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Abstract. We study boundary value differential-difference equations where the difference terms may contain
both advances and delays. Special attention is paid to connecting orbits, in particular to the modeling of the tails
after truncation to a finite interval, and we reformulate these problems as functional differential equations over a
bounded domain. Connecting orbits are computed for several such problems including discrete Nagumo equations,
an Ising model and Frenkel-Kontorova type equations. We describe the collocation boundary value problem code
used to compute these solutions, and the numerical analysis issues which arise, including linear algebra, boundary
functions and conditions, and convergence theory for the collocation approximation on finite intervals.
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1. Introduction. Nonlinear spatially discrete diffusion equations occur as models in many
areas of science and engineering. When the underlying mathematical models contain difference
terms or delays as well as derivative terms, the resulting differential-difference equations present
challenging analytical and computational problems. We demonstrate how functional differential
boundary value problems with advances and delays arise from such models, and describe a general
approach for the numerical computation of solutions. Solutions are approximated for several such
problems, and the numerical issues arising in their computation are discussed.

Biology, materials science, and solid state physics are three fields in which accurate first prin-
ciple mathematical models possess difference (both delayed and advanced) terms. In biology (in
particular, in physiology) there is the bidomain model for cardiac tissue (defibrillation), ionic con-
ductance in motor nerves of vertebrates (saltatory conduction), tissue filtration, gas exchange in
lungs, and calcium dynamics. Material science applications include interface motion in crystalline
materials (crystal growth) and grain boundary movement in thin films where spatially discrete
diffusion operators allow description of the material being modeled in terms of its underlying crys-
talline lattice. In solid state physics applications include dislocation in a crystal, adsorbate layers
on a crystal surface, ionic conductors, glassy materials, charge density wave transport, chains of
coupled Josephson junctions, and sliding friction. In all of these fields the physical system, and the
corresponding differential model with delay terms, exhibit propagation failure (crystallographic
pinning, a mobility threshold) and directional dependence (lattice anisotropy) in a “natural” way.
These phenomena do not occur “naturally” in the models without difference terms commonly used
for the above applications, and are often added to such local models in an ‘ad hoc’ manner. The
reason discrete phenomena are modeled with continuous models is the lack of analytical techniques
and numerical solvers for differential equations with both forward and backward delays.

We consider differential-difference boundary value problems. While the applications above are
both time (continuous) and space (discrete) dependent, traveling wave solutions are a fundamental
class of solutions. Traveling wave solutions for these models satisfy ordinary differential equations
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with advance and delay terms. Thus we consider systems of d mixed type delay equations (see
[34], [35], and [29]) of the form

{

τID(mI)uI = FI(x,u,y[u], ū, ȳ[ū]), I = 1, . . . , d, x ∈ (T−, T+),
0 = GJ (ζJ ,y[u]), J = 1, . . . ,m∗,

(1.1)

where for I = 1, . . . , d, x ∈ (T−, T+),

∗ τI(x) : IR→ IR+ ∪ {0}, uI(x) : IR→ IR,

∗ mI ∈ ZZ+ is the order of the Ith delay equation,

∗ m∗ is the sum of the orders of the delay equations, m∗ := m1 +m2 + . . .+md,

∗ Dlu(x) stands for l-fold differentiation of u with respect to x,

∗ u(x) = [u1(x), u2(x), . . . , ud(x)]
T ,

∗ y[u(x)] = [u1(x),Du1(x), . . . ,D(m1−1)u1(x), . . . , ud(x),Dud(x), . . . ,D(md−1)ud(x)],

∗ ū(x) = [ū1(x), ū2(x), . . . , ūd(x)]
T ,

∗ ūI(x) = [uI(x+s1(x)), . . . , uI(x+sn(x))]
T , where {sj(x)}nj=1 is a finite collection of delays,

possibly dependent on x,

∗ ȳ[ū(x)] = [ū1(x),Dū1(x), . . . ,D(m1)ū1(x), . . . , ūd(x), . . . ,D(md)ūd(x)], and

∗ the boundary points satisfy T− 6 ζ1 6 . . . 6 ζm∗ 6 T+.

There is not a well established general existence and uniqueness theory of traveling waves for
the class of problems we are interested in. Initial work was done by Rustichini in [34] and [35].
Mallet-Paret [29] has set forth a linear Fredholm theory which, together with essentially the implicit
function theory, establishes [30] an existence theory for a class of differential-delay equations with
delays of mixed type (both forward and backward delays).

