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Abstract. Variable time-stepping algorithms for initial value ordinary differential equations
are traditionally designed to solve a problem for a fixed initial condition and over a finite time. It
can be shown that these algorithms may perform poorly for long time computations with initial
conditions that lie in a small neighborhood of a fixed point. In this regime there are orbits that
are bounded in space but unbounded in time, and the classical error-per-step or error-per-unit-step
philosophy may be improved upon. A new error criterion is introduced that essentially bounds
the truncation error at each step by a fraction of the solution arc length over the corresponding
time interval. This new control can be incorporated within a standard algorithm as an additional
constraint at negligible additional computational cost. It is shown that this new criterion has a
positive effect on the linear stability properties and hence improves behavior in the neighborhood
of stable fixed points. Furthermore, spurious fixed points and period two solutions are prevented.
The new criterion is shown to be admissible in the sense that it can always be satisfied with nonzero
stepsizes. Implementation details and numerical results are given.
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1. Introduction. We are concerned with explicit numerical methods for dy-
namical systems defined by autonomous initial value ordinary differential equations
(ODEs)

ut = f(u), u(0) = u0 ∈ R
m.(1.1)

The function f : R
m → R

m is assumed to be continuous. Additional continuity
conditions will be stated where required.

In a dynamical systems context an accurate solution of (1.1) over a given finite
time-interval with a particular u0 is often of little relevance; rather, it is the global
behavior of the system for general values of u0 in the limit as t → ∞ that is of interest.

When a fixed time-stepping numerical method is used to approximate the flow
of (1.1), the classical error bound between the numerical approximation and exact
solution of (1.1) grows exponentially in time. Moreover, at least in the case of chaotic
attractors, the actual error grows exponentially in time. This leads us naturally to
question the meaningfulness of our numerical solution, and any conclusions drawn
from it, in the limit as t → ∞. This issue has been studied in detail over the last
decade or so, and the approach of considering the numerical solution as a discrete
dynamical system in its own right, and then comparing the dynamics of this system
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with the dynamics of (1.1), has been particularly fruitful. Further details can be found
in [13] and the references therein.

It is widely accepted that to be efficient an ODE algorithm must be adaptive;
that is, the stepsize must be varied according to some locally based error measure. In
contrast to the fixed-stepsize case, a dynamical systems oriented theory for variable
stepsize algorithms is far from complete. Contributions to this area include studies
[2, 5, 6] on behavior near stable equilibria, [8, 12] on systems with particular nonlinear
structures, and [1] on spurious fixed points.

To motivate our work, we mention two areas in which typical adaptive ODE
algorithms perform badly. The first area is behavior around a stable fixed point.
Hall [5] showed that typical methods fail to capture the correct dynamics in this very
simple and important scenario. An illustration of this behavior is given in section 2.
A second area where poor behavior can arise was identified in [1], where it was shown
that almost all adaptive explicit Runge–Kutta methods admit stable spurious fixed
points for arbitrarily small tolerances.

In this work, we present a new type of error control that is designed to overcome
these two difficulties. Moreover, we aim to illustrate that traditional error control
algorithms are fundamentally tied to the finite-time/fixed initial value paradigm, and
hence other approaches can be beneficial for adaptive, long time simulations.

In the next section we outline the traditional error control approach and illustrate
its shortcomings near fixed points. In section 3 we motivate and introduce a new
error control. The properties of this control are then analyzed; in sections 4, 5, and
6 we consider admissibility, prevention of spuriosity, and linear stability, respectively.
Sections 7 and 8 cover implementation details and numerical tests. The work is
summarized in section 9.

2. Standard error control. Most of the ideas in this work apply to general
variable stepsize algorithms. However, in order to state precise results we focus on
explicit Runge–Kutta (ERK) embedded pairs. We describe below the main details of
a typical adaptive ERK algorithm of the type found in numerical software libraries.
Further details can be found, for example, in [4, 11].

Let tn denote a sequence of (unequally spaced) grid points in time and let Un

denote an approximation to u(tn). Given Un and a stepsize ∆tn := tn+1 − tn, the
ERK pair is defined by

Yi = Un + ∆tn

i−1∑

j=1

aijf(Yj), 1 ≤ i ≤ s,(2.1)

Un+1 = Un + ∆tn

s∑

i=1

bif(Yi),(2.2)

Vn+1 = Un + ∆tn

s∑

i=1

b̃if(Yi).(2.3)

Here {aij , bi, b̃i}, for 1 ≤ i ≤ s and 1 ≤ j ≤ i − 1, are the coefficients of the formula
pair and Vn+1 is a subsidiary approximation that is used for error control. If Vn+1 is
a lower-order approximation than Un+1, then the pair is said to be operating in local
extrapolation mode.

The approximation Un+1 is regarded as acceptable if an error criterion of the form

estn+1 ≤ τ(2.4)
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is satisfied, where τ is a user-specified tolerance. The two common error measures for
(2.4) are

estn+1 := ‖Un+1 − Vn+1‖/∆tn and estn+1 := ‖Un+1 − Vn+1‖,(2.5)

which lead to error-per-unit-step (EPUS) and error-per-step (EPS) control, respec-
tively.

The constraint (2.4) must be coupled to a stepsize selection mechanism. The
theory that we develop will be largely independent of this mechanism; thus we will
not consider it in detail but merely note that it is usually based on the formula

∆tn+1 = θ

(
τ

estn+1

)1/q

∆tn,(2.6)

where θ ∈ (0, 1) is a safety factor and q is the largest integer such that estn+1 =
O(∆tqn).

