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DDEs intro: a few words about...

• systems with time delay widely appear in control
theory, biology, engineering, economics, population
dynamics...
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DDEs intro: a few words about...

• systems with time delay widely appear in control
theory, biology, engineering, economics, population
dynamics...

• present evolution is influenced by past information

◦ on instants: discrete or point delays

◦ on intervals: distributed delays

• delays can be constant, time- and/or state-dependent,
single or multiple, commensurate or not...

• mathematical formulation by retarded functional
differential equations (RFDEs)

Department of Mathematics and Statistics, McGill University - April 18, 2005 – p. 3/47



DDEs intro: remember ODEs

• let X = C
m

• let (t, y) ∈ D ⊆ R × X and f : D → C
m continuous. An

ordinary differential equation (ODE) is a relation

y′(t) = f(t, y(t)), t ≥ t0
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DDEs intro: remember ODEs

• let X = C
m

• let (t, y) ∈ D ⊆ R × X and f : D → C
m continuous. An

ordinary differential equation (ODE) is a relation

y′(t) = f(t, y(t)), t ≥ t0

• state at t ≥ t0: y(t) ∈ X

t 0 t

y(t)
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DDEs intro: IVP for ODEs

• initial value problem (IVP) for ODEs:
 y′(t) = f(t, y(t)), t ≥ t0

y(t0) = y0, y0 ∈ X
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DDEs intro: IVP for ODEs

• initial value problem (IVP) for ODEs:
 y′(t) = f(t, y(t)), t ≥ t0

y(t0) = y0, y0 ∈ X

• state y(t∗) ∈ X at t∗ ≥ t0 is finite dimensional and
depends on initial vector y0 ∈ X:

t*

0

t

y(t)y(t*)

y

t0
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DDEs intro: and now RFDEs

• let τ ≥ 0 and X = C([−τ, 0], Cm)

• let (t, y) ∈ D ⊆ R × X and f : D → C
m continuous. A

retarded functional differential equation (RFDE) is a
relation

y′(t) = f(t, yt), t ≥ t0
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DDEs intro: and now RFDEs

• let τ ≥ 0 and X = C([−τ, 0], Cm)

• let (t, y) ∈ D ⊆ R × X and f : D → C
m continuous. A

retarded functional differential equation (RFDE) is a
relation

y′(t) = f(t, yt), t ≥ t0

• state yt ∈ X at t ≥ t0: yt(θ) = y(t + θ), θ ∈ [−τ, 0]

y(t)y

τt0
t− t

t
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DDEs intro: examples

• discrete delay: f(t, ψ) = L0ψ(0) + L1ψ(−τ), then for
ψ(θ) = yt(θ) on [−τ, 0]:

y′(t) = L0y(t) + L1y(t − τ)
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DDEs intro: examples

• discrete delay: f(t, ψ) = L0ψ(0) + L1ψ(−τ), then for
ψ(θ) = yt(θ) on [−τ, 0]:

y′(t) = L0y(t) + L1y(t − τ)

• distributed delay: f(t, ψ) = L0ψ(0) +
0∫

−τ

M1(θ)ψ(θ)dθ,

then for ψ(θ) = yt(θ) on [−τ, 0]:

y′(t) = L0y(t) +

0∫
−τ

M1(θ)y(t + θ)dθ
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DDEs intro: IVP for RFDEs

• IVP for RFDEs:
 y′(t) = f(t, yt), t ≥ t0

y(t) = φ(t), t ∈ [t0 − τ, t0], φ ∈ X
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DDEs intro: IVP for RFDEs

• IVP for RFDEs:
 y′(t) = f(t, yt), t ≥ t0

y(t) = φ(t), t ∈ [t0 − τ, t0], φ ∈ X

• state yt∗ ∈ X at t∗ ≥ t0 is infinite dimensional and
depends on initial function φ ∈ X:

y(t)
t*

t
t*t*−−

y

ττt0 t0

φ
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Stability: linear ODEs

• IVP for linear ODEs:
 y′(t) = Ly(t), L ∈ C

m×m, t ≥ 0

y(0) = y0

Department of Mathematics and Statistics, McGill University - April 18, 2005 – p. 9/47