Previous work finding explicit analytically obtained traveling wave solutions include [12] where
traveling wave solutions of a two-dimensional spatially discrete reaction-diffusion system with an
idealized, piecewise linear, nonlinear term were studied using Fourier series techniques to determine
an integral form of the plane wave solutions. This integral solution was used to relate the wave
speed c to a detuning parameter which allowed the dependence of the behavior on the detuning
parameter and the orientation of the wave to be studied. These ideas were extended to a general
discrete-continuous reaction-diffusion wave equation in [18] and to a problem with variable but
spatially periodic diffusion in [19].

In [18], [20] numerical techniques were introduced to find traveling waves solutions for

αu̇(η, t) + βü(η, t) = γ∆u(η, t) + LDu(η, t)− f(u(η, t)),(1.2)

where u : IRN × IR → IR, α, β, γ > 0, f is a bi-stable nonlinearity, ∆ represents the continuous
Laplacian operator, and LD is a discrete Laplacian operator of the form

LDu(η, t) =
N
∑

k=1

εk[u(η + ek, t) + u(η − ek, t)− 2u(η, t)],

where εk > 0 and ek is the unit vector whose kth element equals 1. Traveling wave solutions of
(1.2) of the form

u(η, t) = ϕ(η · σ − ct), ϕ : IR→ IR,(1.3)

were considered, where η · σ is the Euclidean dot product of the position vector η and the unit
vector σ normal to the wavefront which indicates the direction of the traveling wave with respect
to the lattice, and c ∈ IR is the unknown wave speed.
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Substituting the traveling wave ansatz (1.3) into (1.2), results in

−cαϕ′(ξ)− (γ − c2β)ϕ′′(ξ) = LTϕ(ξ)− f(ϕ(ξ)), ξ ∈ IR,(1.4)

where ξ = η · σ − ct ∈ IR, and

LTϕ(ξ) =

N
∑

k=1

εk[ϕ(ξ + ek · σ)− 2ϕ(ξ) + ϕ(ξ − ek · σ)].(1.5)

Note that equation (1.4) is a delay differential equation (DDE) of mixed type posed on an infinite
interval, with both delayed and advanced terms contained in (1.5) as a result of applying the
traveling wave ansatz to the discrete Laplacian operator.

In [18] equation (1.4) with (1.5) are solved on a truncated interval ξ ∈ [−T, T ], using asymptotic
boundary conditions (see [28]). An ordinary differential boundary value problem solver was used,
together with path following techniques to find solutions in different regions of the parameter
space. The main difficulty with this approach is the delayed and advanced terms in (1.5). The
simple approach, of treating these terms as source terms in a fixed point iteration was adopted in
[18], resulting in an iterative scheme. The methods used in [18] become increasingly inefficient as
(γ − c2β)→ 0 and are non-convergent for (γ − c2β) = 0 in (1.4). Thus they could not be used for
computing traveling wave solutions of the Nagumo equation obtained by setting β = γ = 0 in (1.4).
In [20] the introduction of a Newton-like iterative scheme allows general bi-stable nonlinearities f
to be considered. The convergence results in [20], based upon the Fredholm theory of Mallet-Paret
[29, 30], provide a theoretical foundation for the Newton-like method considered in this paper.

The approximation of periodic solutions and connecting orbits of delay differential equations
has been considered in [22, 21, 36] where the problems are formulated as boundary value problems
and approximated with collocation methods. In addition, the stability of a class of collocation
methods is analyzed in [21], convergence is shown to correspond to known convergence results for
initial value delay equations in [22], and a technique for approximating connecting orbits for delay
differential equations with stable or unstable manifolds of infinite dimension is developed in [36].

The outline of this paper is as follows. In Section 2 we describe how traveling wave problems in
lattice differential equations result in functional differential equations of the form (1.1). Although
there is now extensive theory for traveling wave solutions of parabolic type partial differential
equations, relatively little is known about traveling wave solutions of spatially discrete analogues,
because of the difficulty of solving (1.1). In Section 3 we will present numerically computed
solutions to problems of the form (1.1) arising from several traveling wave problems. These include
in Section 3.1 a spatially discrete Nagumo equation with piecewise linear nonlinearity, and in
Section 3.2 the spatially discrete Nagumo problem (equation (1.2) with β = γ = 0, α = 1 and cubic
nonlinearity). In Section 3.3 we present a discrete Nagumo equation with a cubic-like nonlinearity
for which we have exact traveling wave solutions, and use this to illustrate and numerically verify
the performance of our code. The numerical results show proportionality of the error with the
requested tolerance. In Sections 3.4-3.5 an Ising model where FI is a fully nonlinear function of u
and its delays, and Frenkel-Kontorova (FK) type equations with periodic boundary conditions are
considered. In Section 4 we describe the main features and implementation of our general-purpose
code, COLMTFDE (COLocation for Mixed Type Functional Differential Equations), a collocation
based boundary value problem solver for the solution of linear and nonlinear differential-difference
equations with both advances and delays, that was used to perform the computations in Section 3.
This code is a member of the COLSYS family [2, 6, 13, 42], but differentiated from other members
of the family by its ability to handle delays, and several other features that we describe. Details
of the collocation formulation are given in Section 4.1, and convergence theory for the collocation
error on finite intervals, due to Bader, is summarized in Section 4.2. We do not provide in this paper
convergence results, theoretically or numerically, for the full discretization, the approximations due
to collocation and the truncation to a finite interval.
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2. Traveling Wave Solutions.

