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Abstract

For efficiency, variable time-stepping methods are often used to
numerically integrate dynamical systems. The flow on chaotic
attractors is often organised by the unstable manifolds of the
fixed points, and it is thus necessary to obtain good numerical
approximations in the neighbourhood of fixed points to
reproduce the dynamics. However the standard adaptive
algorithm typically fails to do this. Implicit methods designed for
stiff problems are also unsuitable; they typically destroy the
structure of the unstable manifold unless very small step-sizes
are used. We will present examples to illustrate these poor
dynamical behaviours, together with theoretical results on the
approximation of stable/unstable manifolds, and suggest a
phase space/stability based improvement to the standard
algorithm.
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Approximation of a dynamical system with a fixed
step-size Runge-Kutta method

The dynamical system
a(t) = f(u(t)),  w(0)=UeR

has solution operator S(e) and so u(t) = S(¢)U for all ¢.
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Approximation of a dynamical system with a fixed
step-size Runge-Kutta method

The dynamical system
a(t) = f(u(t)),  w(0)=UeR

has solution operator S(e) and so u(t) = S(¢)U for all ¢.

Gl A The order p Runge-Kutta method has evolution

map Sy

bT

Forward Euler is defined by

Un+1 = Up + hf(un) = Sp(uy), Vn > 0, ug = U.

Kansas Dec 2002 — p.4/32



Approximation of a dynamical system with a fixed
step-size Runge-Kutta method

The dynamical system
a(t) = f(u(t)),  w(0)=UeR

has solution operator S(e) and so u(t) = S(¢)U for all ¢.

Gl A The order p Runge-Kutta method has evolution

map Sy

bT

Sr(u) advances the numerical solution with step-size h
Unp+1 — Sh(un), vn = 0, ug — U.

Each u,, is an approximation of S(nh)U = u(nh).
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Organisation of the flow

ce 5(4) applied to Lorenz

Flow In forward time or-
ganised by fixed points and
unstable manifolds.

So consider approximation
of unstable manifolds by
numerical methods.
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Organisation of the flow

ce 5(4) applied to Lorenz

Flow In forward time or-
ganised by fixed points and
unstable manifolds.

So consider approximation
of unstable manifolds by
numerical methods.

Lorenz vector field is

f(@y,2)=(o(y—=), re—y—zz, zy—bz).

Relationship of flow to fixed points obvious from figure.
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Approximation of Local Unstable Manifolds with a
Fixed Step-Size Runge-Kutta Method

Stable Manifold 7 WS(u) The unstable manifold of equilibrium point u is

N V() = {ucRY: ||S(—t)u—1| — 0ast — oo}

Unstable

e Let 6 > 0. The local unstable manifold of u is

Wd(3) = {fu € WU@) : ||S(—t)u—a|| <35 Vt =0}
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Approximation of Local Unstable Manifolds with a
Fixed Step-Size Runge-Kutta Method

Stable Manifold 7 WS(u) The unstable manifold of equilibrium point u is

N V() = {ucRY: ||S(—t)u—1| — 0ast — oo}

Unstable

e Let 6 > 0. The local unstable manifold of u is
W“’5(a) ={u e W) : ||S(—t)u—ul < Vt > 0}.

Generate {u,},>0 using a fixed step-size h. The
unstable A-manifold of @ Is

Stable h-Manifold 77 W, (u")

W (@) = {u € R%ug = u, |Ju_,—1| — 0as k — oo

Let 6 > 0. The local unstable h-manifold of u is

W (@) = {u € WE(@)|uo = u, |[u_y, — || < & Vk}.
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L_ocal Unstable Manifold Theorem

Apply a fixed step-size Runge-Kutta method of order p
tow = f(u). Let w be a hyperbolic equilibrium and

f € CPT1(IRY). Then there exists C, H, A > 0 such that
Vo € (0,A), Vh € (0, H) the following holds:

for each u € W*° (@), there exists a u, € W," ( u) such that
lu = up| < CHP||u — @lf*;
and for each uy, € W,"j (), there exists v € W™ () such that

lu = up|| < ChP|Juy, —al%.
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Proof

Let D f(u) be the Jacobian of f evaluated at w.
Shift the coordinates v = u — u.

Linearise the solution operator and the Runge-Kutta
evolution map about O

S(h)v = exp(hD f(u))v+Gp(v), §h(v) = R(hD f(u))v+Np(v),
where R is matrix generalisation of linear stability function.
Show that both W (%) and W," 5( ) are indeed manifolds.

