensional problem
* use numerical technigues to solve

* special attention to computational cost
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Conclusions

* increasing interest in time delay systems

e stability is an infinite dimensional problem

* use numerical techniques to solve

* special attention to computational cost

* robust study of stability wrt varying parameters
* efficient computation of stability charts

* match best compromise among all tolerances
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The end

...and thanks for your attention!
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