2.1. Connecting Orbits. We will numerically solve parameterized boundary value problems
of the forms

ϕ̇(ξ) = g(ξ, ϕ(ξ), ϕ(ξ + s1), . . . , ϕ(ξ + sn), λ), lim
ξ→−∞

ϕ(ξ) = ϕl, lim
ξ→∞

ϕ(ξ) = ϕr(2.1)

and

ϕ̈(ξ) = g(ξ, ϕ(ξ), ϕ̇(ξ), ϕ(ξ + s1), . . . , ϕ(ξ + sn), λ), lim
ξ→−∞

ϕ(ξ) = ϕl, lim
ξ→∞

ϕ(ξ) = ϕr(2.2)

where ϕ(ξ) : IR→ IR and λ ∈ IRp, whose solution (ϕ0, λ0) is an orbit connecting ϕl and ϕr.
Recall that applying the traveling wave ansatz (1.3) to (1.2) results in (1.4) where LT is defined

by (1.5), although we often take the simpler form

LTϕ(ξ) = L1ϕ(ξ) = (ϕ(ξ + 1)− 2ϕ(ξ) + ϕ(ξ − 1)).(2.3)

With the unknown wave speed c taking the role of λ, equation (1.4) is of the form (2.1) or (2.2),
where to satisfy the boundary conditions we require f(ϕl) = f(ϕr) = 0. We will see such f in
Section 3.

2.2. Fredholm Theory, Existence, and Stability. Consider the variation of the connect-
ing orbit problem (2.1) with respect to ϕ and λ

ψ̇(ξ) = gϕ(ξ, ϕ0(ξ), λ0)ψ(ξ) + gλ(ξ, ϕ0(ξ), λ0)µ, ψ(±∞) = 0,(2.4)

where ϕ0(ξ) = (ϕ0(ξ), ϕ0(ξ + s1), ..., ϕ0(ξ + sn)) and observe that (ψ = bϕ̇0, µ = λ̇0 = 0) is an
isolated solution, for some b ∈ IR. Note that (2.4) is a condition for a nondegenerate connecting
orbit between fixed points [11], i.e. a well-defined traveling wave problem. Numerically we deal
with this translational invariance by imposing a phase condition, Φ, which maps the Banach space
of continuous solutions to (2.1) into IR, and satisfies

Φ(ϕ0, λ0) = 0, Φϕ(ϕ0, λ0)ϕ̇0 +Φλ(ϕ0, λ0)λ̇0 = Φϕ(ϕ0, λ0)ϕ̇0 6= 0.(2.5)

The ‘well posedness’ of the mixed type delay equation (2.1) with (2.5) has been established by
Mallet-Paret [29, 30] in analogy with the Fredholm theory of Palmer [33] (see also Beyn [11]) for
differential equations. This requires consideration of asymptotic hyperbolicity, establishing the
correct relationship between the number parameters in the system and the dimension of stable and
unstable subspaces of the asymptotic operators to obtain a Fredholm index of zero and hence an
isomorphic map and essentially involves establishing an exponential dichotomy.

In [29] Mallet-Paret develops a Fredholm theory for mixed type delay equations like those con-
sidered here. Subsequently, in [30] he employs this Fredholm theory to prove existence, uniqueness
(up to translation), and other properties of monotone traveling wave solutions of spatially discrete
Nagumo equations. We now summarize important points of this Fredholm theory. Consider the
linear operator ΛL :W 1,p → Lp given by

(ΛLx)(ξ) = x′(ξ)−
n
∑

j=0

Aj(ξ)x(ξ + sj), ξ ∈ J,(2.6)

where J is typically the infinite interval, and the Aj are d × d measurable, locally integrable,
complex matrices. The shifts sj may be positive or negative and it is assumed that s0 = 0 and
that the shifts are distinct.