When (2.2)–(2.6) is applied to the scalar problem ut = λu, where λ < 0, the
discrete solution can be regarded as a map

(
Un+1

∆tn+1

)
=

(
R(∆tnλ)Un

θ
(

τ∆t1−k

n

|E(∆tnλ)Un|

)1/q

∆tn

)
,(2.7)

where R and E are polynomials that depend on the ERK coefficients, k = 0 for
EPUS control and k = 1 for EPS control. (Here, for the moment, we assume that
there are no step rejections.) Hall [5] observed that the map (2.7) has a steady state
solution with ∆tn ≡ ∆tL, |Un| ≡ UL, where ∆tL and UL satisfy |R(∆tLλ)| = 1 and
|E(∆tLλ)|UL = θq∆t1−k

L τ . (Note that ∆tL is a stepsize that lies on the boundary of
the linear stability region.) If R(∆tLλ) = +1, then (∆tL, UL) and (∆tL,−UL) are
both period one steady states, whereas if R(∆tLλ) = −1, then (∆tL,±UL) is a period
two steady state. In both cases, the error criterion (2.4) is satisfied and hence there
are no step rejections. Similar results for complex λ were given in [7].

These steady state solutions may be regarded as acceptable in the sense that they
are all within O(τ) of the correct steady state u ≡ 0. However, it is unsettling that the
underlying dynamics cannot be reproduced exactly—in neither case is the numerical
solution driven to the correct fixed point, and the period two solution does not capture
the correct qualitative behavior. Furthermore, as solutions of the map (2.7), these
states are not necessarily stable. Hall showed that the stability is independent of τ
but depends on the coefficients of the ERK pair. In the unstable case, the numerical
solution and stepsize are seen to oscillate around these steady state values.

To illustrate this behavior, we applied the Matlab [10] ode23 routine to (1.1) with

f(u) =

[
−10 0
0 −1

] [
u1

u2

]
,(2.8)

taking u(0) = [10−4, 10−4]T . We remark that there is no loss of generality in placing
the fixed point at the origin. We used the default value for the error tolerance, which
corresponds to τ = 10−3. (More specifically, when we refer to Matlab’s ode23 in this
work, we mean the ode23.m code from version 4 of Matlab. Similar behavior was
observed with ode23 from Matlab’s current version 5. However, version 4 has a much
shorter code that is easier to follow and edit and hence was the natural choice for
testing the new controls introduced in this work.) The left-hand picture in Figure 2.1
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Fig. 2.1. Numerical solutions from an ERK pair around a stable fixed point.

illustrates the numerical solution in the phase plane for 0 ≤ t ≤ 20. The discrete
solution is plotted with the * symbol, and these points are joined with straight lines
for clarity. For this ERK pair we have R(z) = 1+ z+ z2/2+ z3/6 and R(∆tLλ) = −1
at the linear stability limit ∆tLλ ≈ −2.5. The effect of the period two steady state
identified by Hall can be clearly seen—the u1 component has O(τ) oscillations about
zero, and these oscillations persist for all time. The oscillations are not smooth because
for this ERK pair the period two solution of (2.7) is unstable. The right-hand picture
in Figure 2.1 shows the same ERK method when the PS control derived in this work
is incorporated. Further details are given in section 8.

In a dynamical systems context it is important to obtain a good approximation
to the dynamics in the neighborhood of unstable fixed points. This is because it is
often the stable and unstable manifolds of the fixed points that organize the flow in a
chaotic attractor. Thus, if we cannot obtain a good approximation to the dynamics
in a neighborhood of a fixed point, we may not reproduce the qualitative features of
the attractor.

To illustrate this, we applied an ERK method with EPUS control and τ = 10−2

to (1.1) with

f(u) =

[
−1 0
0 1

] [
u1

u2

]
,(2.9)

taking u(0) = [0.99, 10−10]T ; very close to the stable manifold of the origin. The
exact solution for 0 ≤ t ≤ 20, given by the solid line in Figure 2.2, is smooth and
passes close to the fixed point before following its unstable manifold—the u2-axis. In
contrast, the numerical solution oscillates about the unstable manifold of the fixed
point, and although these oscillations die out as time increases, the numerical solution
can ultimately end up either side of the unstable manifold. In the example given the
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Fig. 2.2. Numerical solutions from an ERK pair around a saddle point.

u1 component of the numerical solution is negative for all large n; thus, although the
unstable manifold of the fixed point is a separatrix for the dynamics of the continuous
problem (1.1), this is no longer true for the numerical approximation. In the general
case of a chaotic attractor, numerically generated orbits passing close to fixed points
may cross separatrices and consequently have different asymptotic behavior than the
continuous orbit that they are intended to model. Although τ = 10−2 as taken in the
example is relatively large, O(τ) oscillations persist for all values of τ > 0, and thus
a modification of the error control is needed to prevent this behavior. When the PS
error control is incorporated we obtain the dashed line in Figure 2.2 which follows
the exact solution much more closely without oscillations. Further details are given
in section 8.

3. New error control.

3.1. Motivation. The poor behavior illustrated at the end of the last section
can be explained in several ways. We mention two related arguments here.

Let u∗ be a fixed point of (1.1), i.e., f(u∗) = 0. Then given any neighborhood of
u∗, there are orbits which spend arbitrarily long time intervals in that neighborhood.
Both EPS and EPUS control are designed to solve the initial value problem (1.1)
over a finite time interval, and hence we might expect them to perform badly in the
neighborhood of a fixed point. Alternatively, note that from the form of the ERK
formulas, in a small neighborhood of u∗ we have ‖Un+1 −Vn+1 ‖ = ∆tnO(‖ f(Un) ‖).
It follows that by making the neighborhood sufficiently small, either EPS or EPUS
may allow a step for which ‖Un+1−Vn+1 ‖ = O(‖ f(Un) ‖). Further, the corresponding
arc length over which the solution evolves is also of size O(‖ f(Un) ‖). Hence, the error
control does not necessarily keep the local error estimate less than the arc length. Also,
in this scenario there is little validity for the expansion estn+1 = O(∆tqn) on which
the stepsize selection formula (2.6) is based.
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As a first attempt at finding a new constraint, we may aim to control the local
error as a fraction of the evolved arc length of the underlying solution of (1.1) over the
corresponding time-interval. In (2.1)–(2.3), the difference Un+1 − Vn+1 approximates
the local error in the lower order formula, and a suitable measure of Vn+1 − Un

approximates the solution arc length. Thus to bound the local error at each step as
a fraction of the solution arc length we may augment (2.4) with the extra constraint

‖Un+1 − Vn+1‖ ≤ ϕ‖Vn+1 − Un‖,(3.1)

where ϕ is a constant, chosen so that ϕ ∈ (0, 1).
Since (3.1) relies on the interaction of the two individual ERK formulas, it is

difficult to perform a general analysis of its benefits. However, note that the constraint
(3.1) forces closeness in an O(1) sense (rather than closeness to within some power
of ∆t). Hence, we may replace Vn+1 in (3.1) by some other Runge–Kutta formula.
The replacment does not need to be of high order and can be chosen for its properties
with regard to, for example, linear stability or spuriosity.