Stability: linear ODEs

• IVP for linear ODEs:
 y′(t) = Ly(t), L ∈ C

m×m, t ≥ 0

y(0) = y0

• look for exponential solution y(t) = eλtv, λ ∈ C, v �= 0,
and get the characteristic equation

det (λI − L) = 0 ⇔ λ ∈ σ(L)
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• IVP for linear ODEs:
 y′(t) = Ly(t), L ∈ C

m×m, t ≥ 0

y(0) = y0

• look for exponential solution y(t) = eλtv, λ ∈ C, v �= 0,
and get the characteristic equation

det (λI − L) = 0 ⇔ λ ∈ σ(L)

• y asymptotically stable ⇔ �(λ) < 0 for all λ ∈ σ(L)
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Stability: linear DDEs

• IVP for linear delay differential equations (DDEs):
 y′(t) = L0y(t) + L1y(t − τ), L0, L1 ∈ C

m×m, t ≥ 0

y(t) = φ(t), t ∈ [−τ, 0]

• look for exponential solution y(t) = eλtv, λ ∈ C, v �= 0,
and get the characteristic equation

det (λI − L0 − L1e
−λτ ) = 0 ⇔ λ characteristic root (CR)
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Stability: linear DDEs

• IVP for linear delay differential equations (DDEs):
 y′(t) = L0y(t) + L1y(t − τ), L0, L1 ∈ C

m×m, t ≥ 0

y(t) = φ(t), t ∈ [−τ, 0]

• look for exponential solution y(t) = eλtv, λ ∈ C, v �= 0,
and get the characteristic equation

det (λI − L0 − L1e
−λτ ) = 0 ⇔ λ characteristic root (CR)

• y asymptotically stable ⇔ �(λ) < 0 for all CRs λ
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Stability: question

• question: there exists an operator, such as matrix L for
ODEs, whose eigenvalues are the CRs?
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Stability: question

• question: there exists an operator, such as matrix L for
ODEs, whose eigenvalues are the CRs?

• answer: YES!
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Stability: solution operator semigroup

• define solution operator (SO) T (t) : X → X, t ≥ 0:

T (t)φ = yt

t*
y(t)

t
t*t*−0−

y

φ

ττ

T(t*)
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Stability: solution operator semigroup

• define solution operator (SO) T (t) : X → X, t ≥ 0:

T (t)φ = yt

t*
y(t)

t
t*t*−0−

y

φ

ττ

T(t*)

• {T (t)}t≥0 is a C0-semigroup
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Stability: infinitesimal generator

• {T (t)}t≥0 has infinitesimal generator (IG)
A : D(A) ⊆ X → X:
 Aψ = ψ′, ψ ∈ D (A)

D (A) = {ψ ∈ X | ψ′ ∈ X and ψ′(0) = L0ψ(0) + L1ψ(−τ)}
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• {T (t)}t≥0 has infinitesimal generator (IG)
A : D(A) ⊆ X → X:
 Aψ = ψ′, ψ ∈ D (A)

D (A) = {ψ ∈ X | ψ′ ∈ X and ψ′(0) = L0ψ(0) + L1ψ(−τ)}

• rewrite DDE as abstract Cauchy problem:


d
dt

u(t) = Au(t), t ≥ 0

u(0) = φ, φ ∈ X
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 Aψ = ψ′, ψ ∈ D (A)

D (A) = {ψ ∈ X | ψ′ ∈ X and ψ′(0) = L0ψ(0) + L1ψ(−τ)}

• rewrite DDE as abstract Cauchy problem:


d
dt

u(t) = Au(t), t ≥ 0

u(0) = φ, φ ∈ X

• if φ ∈ D (A) then u(t) = yt
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Stability: infinitesimal generator