Theorem A of [29] is a Fredholm alternative theorem for linear mixed type delay equations
that states that ΛL is Fredholm if ΛL is asymptotically hyperbolic, i.e. the limiting operators (as
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ξ → ±∞) are constant and the corresponding characteristic equations have no solutions of the
form iη for η ∈ IR. Because the dimensions of the unstable manifolds of the limiting operators may
be infinite, the Fredholm index is calculated (see Theorem C of [29]) using a homotopy between
the limiting operators.

We mention here that a stability theory is developed in [14] in the spirit of that of Fife and
McLeod [24] for the Nagumo PDE that shows that traveling wave solutions of the spatially discrete
Nagumo equation are asymptotically stable with asymptotic phase. Exponential dichotomies have
been established for linear nonautonomous mixed type functional differential equations [25, 31]
and together with the Fredholm theory of Mallet-Paret [29, 30] results in the spirit of Sandstede
[37] (see also [38]) appear possible.

2.3. Boundary Functions and Boundary Conditions. To find traveling wave solutions
of lattice differential equations numerically, we truncate the infinite interval (−∞,∞) to a finite
interval (T−, T+) and solve the differential equation numerically on this interval.

If the functional differential equation (1.1) has delays which satisfy s ∈ [smin, smax] where
smax 6 0 so there are no advanced terms then boundary functions uI(x) can be defined on the
interval [T− + smin, T−], so that FI can be evaluated at all points x ∈ (T−, T+). When such
functions are defined delay differential equations may be solved as initial value problems. However,
the connecting orbit problem with delays only, can also be considered as a boundary value problem
[36]. In this case either the stable or unstable manifold is finite dimensional and as is shown in
[36], given enough free parameters one of two choices will result in a finite number of conditions:
(i) expansion in terms of eigenfunctions, or (ii) the use of a special bilinear form to define a
complementary projection.

However we consider problems with 0 ∈ (smin, smax), and so require boundary functions to be
defined on both of the intervals [T−+ smin, T−] and [T+, T+ + smax] in order to be able to compute
the collocation solution. In this case the stable and unstable manifolds of the equilibrium solutions
are generally both infinite dimensional. Moreover, the solution on the interval [T−, T+] and on the
boundary intervals are interdependent, so not only do we require boundary functions consistent
with the boundary conditions at ±∞, but we must find these functions while simultaneously solving
on [T−, T+].

We work with implicitly defined boundary functions which we define using ideas similar to those
for asymptotic boundary conditions for differential equations on infinite intervals (see [15, 28]). For
x < T− we define the boundary function

uI(x) = H−(uI(xs),DuI(xs), . . . ,D(m−1)uI(xs)), x < T−, xs ∈ [T−, T+].(2.7)

Here xs is usually taken to be T−. Thus the value of the boundary function uI(x) is defined
in terms of the unknowns uI(T−) and its derivatives. Similarly we define a separate boundary
function H+(x) for x > T+.

We usually find such a representation for the solution outside the interval using a technique
similar to eigenvector boundary conditions. For example, consider the differential-difference equa-
tion

−cϕ̇(ξ) = L1ϕ(ξ)− f(ϕ(ξ))(2.8)

with L1 given by (2.3). Truncating to a finite interval, the form but not the magnitude of the
solution outside the computational domain can be found by linearization. Imposing continuity
conditions between the numerically computed and linearized part of the solution then allows us to
simultaneously solve the boundary value problem and determine the magnitude of the boundary
function to ensure that desired continuity properties hold at the boundary.

Consider the linearization of (2.8) about the equilibrium points ϕl and ϕr,

−cv̇(ξ) = αL1v(ξ)− βv(ξ)(2.9)
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where β = f ′(ϕl) or β = f ′(ϕr). The characteristic equation for (2.9) is obtained by substituting
v(ξ) = exp(λξ) into (2.9),

h(λ) = cλ+ α(exp(λ)− 2 + exp(−λ))− β = 2α cosh(λ) + cλ− (2α+ β) = 0,(2.10)

which for α > 0 and β > 0 has two real solutions, one positive and one negative. Denote by λ+
0

and λ−0 the positive and negative real root, respectively, of (2.10) for β = f ′(ϕl) and λ+
1 and λ−1

the positive and negative root for β = f ′(ϕr).
Now consider truncating (2.8) with ċ = 0 and a phase condition to a finite time interval

[T−, T+] and then consider the following truncated problem






















−cϕ̇π(ξ) = αL1ϕπ(ξ)− f(ϕπ(ξ)), T− < ξ < T+,

ϕπ(ξ) = 1 + (ϕπ(T+)− 1)eλ
−

1 (ξ−T+), ξ ∈ [T+,∞),

ϕπ(ξ) = ϕπ(T−)e
λ+

0 (ξ−T−), ξ ∈ (−∞, T−],
−ϕ̇π(T+) + λ−1 ϕπ(T+) = λ−1 ,
−ϕ̇π(T−) + λ+

0 ϕπ(T−) = 0.