3.2. Phase space error control. We now study the constraint (3.1) with Vn+1

replaced by the trapezoidal rule. The analysis of this new phase space error control
forms the rest of the paper.

Phase space control (PS). In addition to (2.4), at each step we require
∥∥∥∥Un+1 − Un −

1

2
∆tn(f(Un+1) + f(Un))

∥∥∥∥ ≤
1

2
ϕ∆tn‖f(Un+1) + f(Un)‖,(3.2)

where ϕ ∈ (0, 1) is a constant.
Three key features should be noted. First, condition (3.2) is formulated solely

in terms of the solution sequence {Un}
∞
n=0, and hence its applicability is not limited

to ERK pairs. Second, the condition has little impact on the computational expense
of the overall algorithm. The value of f(Un), which is required in (3.2), is already
evaluated in order to compute Yi, i = 1, . . . , s. The evaluation of f(Un+1) is also re-
quired, but if the step is accepted then this quantity is needed on the next step. (Also,
ERK pairs with the “first-same-as-last” property automatically compute f(Un+1) as
a stage value for the current step [4, 11].) A third feature of condition (3.2) is that,
for any consistent method, the left-hand side of the inequality is O(∆tln), for some
l ≥ 2, whilst the right-hand side is O(∆tn). Hence, away from fixed points, we would
expect the condition to hold automatically for schemes of the form (2.1)–(2.6).

In the next section we show that the PS control is realistic in the sense that
it can be satisfied for nonzero stepsizes. Sections 5 and 6 continue the theoretical
investigations by studying the prevention of spuriosity and the endowment of linear
stability properties.

4. Admissibility of phase space error controls. In this section we consider
the ERK formula (2.1)–(2.2) subject to PS control (3.2) and show that the scheme is
admissible in the sense that we can find an infinite solution sequence {Un}

∞
n=0 such

that the PS error control is satisfied at every step. Moreover, we show that for this
solution sequence it is not possible to have both

∑∞
n=0 ∆tn and {Un}

∞
n=0 bounded;

hence we avoid the circumstance where {Un}
∞
n=0 remains bounded but the numerical

solution does not progress beyond some finite time interval.
The term admissible was introduced in [12]. In that paper structural assumptions

were made on f which meant that it was possible under appropriate conditions to
prove both {Un}

∞
n=0 bounded and

∑∞
n=0 ∆tn unbounded for certain embedded pairs.
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However, in this paper we make no structural assumptions on f and so will be able
to show only that one of {Un}

∞
n=0 or

∑∞
n=0 ∆tn is unbounded.

The results in this section generalize straightforwardly to implicit Runge–Kutta
methods.

We require the following notation. Let

A = max
i

i−1∑

j=1

|aij | and B =

s∑

i=1

|bi|.

Note that consistency of the Runge–Kutta method implies that B ≥ 1. We also
require the following lemma.

Lemma 4.1. If f is Lipschitz on B ⊆ R
m with Lipschitz constant L, Un ∈ B,

and ∆tn < 2/L(2A + B), then any solution of (2.1)–(2.2) which satisfies Yi ∈ B for
all i also satisfies

∥∥∥∥f(Yi) −
1

2
f(Un) −

1

2
f(Un+1)

∥∥∥∥ ≤
1

2

[
L(2A + B)∆tn

2 − L(2A + B)∆tn

]
‖f(Un) + f(Un+1)‖(4.1)

for all i = 1, . . . , s.
Proof. Using the Lipschitz continuity and the triangle inequality
∥∥∥∥f(Yi) −

1

2
f(Un) −

1

2
f(Un+1)

∥∥∥∥

≤
1

2
L‖Yi − Un‖ −

1

2
L‖Yi − Un+1‖

=
1

2
L

∥∥∥∥∥∥
∆tn

i−1∑

j=1

aijf(Yj)

∥∥∥∥∥∥
+

1

2
L

∥∥∥∥∥∥
∆tn

i−1∑

j=1

aijf(Yj) − ∆tn

s∑

j=1

bjf(Yj)

∥∥∥∥∥∥

≤
1

2
∆tnL

∥∥∥∥∥∥

s∑

j=1

bjf(Yj)

∥∥∥∥∥∥
+ ∆tnL

∥∥∥∥∥∥

i−1∑

j=1

aijf(Yj)

∥∥∥∥∥∥

≤
1

2
∆tnL(2A + B)M,(4.2)

where M = maxi ‖f(Yi)‖. Using the triangle inequality and (4.2) gives

‖f(Yi)‖ ≤

∥∥∥∥f(Yi) −
1

2
f(Un) −

1

2
f(Un+1)

∥∥∥∥ +
1

2
‖f(Un) + f(Un+1)‖

≤
1

2
∆tnL(2A + B)M +

1

2
‖f(Un) + f(Un+1)‖

and hence

M ≤
1

2
∆tnL(2A + B)M +

1

2
‖f(Un) + f(Un+1)‖.

This rearranges to

M ≤
1

2 − L(2A + B)∆tn
‖f(Un) + f(Un+1)‖

and the result follows from (4.2).
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We continue by proving a result in the case where f is globally Lipschitz, and
then consider the more general case of f locally Lipschitz. (Recall that f is said to be
locally Lipschitz if f satisfies a Lipschitz condition on every bounded subset B ⊂ R

m,
where the Lipschitz constant may depend upon B [9, 13].) We do this because the
essence of the proofs of the two results is the same, but the globally Lipschitz case is
easier and clearer to follow since it does not require some technicalities that arise in
the locally Lipschitz case.