• {T (t)}t≥0 has infinitesimal generator (IG)
A : D(A) ⊆ X → X:
 Aψ = ψ′, ψ ∈ D (A)

D (A) = {ψ ∈ X | ψ′ ∈ X and ψ′(0) = L0ψ(0) + L1ψ(−τ)}

• rewrite DDE as abstract Cauchy problem:


d
dt

u(t) = Au(t), t ≥ 0

u(0) = φ, φ ∈ X

• if φ ∈ D (A) then u(t) = yt

• evolution of yt depends on eigenvalues of A
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Stability: theorems

• λ ∈ C CR ⇔ det (λI − L0 − L1e
−λτ ) = 0

• µ ∈ C characteristic multiplier (CM) ⇔ µ = eλt, λ CR
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Stability: theorems

• λ ∈ C CR ⇔ det (λI − L0 − L1e
−λτ ) = 0

• µ ∈ C characteristic multiplier (CM) ⇔ µ = eλt, λ CR

ASYMPTOTIC STABILITY ⇔ �(λ) < 0 ⇔ |µ| < 1

• λ CR ⇔ λ ∈ σ(A)

• µ CM ⇔ µ ∈ σ(T (t))
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Stability: theorems

• λ ∈ C CR ⇔ det (λI − L0 − L1e
−λτ ) = 0

• µ ∈ C characteristic multiplier (CM) ⇔ µ = eλt, λ CR

ASYMPTOTIC STABILITY ⇔ �(λ) < 0 ⇔ |µ| < 1

• λ CR ⇔ λ ∈ σ(A)

• µ CM ⇔ µ ∈ σ(T (t))

∞ dimension!
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Numerics: basics

• discretize A with matrix AN : IG approach

◦ numerical differentiation + splicing condition in
D(A)

◦ eigenvalues of AN approximate CRs → rightmost
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Numerics: basics

• discretize A with matrix AN : IG approach

◦ numerical differentiation + splicing condition in
D(A)

◦ eigenvalues of AN approximate CRs → rightmost

• discretize T (t∗) with matrix TN : SO approach

◦ numerical solution of DDEs (step t∗)

◦ eigenvalues of TN approximate CMs → dominant
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Numerics: basics

• discretize A with matrix AN : IG approach

◦ numerical differentiation + splicing condition in
D(A)

◦ eigenvalues of AN approximate CRs → rightmost

• discretize T (t∗) with matrix TN : SO approach

◦ numerical solution of DDEs (step t∗)

◦ eigenvalues of TN approximate CMs → dominant

• past: linear multistep (LMS) and Runge-Kutta (RK)
methods

• present: pseudospectral differentiation (PSD)
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Numerics: IG/PSD

• replace [−τ, 0] with Chebyshev mesh ΩN = {θi}N
i=0
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• replace ψ ∈ X with x ∈ XN st xi = ψ(θi), i = 0, . . . , N
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Numerics: IG/PSD

• replace [−τ, 0] with Chebyshev mesh ΩN = {θi}N
i=0

• replace ψ ∈ X with x ∈ XN st xi = ψ(θi), i = 0, . . . , N

• let ψN be the unique polynomial interpolating x on ΩN
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Numerics: IG/PSD

• replace [−τ, 0] with Chebyshev mesh ΩN = {θi}N
i=0

• replace ψ ∈ X with x ∈ XN st xi = ψ(θi), i = 0, . . . , N

• let ψN be the unique polynomial interpolating x on ΩN

• discretize splicing condition:

(Aψ)(0) = ψ′(0) 
 L0ψN(0) + L1ψN(−τ) = (ANx)0

Department of Mathematics and Statistics, McGill University - April 18, 2005 – p. 16/47



Numerics: IG/PSD

• replace [−τ, 0] with Chebyshev mesh ΩN = {θi}N
i=0

• replace ψ ∈ X with x ∈ XN st xi = ψ(θi), i = 0, . . . , N

• let ψN be the unique polynomial interpolating x on ΩN

• discretize splicing condition:

(Aψ)(0) = ψ′(0) 
 L0ψN(0) + L1ψN(−τ) = (ANx)0

• approximate derivative:

(Aψ)(θi) = ψ′(θi) 
 ψ′
N(θi) = (ANx)i, i = 1, . . . , N
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Numerics: IG/PSD

• replace [−τ, 0] with Chebyshev mesh ΩN = {θi}N
i=0

• replace ψ ∈ X with x ∈ XN st xi = ψ(θi), i = 0, . . . , N

• let ψN be the unique polynomial interpolating x on ΩN

• discretize splicing condition:

(Aψ)(0) = ψ′(0) 
 L0ψN(0) + L1ψN(−τ) = (ANx)0

• approximate derivative:

(Aψ)(θi) = ψ′(θi) 
 ψ′
N(θi) = (ANx)i, i = 1, . . . , N

• Lagrange representation of ψN leads to...
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Numerics: approximated IG

...

AN =




L0 0 · · · 0 L1

d10 d11 · · · d1N−1 d1N

...
...

. . .
...

...

dN0 dN1 · · · dNN−1 dNN


 ∈ C

m(N+1)×m(N+1)

where dij = l′j(θi) ⊗ I with lj ’s the Lagrange coefficients
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Numerics: convergence

• let λ∗ ∈ C be an exact CR with multiplicity ν
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• let λ∗ ∈ C be an exact CR with multiplicity ν
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Department of Mathematics and Statistics, McGill University - April 18, 2005 – p. 18/47



Numerics: convergence

• let λ∗ ∈ C be an exact CR with multiplicity ν

• exist ν approximated CRs λi ∈ C, i = 1, . . . , ν

• spectral accuracy

max
1≤i≤ν

|λ∗ − λi| ≤
(

C1√
N

(
C2

N

)N
)1/ν
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Numerics: convergence

• let λ∗ ∈ C be an exact CR with multiplicity ν

• exist ν approximated CRs λi ∈ C, i = 1, . . . , ν

• spectral accuracy

max
1≤i≤ν

|λ∗ − λi| ≤
(

C1√
N

(
C2

N

)N
)1/ν

• C2 proportional to |λ∗| and τ
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Numerics: convergence

• let λ∗ ∈ C be an exact CR with multiplicity ν

• exist ν approximated CRs λi ∈ C, i = 1, . . . , ν

• spectral accuracy

max
1≤i≤ν

|λ∗ − λi| ≤
(

C1√
N

(
C2

N

)N
)1/ν

• C2 proportional to |λ∗| and τ

• analogous result for CMs
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Numerics: example

x′(t) = L0x(t)+L1x(t−1)+

−0.1∫
−0.3

M1x(t+θ)dθ+

−0.5∫
−1

M2x(t+θ)dθ

L0 =


 −3 1

−24.646 −35.430


 , L1 =


 1 0

2.35553 2.00365




M1 =


 2 2.5

0 −0.5


 , M2 =


 −1 0

0 −1



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Numerics: example
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Numerics: generalization

• linear multiple discrete/distributed DDEs:

y′(t) = L0y(t)+
k∑

l=1


Lly(t − τl) +

−τl∫
−τl−1

Ml(θ)y(t + θ)dθ



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Numerics: generalization

• linear multiple discrete/distributed DDEs:

y′(t) = L0y(t)+
k∑

l=1


Lly(t − τl) +

−τl∫
−τl−1

Ml(θ)y(t + θ)dθ




• but also extension to more general linear time delay
systems (LTDS):

◦ neutral DDEs

◦ periodic coefficients DDEs

◦ age-structured population dynamics

◦ mixed-type FDEs

◦ PDEs with delay
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Stability charts: what?

• consider a LTDS depending on two parameters p1 and
p2 (e.g. delays, but not only...) varying in given intervals

• determine where the system is stable or not in the
(p1, p2)-plane

• how?
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Stability charts: what?

• consider a LTDS depending on two parameters p1 and
p2 (e.g. delays, but not only...) varying in given intervals

• determine where the system is stable or not in the
(p1, p2)-plane

• how?