Show that both W (%) and W, 5( ) are representable as
graphs.

Show that the graphs are close. 0

Kansas Dec 2002 — p.8/32



| stable manifolds.
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Remarks

A parallel result holds for local stable manifolds.

The result is a generalisation of Beyn’s result: there exists
C > 0 such that

|lu — up|| < ChP.
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Remarks

A parallel result holds for local stable manifolds.

The result is a generalisation of Beyn’s result: there exists
C > 0 such that

|lu — up|| < ChP.

Theorem 1 implies that W*°(u) and W," °(q) are tangential
at the fixed point, and so is a form of Iocal (un)stable
manifold theorem. This follows from || ¢ —%||* on RHS of
equations; so distance between numerical and exact

manifolds depends on the square of the distance from the
fixed point.
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Approximation of a Dynamical System with a
Variable Step-Size Runge-Kutta Embedded Pair

Consider embedded Runge-Kutta pair with [p — p| = 1.

cl A
Uni1 = S (un) | b order p
Uni1 = Sp (up) | b order p
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Approximation of a Dynamical System with a
Variable Step-Size Runge-Kutta Embedded Pair

Consider embedded Runge-Kutta pair with [p — p| = 1.

cl A
Uni1 = S (un) | b order p
Uni1 = Sp (up) | b order p

Sh(u) advances the numerical solution

Unp+1 — Shn (un), vn = O, Uug = U.
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Approximation of a Dynamical System with a
Variable Step-Size Runge-Kutta Embedded Pair

Consider embedded Runge-Kutta pair with [p — p| = 1.

cl A
Uni1 = S (un) | b order p
Uni1 = Sp (up) | b order p

Sh(u) advances the numerical solution

Unp+1 — Shn (un), vn = O, Uug = U.

Does not define dynamical system on IR? as h,, varies with n.
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Local error approximation

With user-defined tolerance, 0 < 7 < 1, step h,, chosen by

1 .
| E(wn, hy)|| <7, wWhere FE(up, hy,)= h—p(un+1 — Upt1)-

n

with p = 0 error per step (EPS) or p = 1 error per unit step
(EPUS).
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L_ocal error approximation
With user-defined tolerance, 0 < 7 < 1, step h,, chosen by

1 .
| E(wn, hy)|| <7, wWhere FE(up, hy,)= h—p(un+1 — Upt1)-

n

with p = 0 error per step (EPS) or p = 1 error per unit step
(EPUS).

Algorithm attempts to ensure
E(un, hy) = vy1, ~ € (0,1) safety factor
Leads to trouble near fixed points since f(u,) = 0 implies

E(un, hy) = 0.
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Step-changing Algorithm

Let h* be a candidate for A,,.

If error control condition is satisfied, set h,, = hfg update
solution and set

(1/p)
—_— hmax,( Al ) ho .
i { | E(tn, ) |

If error control condition not satisfied set

hk-|—1 N YT (1/p) hk
" B (un, hE)| i

p=min(p,p) +1—p v € (0,1) safety factor.
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Adaptive Time-Stepping Algorithm as Dynamical
System

Let 7 > 0 be a (user-defined) error tolerance.
An acceptable step-size h for v € IR? satisfies

ISh(w) — Sp(w)|| < .

The maximum step-size (independent of 7) IS hax.
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Adaptive Time-Stepping Algorithm as Dynamical
System

Let 7 > 0 be a (user-defined) error tolerance.
An acceptable step-size h for v € IR? satisfies

ISh(w) — Sp(w)|| < .

The maximum step-size (independent of 7) IS hax.
Construct the sequence {(uy, h,) }n>0 Using the algorithmic map

ST . ]Rd X (0, hmax] v Rd X (07 hmax]
(un—l—la hn—|—1) s S7'<un7 hn)

S, finds an acceptable step-size h,, and advances the solution.
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Variable Time-Stepping Algorithm as Dynamical
System

ST . Rd X (0, hmax] v ]Rd X (07 hmax]

(un—l—la hn—|—1) s ST(U’TL? hn)
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Variable Time-Stepping Algorithm as Dynamical
System

S_:RY x (0, Amax| — R? x (0, hmax]
(un—l—la hn—|—1) s ST(U’TL? hn)

S~ 1S discontinuous.