Theorem 4.2. Let f : R
m → R

m be globally Lipschitz. Then the solution
sequence of the ERK formula (2.1)–(2.2) satisfies the PS condition (3.2) at every step
if

∆tn ≤
2ϕ

L(2A + B)(B + ϕ)
.(4.3)

Proof. We have
∥∥∥∥Un+1 − Un −

1

2
∆tn(f(Un+1) + f(Un))

∥∥∥∥

= ∆tn

∥∥∥∥∥
s∑

i=1

bi(f(Yi) −
1

2
f(Un+1) −

1

2
f(Un))

∥∥∥∥∥

≤ ∆tnB max
1≤i≤s

∥∥∥∥f(Yi) −
1

2
f(Un+1) −

1

2
f(Un)

∥∥∥∥ .

Since ϕ ∈ (0, 1) and B ≥ 1, (4.3) implies that ∆tn < 2/L(2A + B) and by Lemma 4.1
∥∥∥∥Un+1 − Un −

1

2
∆tn(f(Un+1) + f(Un))

∥∥∥∥

≤
1

2
∆tn

[
L(2A + B)B∆tn

2 − L(2A + B)∆tn

]
‖f(Un) + f(Un+1)‖.

Now, (4.3) implies

L(2A + B)B∆tn
2 − L(2A + B)∆tn

≤ ϕ

and condition (3.2) holds, as required.
The above theorem shows that when f is globally Lipschitz, for any Un we can

find ∆tn and hence Un+1 such that the PS error control is satisfied. Thus we can
always find a solution sequence {Un}

∞
n=0 when f is globally Lipschitz. Moreover,

(4.3) shows that we can choose the solution sequence so that {∆tn}
∞
n=0 is uniformly

bounded away from zero, and hence that
∑∞

n=0 ∆tn is unbounded.
We now consider the case where f is locally Lipschitz. We require the following

lemma.
Lemma 4.3. Let f be Lipschitz with Lipschitz constant L on N (B, ε), where

B ⊂ R
m, ε > 0, and

N (B, ε) =
{
x ∈ R

m : dist(x,B) < ε
}
,(4.4)

and let

M = sup
u∈N (B,ε)

‖f(u)‖ < ∞.(4.5)
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If

∆tn < min

(
ε

AM
,

1

LA

)
,(4.6)

then for any Un ∈ B the solution of (2.1)–(2.2) satisfies

Yi ∈ B(Un, ε) ⊂ N (B, ε) for all i = 1, . . . , s,

where

B(Un, ε) = {x ∈ R
m : ‖x− Un‖ < ε}.

Proof. See Lemma 4.2.4 in [13].
Theorem 4.4. Suppose f : R

m → R
m is locally Lipschitz. Then for any bounded

set B and any Un ∈ B ⊂ R
m there exists ∆̂t = ∆̂t(B) > 0 such that Un+1 in the

ERK formula (2.1)–(2.2) satisfies the PS condition (3.2) for all ∆t ∈ (0, ∆̂t(B)).
Proof. Choose ε > 0 and define N (B, ε) and M by (4.4) and (4.5), and let L be

a Lipschitz constant for f on N (B, ε). Define

∆̂t = min

(
ε

AM
,

2ϕ

L(2A + B)(B + ϕ)
,

ε

BM

)

and note that ϕ ∈ (0, 1) and B ≥ 1 imply that

2ϕ

L(2A + B)(B + ϕ)
<

1

LA
.

Thus Lemma 4.3 shows that Yi ∈ B(Un, ε) for all i. Since ∆t < ε/BM , we also
conclude that Un+1 ∈ B(Un, ε).

Now follow the proof of Theorem 4.2, applying (4.1) from Lemma 4.1 with B =
B(Un, ε) to derive the result.

Theorem 4.4 shows that if U0 is in some bounded set B, then by choosing 0 <
∆ti < ∆̂t(B) for all i ≥ n either the PS condition is satisfied for all ti ≥ tn or the
solution sequence {Ui}i≥n leaves B. Hence, it is possible to choose a stepsize sequence
subject to PS control that has either

∑∞
i=0 ∆ti or {Ui}

∞
i=0 unbounded.

5. Prevention of spuriosity. We now show that PS control, like the fixed-
stepsize trapezoidal rule, does not allow either spurious fixed points or period two
solutions. Note that the following result is independent of the method used to generate
the solution sequence {Un}

∞
n=0 or the stepsize sequence {∆tn}

∞
n=0. We assume without

further comment that ∆tn > 0 for all n.
Theorem 5.1. An algorithm that satisfies the PS constraint (3.2) does not

admit spurious fixed points or period two solutions.
Proof. If Un+1 = Un = U∗ in (3.2), then

(1 − ϕ)∆tn‖f(U∗)‖ ≤ 0,

from which it follows that f(U∗) = 0 as required.
Now, suppose that U2n = u, U2n+1 = v for all n ≥ 0, with u 6= v. Consider two

successive steps. From (3.2) we must have

‖2(v − u) − ∆tn(f(v) + f(u))‖ ≤ ϕ∆tn‖f(v) + f(u)‖,(5.1)

‖2(u− v) − ∆tn+1(f(v) + f(u))‖ ≤ ϕ∆tn+1‖f(v) + f(u)‖.(5.2)
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From the triangle inequality,

(∆tn + ∆tn+1)‖f(u) + f(v)‖ ≤ ‖2(v − u) − ∆tn(f(v) + f(u))‖

+ ‖2(u− v) − ∆tn+1(f(v) + f(u))‖.