◦ point-by-point investigation of the (p1, p2)-plane
determining the real part of the rightmost CR
rCR(p1, p2) (or the absolute value of the dominant
CM dCM(p1, p2))

◦ also other approaches...
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Stability charts: example

A stability boundary (SB) is a curve rCR(p1, p2) = 0
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Stability charts: example

A stability boundary (SB) is a curve rCR(p1, p2) = 0

y′(t) = L0y(t) + L1y(t − τ1) + L1y(t − τ2) + L2y(t − 2τ1)+

+ L2y(t − 2τ2) + L3y(t − τ1 − τ2), Li ∈ C
8×8
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Stability charts: point-by-point investigation

• consider a square cell in the (p1, p2)-plane

• evaluate stability of the four vertices by computing rCR

• if a sign change occurs, a SB passes through the cell
+ − 

− − 

• a sort of 2d-bisection
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Stability charts: location of SB

• consider edges with sign change in rCR at the vertices

• for each edge, determine the point (p1, p2) such that
rCR(p1, p2) = 0 by linear interpolation of vertex values

• approximate SB by joining the zeros

+ − 

− − 
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Stability charts: uniform square grid

• set a uniform square grid on the (p1, p2)-plane

• determine SB on each cell

• accuracy of SB depends on the grid size
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Stability charts: uniform square grid

• set a uniform square grid on the (p1, p2)-plane

• determine SB on each cell

• accuracy of SB depends on the grid size

• this is behind MATLAB’s contour for surface level-curves

• not efficient: each stability evaluation is expensive,
hence uniform grid is not a good choice
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Stability charts: adaptive square refinement

• start from a coarse square grid

• refine only cells with sign change by dividing into four
square cells by the center point

• five new stability evaluations required

+ − 

− − 

+ 

− 

− 

− − 
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Stability charts: adaptive triangulation 1

• start from a coarse square grid

• refine square cells with sign change by dividing into
four triangular cells by the center point

• only one new stability evaluation required

+ − 

− − 

− 
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Stability charts: adaptive triangulation 2

• start from a triangular cell with sign change

• refine by dividing into two triangular cells by the mid
point of the hypotenuse

• only one new stability evaluation required
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Stability charts: squares vs triangles

• start from a square with area A

• consider the number of stability evaluations necessary
to reduce the area to a
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Stability charts: squares vs triangles

• start from a square with area A

• consider the number of stability evaluations necessary
to reduce the area to a

• using square refinement

n =
5

log 4
log

A

a

• using triangulation

n =
2

log 4
log

A

a
− log 4

• less than half!
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Stability charts: if no sign change?

• if all vertices of a cell have same sign there might be a
SB crossing the cell (at only one edge)

− − 

− − 
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Stability charts: if no sign change?

• if all vertices of a cell have same sign there might be a
SB crossing the cell (at only one edge)

− − 

− − 

• how to recognize this possibility?
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Stability charts: slope test

• measure the minimum slope s = tanα = |r1+r2|
|x2−x1| at

which rCR = 0 is reached from both edge vertices
r
1
 

r
2
 

x 
x

2
 x

1
 

−r
2
 

α 

• if s is too large exclude refinement, else refine

• not a sufficient condition: heuristic test
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Stability charts: multiple evaluations

• possible multiple evaluations for neighboring cells

• considerable increase of computational time: not to
underestimate
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Stability charts: multiple evaluations

• possible multiple evaluations for neighboring cells

• considerable increase of computational time: not to
underestimate

• “easy” to avoid for square grid by storing stability
information in a rectangular matrix with entries
corresponding to grid points

• before evaluating a grid point check the matrix if it
already exists
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Stability charts: information storage

• more difficult with triangulation

• use a square matrix for each square cell

T
2
 

T
3
 

T
1
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Stability charts: information passing

• update matrix from square to square scanning the
whole grid in the usual reading/writing sense

P
1,min

 P
1,max

 