Kansas Dec 2002 — p.14/32



Variable Time-Stepping Algorithm as Dynamical
System

S_:RY x (0, Amax| — R? x (0, hmax]
(un—l—la hn—|—1) s ST(U’TL? hn)

S~ 1S discontinuous.
(A. Stuart & H. Lamba) There exists v € (0,1) and C > 0

such that
h<0( i )7
h [f()ll/)
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Variable Time-Stepping Algorithm as Dynamical
System

S_:RY x (0, Amax| — R? x (0, hmax]
(un—l—la hn—|—1) s ST(U’TL? hn)

S~ 1S discontinuous.
(A. Stuart & H. Lamba) There exists v € (0,1) and C > 0

such that
h<0( i )7
h [f()ll/)

(G. Hall & D.J. Higham) || f(u)|| ~ 0 = stability restricts the
step-size.
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Stable Fixed Point Example

Consider the method RK1(2) applied to the linear system

u_{_g _?}, u—{ul}, u(0) = [1,1074]".

u2

(0,0) — stable fixed point.

For this method, the numerical solu-
tion gives persistent spurious oscilla-
tions and the y; component has O(7)
oscillation about the fixed point.

*
* =
* =
* =
* =
* =
H= =
F— s
H— =
* =
[
-
e
-
H—
o
e —
—

0.004
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Methods RK2(3) and RK4(5) applied to Saddle
Point Example

—1 0 ul 10N\
< ) 1>u, u:(u2>, u(0) = (0.99,1071)" .
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Methods RK2(3) and RK4(5) applied to Saddle
Point Example

u= ( . ) . u(0) = (0.99,10710)"

U2

RK2(3) numerical solution does
not pass close to fixed point or the
local unstable manifold.
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Methods RK2(3) and RK4(5) applied to Saddle
Point Example

1 0
i = w, u=[ "], w0)=(0.99,10"10)"
0 1 (V)

RK2(3) numerical solution does
not pass close to fixed point or the
local unstable manifold.

RK4(5) has spurious oscillations about
the unstable manifold. Numerical solu- |8
tion can ultimately end up either side of |
the unstable manifold.
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Stable Saddle Point Example !

Consider 2-stage RK1(2) method with stability domain

IR@)| <1

1/2]1/2
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Stable Saddle Point Example !

Consider 2-stage RK1(2) method with stability domain

IR@)| <1

0

1/2]1/2
3 2
0 1

Apply this method to

—1 0
U = U, u(0) = U € R
0 1
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Stable Saddle Point Example !

Acceptable
Rejection

In an O(7)-neighbourhood of the origin, the step-size oscillates
about 1.

Numerical solution near stable manifold becomes trapped near
fixed point.

Spurious stable invariant object in numerical flow.
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Stable Saddle Point Example !
Stability function is R(z) = 1 + z — 2%. With z = h) and here

A = £1. Consider fixed step-size.
For h € (0, 1), the numerical manifolds are

WEQO) = {(z,y) €eR* |y=0} and W/(0) = {(z,y) € R* | z = 0}.
For h € (1,2), the numerical manifolds are

W;(0) = {(z,y) € R* |z =0} and Wy(0) = {(z,y) € R* |y =0}.
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Stable Saddle Point Example !

Stability function is R(z) = 1 + z — 2%. With z = h) and here
A = £1. Consider fixed step-size.
For h € (0, 1), the numerical manifolds are

W;(0) = {(z.y) e R* [y =0} and W (0) = {(z,y) € R* | z = 0},
For h € (1,2), the numerical manifolds are
W;(0) = {(z,y) e R* |z =0} and Wy(0)={(z,y) € R* |y = 0}.

When h crosses 1, the manifolds are reversed.

In adaptive algorithm this creates a chaotic attractor which
persists for all 7 > 0.

Important to keep the step-size below linear (un)stability limits.
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Approximation of Local Unstable Manifolds with a
Variable Step-Size Runge-Kutta Pair

Let o > 0. The local unstable set of u, W;"?(u), is the set of
(u, h) such that there exists a backward orbit under S

{(U_n, h—n) 701020 C ]Rd X (07 hmax]a

AN

such that (u, h) = (ug, ho), n—u|l<oVn>0,and u_, — u

as n — oo.
Leto > d > 0. W_¥ (u) is the set of (u, h) such that there exists

a finite backward orbit under S,

{(U—na h_ ) o —o C ]Rd (07 hmax]a

n—ull <o VYn=0,...,N, and

such that (u h) = (ug, ho),
U_ NEWm ( )

ax
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Approximation of Local Unstable Manifolds with a
Variable Step-Size Runge-Kutta Pair
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An adaptive "'Stable Manifold" Theorem