Hence, using (5.1)–(5.2)

(∆tn + ∆tn+1)‖f(u) + f(v)‖ ≤ ϕ(∆tn + ∆tn+1)‖f(u) + f(v)‖.(5.3)

Since ϕ ∈ (0, 1), (5.3) implies f(u) = −f(v). Hence, from (5.1), we have ‖2(v −
u)‖ ≤ 0. So u = v, giving the required contradiction.

6. Linear stability analysis. When the linear, scalar test problem

ut = λu,(6.1)

where λ ∈ R or λ ∈ C, is solved with an adaptive ERK method (2.1)–(2.3), the
numerical solution advances according to

Un+1 = R(zn)Un,(6.2)

where zn = λ∆tn. Here R(z) is the linear stability polynomial of the Runge–Kutta
formula (2.1)–(2.2) with ∆tn determined by the particular time-stepping strategy in
use. We recall that the (linear) stability region, S, for the ERK formula is defined as

S := {z ∈ C : |R(z)| < 1}.

In the next two subsections we investigate the behavior of adaptive ERK methods
under PS error control when applied to this test problem for λ ∈ R and λ ∈ C,
respectively. In the third subsection we discuss the relevance of the analysis for more
general linear systems.

Note that with (6.2) the PS condition (3.2) becomes

∣∣∣∣R(zn) − 1 −
1

2
zn(R(zn) + 1)

∣∣∣∣ ≤
1

2
ϕ|zn(R(zn) + 1)|.(6.3)

6.1. Real λ. We begin by showing that the error control always preserves the
stability of the fixed point when λ is real.

Lemma 6.1. Suppose the ERK formula (2.1)–(2.2) is applied to the linear test
problem (6.1) with λ ∈ R, and suppose that the PS condition (3.2) is satisfied.

(i) If λ < 0, then |R(λ∆tn)| < 1.
(ii) If λ > 0, then |R(λ∆tn)| > 1.
Proof. Suppose λ < 0 and |R(zn)| ≥ 1. Then since zn < 0, by inspection it

follows that R(zn) − 1 and −zn(R(zn) + 1) have the same sign. Therefore

∣∣∣∣R(zn) − 1 −
1

2
zn(R(zn) + 1)

∣∣∣∣ = |R(zn) − 1| +
1

2
|zn(R(zn) + 1)|

>
1

2
ϕ|zn(R(zn) + 1)|,

which contradicts (6.3) and thus proves (i). A similar proof works for (ii).
Lemma 6.1 shows that the numerical and exact solutions both decay in modulus

if λ < 0 and both grow in modulus if λ > 0. We would like to show further that the
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numerical approximation to the solution of (6.1) satisfies Un → 0 as n → ∞ if λ < 0
and |Un| → ∞ as n → ∞ if λ > 0. To do this we must bound |R(zn)| strictly away
from 1. This motivates the next theorem.

We denote the stability function of the trapezoidal rule by RTR(z); that is,

RTR(z) =
2 + z

2 − z
.(6.4)

Note that |RTR(z)| < 1 for z < 0 ∈ R and |RTR(z)| > 1 for z > 0 ∈ R. We now
show how the stability function R(zn) of an ERK formula subject to PS control can
be bounded in terms of RTR(z).

Theorem 6.2. Suppose the ERK formula (2.1)–(2.2) is applied to the linear test
problem (6.1) with λ ∈ R, and suppose that the PS condition (3.2) is satisfied.

(i) If λ < 0, then

−1 < RTR((1 + ϕ)λ∆tn) ≤ R(λ∆tn) ≤ RTR((1 − ϕ)λ∆tn) < 1.

(ii) If λ > 0, then

1 < RTR((1 − ϕ)λ∆tn) ≤ R(λ∆tn) ≤ RTR((1 + ϕ)λ∆tn) for λ∆tn < 2
1+ϕ ,

1 < RTR((1 − ϕ)λ∆tn) ≤ R(λ∆tn) for λ∆tn = 2
1+ϕ ,

R(λ∆tn) ≤ RTR((1 − ϕ)λ∆tn) < −1 for λ∆tn = 2
1−ϕ ,

RTR((1 − ϕ)λ∆tn) ≤ R(λ∆tn) ≤ RTR((1 + ϕ)λ∆tn) < −1 for λ∆tn > 2
1−ϕ ,

and for each λ∆tn ∈ ( 2
1+ϕ ,

2
1−ϕ ) either

R(λ∆tn) ≤ RTR((1 + ϕ)λ∆tn) < −1 or 1 < RTR((1 − ϕ)λ∆tn) ≤ R(λ∆tn).

Proof. Let zn = λ∆tn. First consider case (i), where λ < 0. The extreme right-
and left-hand inequalities follow from the stability properties of the trapezoidal rule.

Suppose that the second inequality fails so that RTR((1 + ϕ)zn) > R(zn). Using
(6.4) and rearranging (noting that 2 − (1 + ϕ)zn > 0), we find

R(zn) − 1 −
1

2
(R(zn) + 1)zn <

1

2
ϕzn(R(zn) + 1).

Now, by Lemma 6.1(i), R(zn) + 1 > 0 and so the term on the right-hand side is
negative. Therefore

∣∣∣∣R(zn) − 1 −
1

2
(R(zn) + 1)zn

∣∣∣∣ >
1

2
ϕ|zn(R(zn) + 1)|,

which contradicts (6.3); thus the second inequality holds. The proof of the third
inequality is similar.

Now consider case (ii), where λ > 0. Lemma 6.1(ii) shows that either R(zn) > 1
or R(zn) < −1. Suppose that R(zn) > 1. Then we claim that

R(zn)[2 − (1 − ϕ)zn] ≥ 2 + (1 − ϕ)zn.(6.5)

To establish (6.5), suppose that it is false and rearrange to obtain

2(R(zn) − 1) − zn(R(zn) + 1) < −ϕzn(R(zn) + 1).
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But this implies that

|2(R(zn) − 1) − zn(R(zn) + 1)| > ϕ|zn(R(zn) + 1)|,

which contradicts (6.3), and so (6.5) must hold when R(zn) > 1. Since the right-hand
side of (6.5) is positive, we also require the left-hand side to be positive, which implies
that

R(zn) > 1 only if zn <
2

1 − ϕ
.