(2.11)

The second and third equations in (2.11) give us a representation for ϕπ outside of [T−, T+] in
terms of ϕπ at the boundary and the eigenvalues, and are determined by imposing continuity in
ϕπ at the boundary. Also, the fourth and fifth equations, which are the boundary conditions, come
from requiring continuity in the derivative, since differentiating the second equation gives

ϕ′π(ξ) = λ−1 (ϕπ(T+)− 1)eλ
−

1 (ξ−T+),

and hence

ϕ′π(T+) = λ−1 (ϕπ(T+)− 1),

which gives the fourth equation in (2.11). The fifth equation is derived similarly.
The left and right boundary functions defined in (2.11) for ξ 6 T− and ξ > T+ are thus each

composed of a single monotonic eigenfunction, whereas equation (2.10) is transcendental and has
infinitely many complex conjugate solutions. However in each of the Nagumo and Ising problems
considered in Sections 3.1-3.4 the real roots of (2.10) and its analogs are not only dominant, but
simple, and there is a gap in the real part compared with any other solution to the characteristic
equation. Thus any expansion in terms of eigenfunctions has leading order term corresponding
to the appropriate real solution of the characteristic equation. For problems where the dominant
roots of the characteristic equation are complex conjugate or where there is no spectral gap, a
different form of boundary function would be required.

In our computations the values λ+
0 and λ−1 are found numerically. In order to bracket a root

of h(λ) in (2.10) notice that h(0) < 0 since β > 0. Consider (2.10) with cosh(λ) replaced with

λ2 and call this quadratic that has one negative and one positive root ĥ(λ). Then for ĥ(λ∗) = 0
we have (since α > 0) that h(λ∗) > 0. Thus, we bracket a solution of h(λ) = 0 and employ the
code zero of [39] that uses a combined bisection/secant method strategy to numerically solve the
nonlinear equation for the desired λ. We also note here that when linearizing with respect to the
wave speed c we employ the identity ∂λ

∂c = −∂h
∂c /

∂h
∂λ .

2.4. Phase Condition and Wave speed. DDE BVP’s defined on an infinite interval, or
with periodic boundary conditions, exhibit translational invariance. To determine a unique trans-
late of the wave form a phase condition is required. Let ϕ0 be a reference wave form, we consider
the classical phase condition

ϕ(0) = ϕ0(0),(2.12)

which assumes both ϕ̇(0) and ϕ̇0(0) are nonzero. In our computations we need to solve for both
the waveform ϕ and the wavespeed c. We do this by approximating (2.11) together the classical
phase condition (2.12) and the equation ċ(ξ) = 0.
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3. Solutions. We demonstrate numerically computed solutions to a number of instances of
(1.1). We begin in Section 3.1 with a piecewise linear control problem for which exact solutions are
known. In Section 3.2 we compute solutions of a nonlinear discrete Nagumo equation, which had
previously only been solved under the addition of artificial diffusion. In Section 3.3 we present a
cubic like nonlinearity for which we have exact traveling solutions to a discrete Nagumo equation.
We use this example to illustrate and numerically verify the performance of our code. In Section 3.4
we compute solutions of an Ising Model where the FI is a fully nonlinear function of u at its delays.
In Section 3.5 we solve a Frenkel-Kontorova type equation with periodic boundary conditions.

3.1. Piecewise Linear Spatially Discrete Reaction Diffusion Equation. We consider
the traveling wave equations that result from applying the traveling wave ansatz (1.3) to the
spatially discrete evolution equation (1.2) with α = 1, β = 0, and with f given by the piecewise
linear nonlinearity (“McKean’s caricature of the cubic” [32])

f(ϕ) ≡ f(ϕ, a) =







ϕ, ϕ < a,
[ϕ− 1, ϕ], ϕ = a,
ϕ− 1, ϕ > a,

a ∈ (0, 1).(3.1)

The resulting equations for this spatially discrete Nagumo equation are
{

−cϕ̇(ξ) = αL1ϕ(ξ) + γϕ̈(ξ)− f(ϕ(ξ)),
ϕ(−∞) = 0, ϕ(0) = a, ϕ(+∞) = 1,

(3.2)

where L1ϕ is defined by (2.3). If ϕ is monotone, then we may set ϕ(0) = a which implies ϕ(ξ) < a
for ξ < 0, and ϕ(ξ) > a for ξ > 0. Thus, for the Heaviside function defined by

h(x) =

{

1, x > 0,
0, x < 0,

we have h(ϕ(ξ)− a) = h(ξ) for ξ 6= 0, and so f(ϕ(ξ)) = ϕ(ξ)− h(ξ). This incorporates the phase
condition into our problem, and hence we may solve (3.2) with (3.1) as a linear inhomogeneous
equation where c is a given parameter and the corresponding value of a is determined by ϕ(0).
We are particularly interested in the case where γ = 0, so that we are solving the purely spatially
discrete equation, with no artificial diffusion terms. Hence, (3.2) is reduced to

{

−cϕ̇(ξ) = αL1ϕ(ξ)− ϕ(ξ) + h(ξ),
ϕ(−∞) = 0, ϕ(0) = a, ϕ(+∞) = 1.