There exists 6 = O(7) and h,.x Sufficiently small and
Independent of 7 such that

W2y (@) = Wi (@),

Apply an RKp(p) method with |p —p| = 1to @ = f(u).
Let @ be a hyperbolic equilibrium and f € C™@{P.P}(IR?). Then
Jdo, H" > 0 such that for hyax € (0,HT) & 0 € (0,07)

dg (W% (), P,WXH°(u)) — 0 ast — 0
where P, : (u,h) € R — 4 € R? is the projection operator.

That Is, the local unstable manifolds of the dynamical system
and the unstable set of the RKp(p) are close for small 7.
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Phase Space Stability Error Control

Standard algorithm performs well during finite-time integration
with fixed initial condition.
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Phase Space Stability Error Control

Standard algorithm performs well during finite-time integration
with fixed initial condition.

However unless h,,.x IS less than the linear stability limit the
algorithm

admits spurious fixed points;
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Phase Space Stability Error Control

Standard algorithm performs well during finite-time integration
with fixed initial condition.

However unless h,,.x IS less than the linear stability limit the
algorithm

admits spurious fixed points;
performs badly around a stable fixed point;
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Phase Space Stability Error Control

Standard algorithm performs well during finite-time integration
with fixed initial condition.

However unless h,,.x IS less than the linear stability limit the
algorithm

admits spurious fixed points;
performs badly around a stable fixed point;
performs badly near saddle points.
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Phase Space Stability Error Control

Standard algorithm performs well during finite-time integration
with fixed initial condition.

However unless h,,.x IS less than the linear stability limit the
algorithm

admits spurious fixed points;
performs badly around a stable fixed point;
performs badly near saddle points.

Don’t want to restrict h...x ON Whole phase space because of
poor behaviour near fixed points
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Phase Space Stability Error Control

Standard algorithm performs well during finite-time integration
with fixed initial condition.

However unless h,,.x IS less than the linear stability limit the
algorithm

admits spurious fixed points;
performs badly around a stable fixed point;
performs badly near saddle points.

Don’t want to restrict h...x ON Whole phase space because of
poor behaviour near fixed points

Don’t want to introduce expensive algorithm to compute linear
stability limit near fixed points.
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Phase Space Stability Error Control

Standard algorithm performs well during finite-time integration
with fixed initial condition.

However unless h,,.x IS less than the linear stability limit the
algorithm

admits spurious fixed points;
performs badly around a stable fixed point;
performs badly near saddle points.
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Phase Space (PSy) Error Control

We demand at each step the phase space (PSy) error control

|Unt1 — Un — hp[(1 — 0) f(un) + 0f (unt1)]||
< wha|(1 = 0)f(un) + 0f(unti)ll, « € (0,1).
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Phase Space (PSy) Error Control

We demand at each step the phase space (PSy) error control

|Unt1 — Un — hp[(1 — 0) f(un) + 0f (unt1)]||
< wha|(1 = 0)f(un) + 0f(unti)ll, « € (0,1).

hn (1 —0) f(un) + 0f(u,11)|| IS approximation to arc length
evolved over step.

Kansas Dec 2002 — p.23/32



Phase Space (PSy) Error Control
We demand at each step the phase space (PSy) error control

|Unt1 — Un — hp[(1 — 0) f(un) + 0f (unt1)]||
< wha|(1 = 0)f(un) + 0f(unti)ll, « € (0,1).

hn (1 —0) f(un) + 0f(u,11)|| IS approximation to arc length

evolved over step.
So PSy error control bounds an approximation to local error by a

fraction ¢ of an approximation to solution arc length in phase
space. So is a phase space error control.
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Phase Space (PSy) Error Control
We demand at each step the phase space (PSy) error control

|Unt1 — Un — hp[(1 — 0) f(un) + 0f (unt1)]||
< wha|(1 = 0)f(un) + 0f(unti)ll, « € (0,1).

hn (1 —0) f(un) + 0f(u,11)|| IS approximation to arc length
evolved over step.
So PSy error control bounds an approximation to local error by a

fraction ¢ of an approximation to solution arc length in phase
space. So is a phase space error control.