Now, dividing (6.5) by 2 − (1 − ϕ)zn gives

R(zn) ≥ RTR((1 − ϕ)zn).

Now suppose that R(zn) < −1. Then we claim that

R(zn)[2 − (1 + ϕ)zn] ≥ 2 + (1 + ϕ)zn.(6.6)

To establish (6.6), suppose that it is false and rearrange to obtain

2(R(zn) − 1) − zn(R(zn) + 1) < ϕzn(R(zn) + 1).

But, since R(zn) + 1 < 0, this implies that

|2(R(zn) − 1) − zn(R(zn) + 1)| > ϕ|zn(R(zn) + 1)|,

which contradicts (6.3), and so (6.6) must hold when R(zn) < −1. Since the right-
hand side of (6.6) is positive, we also require the left-hand side to be positive, which
implies that

R(zn) < −1 only if zn >
2

1 + ϕ
.

Now dividing (6.6) by 2 − (1 + ϕ)zn implies that

R(zn) ≤ RTR((1 + ϕ)zn).

The remaining inequalities are similar and straightforward to establish.
Note that Theorem 6.2 is sharp in the limit ϕ → 0, since setting ϕ = 0 in (3.2)

forces the numerical solution to match a solution from the trapezoidal rule.
Theorem 4.2 shows that on the linear test problem it is possible to satisfy the PS

constraint with a stepsize sequence that is strictly bounded away from zero. Hence,
if the stepsizes are also bounded above, then for any 0 < ϕ < 1 it follows from
Theorem 6.2 that Un → 0 as n → ∞ if λ < 0 and Un → ∞ as n → ∞ if λ > 0.

6.2. Complex λ. We now indicate how far the results of the previous subsection
can be extended to the case of complex λ in (6.1).

First we note that Lemma 6.1 does not carry through to complex λ. To see this,
note that for a consistent method the left-hand side of (6.3) is of order O(zk) with
k ≥ 2, whilst the right-hand side is of order O(z). Thus there will be a neighborhood
N of the origin such that for all zn ∈ N the condition (6.3) is satisfied (if this were not
true we would also have a contradiction to Theorem 4.2). Generally, the boundary
of the stability region intersects the imaginary axis in this neighborhood only at the
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Fig. 6.1. Euler’s method: Boundaries of stability region and PS acceptable region for ϕ = 0.1,
0.2, . . . , 0.8.

origin. Hence, there must exist points close to the origin and the imaginary axis which
satisfy the error control (3.2) but for which either Re(λ) < 0 and |R(λ∆tn)| > 1 or
Re(λ) > 0 and |R(λ∆tn)| < 1.

Example 6.3. Consider Euler’s method subject to PS control. The stability
polynomial for Euler’s method is R(z) = 1 + z, for which (6.3) reduces to |zn| ≤
ϕ|2 + zn|. Letting zn = x + iy, this condition simplifies to

(
x−

2ϕ2

1 − ϕ2

)2

+ y2 ≤
4ϕ2

(1 − ϕ2)2
.

Thus the acceptable region Q(ϕ) of points that satisfy the PS condition (3.2) is given
by the closed disc

Q(ϕ) =

{
z :

∣∣∣∣z −
2ϕ2

1 − ϕ2

∣∣∣∣ ≤
2ϕ

1 − ϕ2

}
.(6.7)

The boundaries of the stability region S := {z : |z + 1| < 1} and acceptable region
(6.7) for ϕ = .1, .2, .3, . . . . , .8 are shown in Figure 6.1. (Note that as ϕ increases the
region Q(ϕ) becomes larger.)

Note that for this method, if Re(λ) > 0, then |R(zn)| > 1 (irrespective of the con-
dition (3.2)). However, in line with the remarks before this example, both |R(zn)| > 1
and |R(zn)| < 1 can occur when (3.2) is satisfied with Re(λ) < 0.

The previous example suggests the following generalization of A(α)-stability [11]
to variable time-stepping methods.

Definition 6.4. An ERK formula subject to PS control is said to be A(α)-stable
if

Sα ∩Q ⊆ S,
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where Sα = {z : | arg(−z)| ≤ α}, S is the stability region of the formula, and Q is the
PS acceptable region; that is, Q is the set of zn ∈ C for which (6.3) holds.

Theorem 6.5. Euler’s method subject to PS control is A(α)-stable with α =
tan−1(1/ϕ).

Proof. Using (6.7), a straightforward calculation shows that ∂S and ∂Q intersect
at z± = (−2ϕ2/(1 + ϕ2) ± i2ϕ/(1 + ϕ2) with arg(−z±) = tan−1(±1/ϕ).

We now briefly discuss how these results generalize to other ERK methods. We
note first that it follows trivially from (6.3) that the acceptable region Q(ϕ) is mono-
tonically increasing; that is, Q(ϕ1) ⊆ Q(ϕ2) if ϕ1 ≤ ϕ2. In order to gain some insight,
we investigate Q(0). From (6.3), Q(0) is given by solving

R(z) − 1 −
1

2
z(R(z) + 1) = 0.(6.8)

Now for an explicit s-stage method (6.8) is a polynomial of degree s+1 and hence has
s+1 roots. If the method is of at least second order, then R(z) = 1+z+z2/2+O(z3)
and three of these roots will be at the origin. The location of the other s − 2 roots
influences the acceptable region. By (3.2), the solutions of (6.8) correspond to values
of z for which the method agrees with the trapezoidal rule, so it follows that

if ξ is a root of (6.8), then





Re(ξ) < 0 ⇒ ξ ∈ int(S),
Re(ξ) = 0 ⇒ ξ ∈ ∂S,
Re(ξ) > 0 ⇒ ξ 6∈ S.