(3.3)

Since the nonlinearity f is piecewise linear, the exact traveling wave solution to (3.3) can
be derived using Fourier transforms (see [12] and [18]). We use our code to compute numerical
solutions to this problem. Figure 3.1(i) shows a plot of a(c) against c, obtained numerically for
the spatially discrete problem (3.3).

Figure 3.1(ii) shows numerically obtained solution profiles of the spatially discrete problem
(3.3) for various wave speeds c. We only present solution curves for a > 0.5, because of the
symmetry which these solutions possess with the solutions for a 6 0.5. Note the “kink” which
forms in the solution curves at ϕ(0). The existence of this is discussed in [18], and is due to the
fact that taking γ = 0 in (3.2) implies for c 6= 0 that

lim
ξ→0+

ϕ′(ξ) 6= lim
ξ→0−

ϕ′(ξ).

Note also from Figure 3.1(ii) that c is a monotonic increasing function of ϕ(0) = a.
The graphs in Figure 3.1 agree well with the equivalent graphs presented in [18] for the exact

form of the solution (Figure 2.6, Curve 1, [18]) and using the iterative numerical method outlined
in the introduction (Figures 3.2 and 3.3, Curve 1, ibid).
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Fig. 3.1. (i) An a(c) plot for the spatially discrete linear reaction-diffusion equation (3.3), where the solution
is computed numerically for a specified c, and a is recovered using ϕ(0) = a. (ii) Wave profiles for the spatially
discrete linear reaction-diffusion equation (3.3) for various wave speeds c.

3.2. Spatially Discrete Nagumo Equation. We now consider the traveling wave equations
corresponding to a spatially discrete Nagumo equation

{

−cϕ̇(ξ) = L1ϕ(ξ)− f(ϕ(ξ)),
ϕ(−∞) = 0, ϕ(+∞) = 1,

(3.4)

where L1ϕ is defined by (2.3) and the cubic nonlinearity f is defined by

f(ϕ) ≡ f(ϕ, a) = d1ϕ(ϕ− 1)(ϕ− a), a ∈ (0, 1).(3.5)

This problem has been studied by Bell [9], Keener [26, 27] and Zinner [43, 44] and others. We
also mention here the general existence and uniqueness theory based upon a Fredholm alternative
theorem of Mallet-Paret [29, 30] and the stability theory of Chow, Mallet-Paret, and Shen [14].

We solve (3.4) with the classical phase condition ϕ(0) = a. Since the wave speed c is unknown,
we solve (3.4) simultaneously with the equation ċ = 0, to obtain both the solution ϕ and c. We
are therefore actually solving







−cϕ̇(ξ) = L1ϕ(ξ)− d1ϕ(ξ)(ϕ(ξ)− 1)(ϕ(ξ)− a),
ċ = 0,

ϕ(−∞) = 0, ϕ(0) = a, ϕ(+∞) = 1.
(3.6)

Figure 3.2 shows plots of the detuning parameter a(c) against the wavespeed c for (3.6) with
various cubic coefficients d1. Propagation failure is the term we use when there is a non-trivial
interval (one of nonzero length) of parameter a values for which c = 0. Propagation failure is
resolved numerically if d1 is large enough (see [23] for details on the subtleties of the existence of
the interval of propagation failure), and the length of this interval increases as d1 increases.

In [20], numerical computations were carried out with an artificial diffusion term γϕ̈ imposed
on the problem to allow it to be solved using an iterative approach. It was shown that for small γ,
for example γ = 10−4 there existed an interval of a for which |c| < 10−3, and it was suggested that
propagation failure would also be seen for the purely spatially discrete problem, i.e. when γ = 0.
We confirm this suggestion in Figure 3.2.

Figure 3.3 illustrates the solutions for a outside the interval of propagation failure when d1 =
10. In this case we are able to compute solutions for |a−0.5| > 0.045. As for the linear problem, as
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c

a(
c)

Nonlinear equation: a(c) plots for various cubic coefficients

d
2
 = 1

d
2
 = 6

d
2
 = 8

d
2
 = 12

_____

_____

−−−−

−.−.