Will show it also acts as a stability control.
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Phase Space (PSy) Error Control
We demand at each step the phase space (PSy) error control

|Unt1 — Un — hp[(1 — 0) f(un) + 0f (unt1)]||
< wha|(1 = 0)f(un) + 0f(unti)ll, « € (0,1).

hn (1 —0) f(un) + 0f(u,11)|| IS approximation to arc length
evolved over step.
So PSy error control bounds an approximation to local error by a

fraction ¢ of an approximation to solution arc length in phase
space. So is a phase space error control.

Will show it also acts as a stability control.

Will combine this error control with standard error control; and
demand both are satisfied at every step.
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Key Features of this Error Control

Negligible additional computation is needed,;
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Key Features of this Error Control

Negligible additional computation is needed,;

Away from fixed points the standard error control is
sufficient to ensure that the PSy condition is satisfied.
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Key Features of this Error Control

Negligible additional computation is needed,;

Away from fixed points the standard error control is
sufficient to ensure that the PSy condition is satisfied.

Prevents spurious fixed points;
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Key Features of this Error Control

Negligible additional computation is needed,;

Away from fixed points the standard error control is
sufficient to ensure that the PSy condition is satisfied.

Prevents spurious fixed points;
Forces convergence to stable fixed points;
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Key Features of this Error Control

Negligible additional computation is needed,;

Away from fixed points the standard error control is
sufficient to ensure that the PSy condition is satisfied.

Prevents spurious fixed points;
Forces convergence to stable fixed points;

Gives stable step-size sequence with suitable step-size
selection mechanism
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Key Features of this Error Control

Negligible additional computation is needed,;

Away from fixed points the standard error control is
sufficient to ensure that the PSy condition is satisfied.

Prevents spurious fixed points;
Forces convergence to stable fixed points;

Gives stable step-size sequence with suitable step-size
selection mechanism

Good behaviour near saddle points
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Step-size selection

N Hun+1 — Un — hn[(l B H)f(un) + 9f(un+1)]H
Rltn, ) = T T 0) F ) + 0F (g o

N . R, = XP wh here by Tayl '
ext step: 4= (R( )> - where by Taylor series

n U Py,
Orderp>2and § #1/2=q
Orderp>3andf=1/2=q

x € (0, 1) is safety factor.

1;
2;
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Step-size selection

Unt1 — Un — hp[(1 = 0) f(un) + 0 f(uni1)]]]
holl(1 = 0) f(un) + 0 f (uny1)|]

R(una hn) : ‘

~

N . R, = XP wh here by Tayl '
ext step: 4= (R( )> - where by Taylor series

n U o
Orderp>2and #1/2=q=1;
Orderp>3and 0 =1/2= ¢ =2;

x € (0,1) is safety factor. New step-size selected as

. s 0
hn-|—1 — N | "y q, hn—|—17 Cth:| )

where h;_ , given by standard time-stepping strategy.
a > 1 1S a maximum step-size ratio , o = 5.
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Linear system

Consider forward Euler method under PSy error
control in || e ||oc With ¢ < 0/(1 — 0) applied to

Ut :AU, A:Dia’g[)\lv)\Qa"'a)‘dL U’(O) = Up € ]Rd

where \; < Ay < --- < Ay <0. Then ||u"|| — 0 as n — oo with:
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Linear system

Consider forward Euler method under PSy error
control in || e ||oc With ¢ < 0/(1 — 0) applied to

Ut :AU, A:Dia’g[)\lv)\Qa"'a)‘dL U’(O) = Up € ]Rd

where \; < Ay < --- < Ay <0. Then ||u"|| — 0 as n — oo with:
1. u? — 0 mono® as n — oc;

Kansas Dec 2002 — p.26/32



Linear system

Consider forward Euler method under PSy error
control in || e ||oc With ¢ < 0/(1 — 0) applied to

Ut :AU, A:Dia’g[)\lv)\Qa"'a)‘dL U’(O) = Up € ]Rd

where \; < Ay < --- < Ay <0. Then ||u"|| — 0 as n — oo with:
1. u? — 0 mono® as n — oc;

2. It > W)\d, then v — 0 & Z—Z — 0 mono® as n — oo;

d

Kansas Dec 2002 — p.26/32



Linear system

Consider forward Euler method under PSy error
control in || e ||oc With ¢ < 0/(1 — 0) applied to