(6.9)

In Figures 6.2 and 6.3 we present the acceptable regions Q(ϕ) along with the
stability regions for two popular ERK formulas, namely the fourth- and fifth-order
pairs of Fehlberg and Dormand and Prince (see [4, pp. 177–178]), which we refer to
as FEHL4(5) and DOPRI5(4), respectively. Note that FEHL4(5) is normally used in
nonextrapolation mode (so the stability function of the fourth-order formula is used),
whilst DOPRI5(4) is designed to be applied in extrapolation mode (and thus stability
function of the fifth-order method is used to advance the solution). We see from the
figures that, for ϕ ≈ 1, both methods admit points z with Re(z) ≈ −2.5 such that
z ∈ Q(ϕ) but z 6∈ S. This implies that that for these methods there are points away
from the imaginary axis such that condition (6.3) is satisfied, but stability of the fixed
point is lost; and so the qualitative dynamics are not preserved. To prevent this, we
must choose a smaller value for ϕ.

By inspecting Figure 6.2 we see that for ϕ ≤ 0.9 the FEHL4(5) formula subject
to PS control is A(α)-stable in the sense of Definition 6.4 for significant values of α.
From Figure 6.3 we see that for ϕ ≤ 0.7 the DOPRI5(4) formula is A(α)-stable for
α ≈ π/2.

For FEHL4(5) the three nonzero roots of (6.8) are contained in S. However, two
of these roots are very close to the imaginary axis and hence, by (6.9) and continuity,
these roots are close to ∂S. This results in a significant region of points z such that
Re(z) < 0, z ∈ Q(ϕ) but z 6∈ S, even for very small values of ϕ. In such cases the
stability of the fixed point is lost. The DOPRI5(4) formula has its four nonzero roots
of (6.8) further from the imaginary axis, and hence this difficulty does not arise.

6.3. Linear systems. By the Hartman–Grobman theorem [3] the behavior of a
dynamical system in the neighborhood of a hyperbolic fixed point u∗ is governed by
the behavior of the linearized system

ut = Au,(6.10)
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Fig. 6.2. FEHL4(5): Boundaries of stability region (dotted line) and PS acceptable region for
ϕ = 0.1, 0.2, . . . , 0.9, 1.0.

where A is the Jacobian of f evaluated at u∗. It can be shown that the real scalar
analysis in subsection 6.1 is directly relevant to the case where the stability matrix
R(A∆tn) has a real dominant eigenvalue and the complex scalar analysis in subsec-
tion 6.2 is directly relevant to the case where R(A∆tn) has a complex conjugate pair
of dominant eigenvalues. Details can be found in [14].

7. Algorithm. In the previous sections we gave theoretical results about the
effect of PS control. There remains the question of how to incorporate the constraints
into a practical variable time-stepping algorithm. In particular, we must say how to
choose a new stepsize when the PS constraint is violated (or is close to being violated).
We now outline a strategy that has been arrrived at after extensive numerical testing.
Our aim is to show that PS control can be added to a traditional time-stepping
algorithm with few changes to the code.

It is convenient to use the following common representation of an ERK method:

ki = f


Un + ∆tn

i−1∑

j=1

aijkj


 , 1 ≤ i ≤ s,(7.1)

Un+1 = Un + ∆tn

s∑

i=1

biki,(7.2)

with

estn+1 =

∥∥∥∥∥
s∑

i=1

eiki

∥∥∥∥∥(7.3)
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Fig. 6.3. DOPRI5(4): Boundaries of stability region (dotted line) and PS acceptable region for
ϕ = 0.1, 0.2, . . . , 0.9, 1.0.

for EPUS control and

estn+1 = ∆tn

∥∥∥∥∥
s∑

i=1

eiki

∥∥∥∥∥(7.4)

for EPS control. This is identical to (2.1)–(2.5), noting that ki = f(Yi), for i = 1 . . . s,

and setting ei = bi − b̃i.
Some care is needed when implementing PS control in finite precision arithmetic.

Although Theorem 4.4 shows that there is always an acceptable stepsize, since both
the right- and left-hand sides of (3.2) tend to zero as ∆t → 0, in practice rounding
errors could cause the rejection of what is otherwise an acceptable stepsize. To avoid
unnecessary cancellation, we implement (3.2) in the equivalent form

∥∥∥∥∥

(
b1 −

1

2

)
f(Un) −

1

2
f(Un+1) +

s∑

i=2

bif(Yi)

∥∥∥∥∥ ≤
1

2
ϕ‖f(Un+1) + f(Un)‖.(7.5)

The basic algorithm for solving (1.1) over 0 ≤ t ≤ T can be summarized as
follows.

Algorithm 7.1 (PS).
set n = 0, U0 = u(0), t0 = 0, k1 = f(U0) and choose ∆t0
while tn < T

compute ki, i = 2, . . . s from (7.1)
Unew = Un + ∆tn

∑s
i=1 biki

fnew = f(Unew)
estn+1 = ‖

∑s
i=1 eiki‖ for EPS

estn+1 = ∆tn‖
∑s

i=1 eiki‖ for EPUS
Tl = ‖(b1 −

1
2 )k1 −

1
2fnew +

∑s
i=2 biki‖
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Tr = 1
2‖fnew + k1‖

if estn+1 ≤ τ and Tl ≤ ϕTr

Un+1 = Unew

k1 = fnew

tn+1 = tn + ∆tn
compute ∆tnew and set ∆tn+1 = ∆tnew

increment n to n + 1
else

compute ∆tnew and set ∆tn = ∆tnew

end
end
Next, we elaborate on the strategy for computing ∆tnew. It is common to include

a maximum stepsize ratio, α > 1, in a code. A typical choice is α = 5. Consecutive
stepsizes must satisfy ∆tn+1 ≤ α∆tn; this restricts the relative increase of the stepsize
over each step. It is also common to impose a maximum stepsize, ∆tmax, so that
∆tn ≤ ∆tmax for all n. Thus, using the standard formula (2.6), we calculate

∆test = θ

(
τ

estn+1

)1/q

∆tn(7.6)

and set

∆tnew = min{∆test, α∆tn,∆tmax, T − tn}.(7.7)

In our new stepsize selection strategy, we allow α to change on each step in order
to take account of the extra constraint (7.5). Recall that our overall aim is to depart
from the stepsize that would be predicted by the local error based formula only when
the phase space error is significant. Hence, letting r := Tl/Tr, we set α = α1 if
r < βmin, where α1 is the maximum stepsize ratio used by the traditional strategy
and βmin is a small parameter, such as 0.01. In this way, we expect the new strategy
to be invisible away from fixed points.