Fig. 3.2. Plots of a(c) against the wavespeed c for the spatially discrete non-linear reaction-diffusion equation
(3.4), showing the dependence of the size of the interval of propagation failure on the cubic coefficient d1using
difference operator L1 for which α = 1.

|a− 0.5| increases towards 0.5 the magnitude of the wave speed |c| becomes large and the solution
has a hyperbolic tangent shape. For values of |a − 0.5| close to 0.045, or in other words, close to
the interval of propagation failure, the solutions exhibit step-like behavior and |c| is small. Away
from the wave front, the tails of these solutions decay exponentially.
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Non−linear problem: wave profiles for γ = 0, d
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 = 10, various a

ξ

φ a = 0.95:

a = 0.85:

a = 0.65:

a = 0.56:

a = 0.545:

........

−.−.−.−.

−.−.−.−.

−−−−−

_____

Fig. 3.3. (i) a(c) against c for the spatially discrete Nagumo equation (3.6) and cubic coefficient d1 = 10, for
various values of a. (ii) The corresponding wave profiles ϕ(ξ).

Solving (3.4) for values of the detuning parameter a which lie inside the interval of propagation
failure (i.e. c = 0) is a very difficult problem. We follow the approach of [20], and introduce an
artificial diffusion term, γϕ̈, giving







0 = L1ϕ(ξ) + γϕ̈(ξ)− f(ϕ(ξ)),
ċ = 0,

ϕ(−∞) = 0, ϕ(0) = a, ϕ(+∞) = 1.
(3.7)
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In [20] this was solved numerically using an iterative scheme based on COLMOD with the delay
terms treated as source terms, for values of γ of the order γ = 10−4, but these schemes failed to
converge for smaller values of γ. We are now able to solve (3.7) with γ of the order γ = 10−6. An
example is given in Figure 3.4 (observe the a = 0.5 and the a = 0.54 curves), where d1 = 10 and
various values of the detuning parameter a are considered. While the actual solutions ϕ for these
values of a (0.5 and 0.54) are discrete maps, our approximate solutions obtained are continuous.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

a(
c)

Non−linear wave speed plot: cubic coeff = 10, γ = 1.d−6

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Non−linear problem: wave profiles, d
1
 = 10, γ = 1.d−6

ξ

φ a = 0.95:

a = 0.85:

a = 0.75:

a = 0.65:

a = 0.55:

a = 0.54:

a = 0.5:

.......
−.−.

−−−

.......

−.−.

−−−
_____

Fig. 3.4. Spatially discrete reaction-diffusion equation (3.7) with cubic nonlinearity (3.5), where γ = 10−6

and cubic coefficient d1 = 10, showing the dependence of the wavespeed and the solution profile on the de-tuning
parameter a.

3.3. Spatially Discrete Nagumo Equation with Exact Solution. We show by example
the numerical accuracy of COLMTFDE with respect to the collocation, and with respect to the
truncation of the infinite interval. We proceed by assuming a solution form for the discrete Nagumo
equation of Section 3.2 and constructing the bistable nonlinearity which gives the chosen solution.
Using this example, with various choices of interval length and various number of collocation points
per mesh interval, we compute numerical solutions and compare the results with the exact solution.

3.3.1. Constructing the Equation. We assume that the solution to

{

−cϕ̇(ξ) = αL1ϕ(ξ)− f(ϕ(ξ)),
ϕ(−∞) = 0, ϕ(+∞) = 1,

be of the form ϕ(ξ) =
1

2

[

1 + tanh
1

2
(bξ + g(ξ))

]

(3.8)

(see [17]) where bξ + g(ξ) is a monotone increasing function. This requires that the nonlinearity
be

f(ϕ(ξ)) = αL1ϕ(ξ) + c[b+ g′(ξ)]ϕ(ξ)(1− ϕ(ξ)) with c = α
[2a− ϕ(ξ0 + 1)− ϕ(ξ0 − 1))]

[b+ g′(ξ0)]a(1− a)

where ξ0 is the value of ξ such that ϕ(ξ0) = a, enforcing the condition that 0 ≡ f(a). The only
independent parameters are α and a.

In this example we let b = [1 + 3(2a− 1)]/
√
2α and

g(ξ) = µ

[

(ξ − q1)(q3 − ξ)(q2 − ξ)
(ξ − q1)(q3 − ξ) + d1

+ w

]

.