= Au, A = Diag[\i, X2, -, \g], u(0) =ug e R?
where \; < Ay < --- < Ay <0. Then ||u"|| — 0 as n — oo with:
1. u? — 0 mono® as n — oc;

2. If N\ > (1;9"))\ ,then u? — 0 & % — 0 mono® as n — oo;

Ug

3. If 22Dy, > 3 > [200H2) 9] 5y, then uf — 0 & [ — 0;
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Linear system

Consider forward Euler method under PSy error
control in || e ||oc With ¢ < 0/(1 — 0) applied to

= Au, A = Diag[\i, X2, -, \g], u(0) =ug e R?

where \; < Ay < --- < Ay <0. Then ||u"|| — 0 as n — oo with:
1. u? — 0 mono® as n — oc;

2. If N\ > (1;9"))\ ,then u? — 0 & % — 0 mono® as n — oo;
3. If 22Dy, > 3 > [200H2) 9] 5y, then uf — 0 & [ — 0;
4. Otherwise u* — 0 as n — oo with lim sup,,_, ui] e —

ur =
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Linear system

Consider forward Euler method under PSy error
control in || e || With ¢ < 0/(1 — ) applied to
= Au, A = Diag[\i, X2, -, \g], u(0) =ug e R?
where \; < Ay < --- < Ay <0. Then ||u"|| — 0 as n — oo with:
1. u? — 0 mono® as n — oc;
If \; > (1;90))\ ,then u? — 0 & % — 0 mono® as n — oo;

Ug

2

3. If 22Dy, > 3 > [200H2) 9] 5y, then uf — 0 & [ — 0;

4. Otherwise u* — 0 as n — oo with lim sup,,_, IUZI B
1+

5. Let 6, be angle between v™ and [0, ...,0,1] € R If u # 0

1 ¢’ 3
liminfcost, > 1 — -(d—1)5 + O(¥”).

n—00 2 0
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Remarks

Can extend to arbitrary norms.

Can extend to u = Au (I.e. non-diagonal). and nonlinear
hyperbolic equilibria.
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Remarks

Can extend to arbitrary norms.
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Extends to non-stiff saddle points.
Can extend to arbitrary methods.

Bound in 4 independent of stiffness/eigenvalues and can be
made arbitray small by reducing .
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Remarks

Can extend to arbitrary norms.

Can extend to u = Au (I.e. non-diagonal). and nonlinear
hyperbolic equilibria.

Extends to non-stiff saddle points.
Can extend to arbitrary methods.

Bound in 4 independent of stiffness/eigenvalues and can be
made arbitray small by reducing .

The exact solution is tangent to 0,0, ...,0, 1] at fixed point,
so 5 gives bound on angle between exact and numerical
solutions at fixed point. Reducing ¢ makes angle arbitrarily
small (independent of the stiffness/eigenvalues).
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Proof

Forward Euler method gives
u"t = R(h,A)u™ = Diag[l + hpAi, - -, 1 + hpiglu”

With co-norm, PSy error control becomes

C OhZ N2y | - A (1 + O hyp)ul?
Oh2 \ou? Ao(1 4 0ok )ul
.2 2 < 2( | 2 ) y)

I Qh%)\?lug 1l ] Aa(1 —|—(9)\dhn)ug 1l

Unlike standard control not trivially true at near point.
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Proof

Forward Euler method gives
u"t = R(h,A)u™ = Diag[l + hpAi, - -, 1 + hpiglu”

With co-norm, PSy error control becomes

C OhZ N2y | - A (1 + O hyp)ul?
Oh> ?\QuQ . Ao (1 + HIAth)ug
| Qh%;\?lug 1l a1+ H.Adhn)ug 1l
hence for some ¢ € {1,2,...,d}

RN |ul| < —oXil1 + 0N ||ult].
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|1+ 0N by [|ul ]

¢
)\dé’(1+90)
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Proof

S [uft] < —Ad|1 + OAihn||uf].

True if and only if
p 2
hn < B < B :
Aif(1+¢) — A1+ )

So the d*" condition always holds and monotonic convergence in
this component follows.
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Proof

S [uft] < —Ad|1 + OAihn||uf].
True if and only if
¥ ¥
hn < B < B :
Ai0(1 + ) Aab(1 + )

So the d*" condition always holds and monotonic convergence in
this component follows.