If the constraint r ≤ ϕ is violated, then we allow the stepsize to be halved; that
is, we set α = .5. In our numerical tests, we found that it is important to take action
when r is close to ϕ. Hence, we introduce a parameter βmax (say, βmax = 0.1) such
that α decreases linearly from α1 to 1 as r inceases from βmin to βmax and α decreases
linearly from 1 to .5 as r inceases from βmax to ϕ.

Overall, this defines α = α(r) as follows:

α(r) =





α1, r ≤ βmin,

α1(βmax−r)+(r−βmin)
βmax−βmin

, βmin ≤ r ≤ βmax,

(ϕ−r)+.5(r−βmax)
ϕ−βmax

, βmax ≤ r ≤ ϕ,

.5, ϕ ≤ r.

With this dynamic choice of α, (7.7) defines the new stepsize selection process.
One more point must be made about Algorithm 7.1. In the case where the

numerical solution is driven to a fixed point, both Tl and Tr tend to zero. Hence, to
avoid division by zero errors, we computed r as follows:
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Fig. 8.1. ode23 around a scalar stable fixed point.

if Tr > δ
r := Tl/Tr

else
if Tl ≤ δ

r := βmax

else
r := ϕ

end
end

Here, we force a decrease in the stepsize if Tr is small but Tl is not, and we keep the
same stepsize if both Tr and Tl are small.

Finally, we mention that choosing a trial value for the initial time step, ∆t0, is
a separate practical issue that does not significantly impact our algorithm. See [4,
p. 169] or [11, p. 377] for details about initial stepsize selection.

8. Numerical tests. In this section we briefly describe some numerical experi-
ments with PS control. Extensive testing has been done on other problems, and the
conclusions shown here have been found to be valid in general.

We present results for the ode23 code from version 4 of Matlab [10], which uses
a third-order ERK formula and a secondary formula of order two. The default tol-
erance of τ = 10−3 was used. We compare the unmodified form of the code with an
alternative where PS control has been implemented, as described in section 7. We
used parameter values ϕ = 0.7, βmin = 0.01, βmax = 0.1, α1 = 5, and δ = 10−15, and
measured vectors in the infinity norm.

We first consider the scalar linear test problem (6.1) with λ = −1 for 0 ≤ t ≤ 100.
The upper picture in Figure 8.1 shows the absolute value of the numerical solution for
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Fig. 8.2. ode23 around a stable fixed point with nonreal eigenvalues.

the unmodified method (marked with *) and for the method with PS control (marked
with o). It is clear that the unmodified solution remains at O(τ), whilst the PS
solution is driven to zero. The stepsizes used in the two cases are shown in the lower
picture of Figure 8.1. For the PS method, the stepsize settles to the value ∆t ≈ 1.43.

Figure 2.1 in section 2 illustrates similar behavior. On the system (2.8), the un-
modified method leaves O(τ) oscillations in the direction of the dominant eigenvector
[1, 0]T . These are not present with PS control.

Next we illustrate the behavior around a stable fixed point with nonreal eigen-
values. We use the problem ut = Au, where A = QTBQ, with Q a full orthogonal
matrix and

B =




−10 5 0 0
−5 −10 0 0
0 0 −2 1
0 0 −1 −2


 .

(More precisely, Q was computed from [Q R] = qr(magic(4)) in Matlab.) Note that
A has eigenvalues −10 ± 5i and −2 ± i. We took y(0) = [1, 1, 1, 1]T and 0 ≤ t ≤ 30.
Figure 8.2 gives the solution norm and stepsizes, using the same key as Figure 8.1.
As on the scalar problem, PS control has the effect of driving the solution towards
equilibrium.

We also implemented PS control with the DOPRI5(4) pair. Aves, Griffiths, and
Higham [1] showed that given any tolerance, it is possible to construct a smooth
function f in (1.1) for which the pair with traditional error control admits a stable
spurious fixed point. Our tests confirmed that PS control avoids these solutions, in
line with Theorem 5.1.

Finally, Figure 2.2 in section 2 illustrates a saddle point. For this example we took
the RK1(2) method consisting of the forward Euler method with second-order EPUS



2294 D. J. HIGHAM, A. R. HUMPHRIES, AND R. J. WAIN

control in nonextrapolation mode with τ = 10−2. For PS control we took ϕ = 0.1,
βmin = 0.004, βmax = 0.04, and the other values as before. In a forthcoming paper we
will show how the accuracy of the numerical solution depends on ϕ and that the PS
control method gives more accurate solutions for much less work than the unmodified
method. PS control always outperforms the unmodified method. However, for stiff
saddle point problems, although oscillations never occur, PS control as presented in
this paper can give rise to solutions that cross the separatrix; further details and a
modification to PS control to prevent this will appear in the forthcoming paper.

9. Summary. We have introduced a new error control that was motivated from
a geometrical, or phase space, viewpoint. The new control does not influence the
numerical solution in most regions of phase space but improves the performance near
fixed points. More precisely, the new control is designed to affect positively the
linear stability properties around true fixed points. This enhancement is particularly
relevant when the numerical solution is to be driven to a stable fixed point and,
more generally, when computations take place around (stable or unstable) invariant
manifolds. The new control was also proved to prevent spurious fixed points and
period two solutions that might otherwise be allowed by the adaptive algorithm.

The PS constraint analyzed here was motivated by a residual test based on the
trapezoidal rule. There are many other geometrically-based controls that could be
considered, for example, by using residuals from other implicit formulas. Analyzing
the benefits of such controls is clearly of interest.
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