P
2,min

 

P
2,max

 

• avoid multiple evaluations in each step!
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Stability charts: location of SB

• improve using secant method on each edge

• better control of accuracy along the edge
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Stability charts: location of SB

• improve using secant method on each edge

• better control of accuracy along the edge

• but...no sense in find zeros with high accuracy and
then join them with a line: curvature of SB is
determining
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Stability charts: adaptive curvature determination

• take an extra mid edge and find its zero

• measure the height of the triangle formed by the zeros
of the three edges

• if this height is too large, refine by an extra mid edge
and iterate
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Examples: single delay

• consider the scalar single DDE

y′(t) = ay(t) + by(t − 1)

• stability chart analytically well-known

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1

0

1

2

−2

−1

0

1

2
−3

−2

−1

0

1

2

3

a
b −2.5 −2 −1.5 −1 −0.5 0 0.5 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a

b

Department of Mathematics and Statistics, McGill University - April 18, 2005 – p. 38/47



Examples: multiple delays

• consider the 2d DDE

y′(t) =

0
@ −6.45 −12.1

1.5 −0.45

1
A y(t)+

0
@ −6 0

1 0

1
A y(t−τ1)+

0
@ 0 4
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Examples: multiple delays

• consider the 8d DDE

y′(t) = L0y(t) + L1y(t − τ1) + L1y(t − τ2) + L2y(t − 2τ1)+

+ L2y(t − 2τ2) + L3y(t − τ1 − τ2), Li ∈ C8×8
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Applications: metal cutting

• consider 1dof model of orthogonal metal cutting

v

h(t)

F

Fy

m

ck

y(t−  )

y(t)

τ

workpiece

cutting tool

y′′(t) + 2ζωny
′(t) + ω2

ny(t) =
Fy

m
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Applications: regenerative effect

• relative vibrations between tool and workpiece
produces wavy surface
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Applications: regenerative effect

• relative vibrations between tool and workpiece
produces wavy surface

• after a round of the tool (or workpiece) chip thickness
will vary
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Applications: regenerative effect

• relative vibrations between tool and workpiece
produces wavy surface

• after a round of the tool (or workpiece) chip thickness
will vary

• cutting force depends on actual and delayed values of
relative displacement between tool and workpiece

Department of Mathematics and Statistics, McGill University - April 18, 2005 – p. 42/47



Applications: regenerative effect

• relative vibrations between tool and workpiece
produces wavy surface

• after a round of the tool (or workpiece) chip thickness
will vary

• cutting force depends on actual and delayed values of
relative displacement between tool and workpiece

• this is called regenerative effect
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Applications: delay model

• with regenerative effect the model becomes

y′′(t) + 2ζωny′(t) + ω2
ny(t) = −K(t)w

m
(y(t) − y(t − τ))

• K(t) possibly time periodic (e.g. milling process)
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Applications: delay model

• with regenerative effect the model becomes

y′′(t) + 2ζωny′(t) + ω2
ny(t) = −K(t)w

m
(y(t) − y(t − τ))

• K(t) possibly time periodic (e.g. milling process)

• reduce to a model similar to the damped delayed
Mathieu equation

y′′(t) + ky′(t) + (δ + ε cos 2πt/T )y(t) = by(t − 2π)
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Applications: stability chart

• consider ε = 0, δ and b as varying parameters

• Hsu-Bhatt-Vyshnegradskii stability chart
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Applications: periodic case

• consider the periodic case ε = 1
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Conclusions

• increasing interest in time delay systems

• stability is an infinite dimensional problem
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Conclusions

• increasing interest in time delay systems

• stability is an infinite dimensional problem

• use numerical techniques to solve

• special attention to computational cost
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Conclusions

• increasing interest in time delay systems

• stability is an infinite dimensional problem

• use numerical techniques to solve

• special attention to computational cost

• robust study of stability wrt varying parameters

• efficient computation of stability charts

• match best compromise among all tolerances
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The end

...and thanks for your attention!
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