Prove 2 and 3 by showing that d*"* condition implies (monotonic)
convergence for these components.
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Proof

S [uft] < —Ad|1 + OAihn||uf].
True if and only if
¥ ¥
hn < B < B :
Ai0(1 + ) Aab(1 + )

So the d*" condition always holds and monotonic convergence in
this component follows.

Prove 2 and 3 by showing that 4" condition implies (monotonic)
convergence for these components.

Prove 4 by showing that failure of the -th condition bounds

iy /y7| and hard work. 5 follows on noting that in limit » — oo alll

components bounded in terms of d'* component. .
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Stable Fixed Point Example (Revisited)
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Stable Fixed Point Example (Revisited)

With PSy spurious oscillation is removed
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Stable Fixed Point Example (Revisited)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

With PSy spurious oscillation is removed
Step-size is kept below stability limit.
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Stable Fixed Point Example (Revisited)

RK1(2) with PS, & Standard RK1(2) with PS, & Standard RK1(2) with PS, & Standard,¢ =107 t=10"

®
N
P
&
2
[}

1777

ST []7
Yo sy,

= """'"":'l:',""'&..#
Z St
PS B
8 > == LB E LTS
Sta R

aindard S
Rejected hn for Standard i . . > EEAEE

With PSy spurious oscillation is removed
Step-size is kept below stability limit.
Step-sizes bounded near fixed point.

PSy only determines step-size near fixed point.
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Saddle Point Example (Revisited)
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Saddle Point Example (Revisited)
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With PSy spurious oscillation is removed
Step-size is kept below stability limit.
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Saddle Point Example (Revisited)

RK2(3) with PSy RK2(3) with PS & Standard RK2(3) with PS, & Standard,=10"", 1= 10"

- Linear stabilty Imith=1)

,,,,,,,,,,,,

g - 0 5 10 15 20
Y. t

With PSy spurious oscillation is removed
Step-size is kept below stability limit.
Step-sizes bounded near fixed point.
PSy only determines step-size near fixed point.
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RK1(2) Method applied to

—1 0 0
U = 0 —10 0
0 0 —100

Step-size oscillates.

u.

Large Average Step-Sizes

RK1(2) method with PS,

stability limit for )\1:—1

maximum step-size (:)

stability limit for )\2:—10

VWVWW\W[/\/

M A/\ average step-size (-)
stability limit for )\3:—100
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Large Average Step-Sizes

RK1(2) Method applied to

stability limit for )\1:—1

— 1 0 O 0 maximum step-size (:)
?:[/ — O e 1 0 O u . stability limit for)\Z:—lo m/\/v/\/
0 0 —100 el

-1
M A/\ average step-size (-)
/’VV stability limit for A;=-100
-2
|

Step-size oscillates.

All steps below N = —1 stabil-
ity limit; monotonic convergence of
this component.
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Large Average Step-Sizes

RK1(2) Method applied to
— 1 0 O 0 maximum step-size (:)
w=| 0 -10 0 | u »
0 0 —100 e

M A/\ average step-size (-)
stability limit for )\3:—100

Step-size oscillates.

All steps below N = —1 stabil-
ity limit; monotonic convergence of
this component.

Average step-size below A = —10 stability limit, but for ¢ > 0.1
some step-sizes above this limit.
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Large Average Step-Sizes

RK1(2) Method applied to

stability limit for )\1:—1

— 1 0 O 0 maximum step-size (:)
w=| 0 —10 0 |u
0 0 —100

VWVWW\W[/\/

M A/\ average step-size (-)
stability limit for )\3:—100

Step-size oscillates.

All steps below N = —1 stabil-
ity limit; monotonic convergence of
this component.

Average step-size below A = —10 stability limit, but for ¢ > 0.1
some step-sizes above this limit.

EXxcept for ¢ tiny, average and maximum step-sizes above
A = —100 stability limit. But convergence to fixed point enforced.
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Conclusions

Standard algorithm behaves poorly near saddle points.
Stiff methods do not resolve problem for saddles.

Kansas Dec 2002 — p.32/32



Conclusions

Standard algorithm behaves poorly near saddle points.
Stiff methods do not resolve problem for saddles.

PSy
proved to give correct behaviour near stable fixed points
gives correct behaviour near non-stiff saddles
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Conclusions

Standard algorithm behaves poorly near saddle points.
Stiff methods do not resolve problem for saddles.

PSy
proved to give correct behaviour near stable fixed points
gives correct behaviour near non-stiff saddles

Ongoing
PSy currently being implemented in standard ODE solver
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