The parameters d1, w, and µ allow us to adjust the effect and strength of g so that we may produce
propagation failure and other effects which are typically present in mixed-type FDEs. We have
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chosen

d1 = e100(a−s1)(a−s2)−1
a(1−a) ,

w = sgn(ξ) 7
10

(

2a−1
2s1−1

)2

,

and µ =







































b

(

2(a− 1) + s1
s1

)4

, 1− s1 6 a 6 1− s1/2,

b

(

2a− s1
s1

)4

, s1/2 6 a 6 s1,

0, otherwise,

where s1 = 1
2e

−1/(4
√

2α), s2 = 1− s1. The roots q1, q2, and q3 are

q1 = n+ p,
q2 = n+ 1/2 + p,
q3 = n+ 1 + p,

n 6 ξ < n+ 1; n ∈ Z and p =

{

p1, ξ 6 0,
−p1, ξ > 0,

where p1 is the left most real root of y3 − (3/2 + w)y2 + (1/2 + w)y + wd1 and is chosen so that
g(ξ) is C1.

Suppose a 6∈ [s1/2, 1− s1/2], then g(ξ) = g′(ξ) = 0,

f(ϕ) =

(

αγ(2ϕ− 1)

γ[1− ϕ]ϕ+ 1
− cb

)

ϕ(ϕ− 1), and c =
α(2a− 1)

b

[

γ

γ[1− a]a+ 1

]

,

with γ = eb − 2 + e−b = 2(cosh(b)− 1). Setting α = 1 and a = 4/5 we get

ϕ(ξ) =
1

2

[

1 + tanh

(

7

5
√
2
ξ

)]

, c =
3
√
2

14

25γ

4γ + 25
, γ = 2

[

cosh

(

14

5
√
2

)

− 1

]

as the exact solution to

−cϕ′(ξ) = ϕ(ξ + 1)− 2ϕ(ξ) + ϕ(ξ − 1)−
(

γ(2ϕ− 1)

γ[1− ϕ]ϕ+ 1
− 3

5

25γ

4γ + 25

)

ϕ(ϕ− 1).

This solution is illustrated in Figure 3.5 (c) and f is illustrated in Figure 3.6. In Table 3.1 we
summarize the results of numerical experiments obtained by varying k, the number of collocation
points per subinterval, T = T+,−T− that defines the finite interval, and TOL the tolerance on the
three components: ϕ, ϕ′, and c. We employ the classical phase condition ϕ(0) = 1/2, and report
on N , the number of mesh points that were employed, hmax and hmin, the maximum and minimum
subinterval lengths, respectively, and three measures of the error E0, E1, and Errc. Error E0 is
the maximum error between the computed and exact solution obtained by computing at all the
mesh points, similarly E1 is the error in the first derivative, and Errc is the error in the wave speed
c. The numerical results in Table 3.1 are not sufficient to establish convergence in the collocation
error or in the convergence as a function of the length of the finite interval T . The results show
good proportionality to the tolerance, with the error dominated by error in the first derivative.

Table 3.1

k T TOL N hmax hmin E0 E1 Errc
3 10 1E-4 35 1.24 0.26 1.4E-7 3.9E-5 1.7E-7
6 10 1E-4 11 2.77 1.59 2.4E-5 1.8E-3 1.8E-4
3 10 1E-6 77 1.27 0.07 2.9E-9 3.8E-7 4.2E-11
6 10 1E-6 19 2.00 0.64 1.5E-8 9.9E-6 3.0E-8
3 40 1E-4 57 3.65 0.43 1.1E-6 6.3E-4 1.3E-6
6 40 1E-4 29 3.63 2.22 1.8E-5 5.7E-3 2.3E-4
3 40 1E-6 97 5.89 0.09 2.6E-9 6.4E-7 3.0E-10
6 40 1E-6 61 2.41 0.71 2.3E-8 1.6E-5 5.2E-8



12 ABELL, ELMER, HUMPHRIES, AND VAN VLECK

−4 0 4
0

0.5

1

(.876,.8) 
(0,.58102) 

−5 0 5
0

0.5

1

−5 0 5
0

0.5

1

(a)

c

a

(b)

ξ

ϕ

(c)

ξ

ϕ

Fig. 3.5. The a(c) curve, (a), and two example wave forms, (b) where a = .58102 and (c) where a = .8. The
value of α = 1 and the intervals of a where g are nonzero are approximately [0.20949172139469, 0.41898344278938]∪
[0.58101655721062, 0.79050827860531].

0 0.8 1
−0.2

0

0.6

ξ

ϕ

Fig. 3.6. The function f(ϕ) for α = 1 and a = .8.

3.4. Ising Model. Next we consider traveling wave solutions of an Ising model with convo-
lution operator. Our original equations are of the form (see [16] for the Glauber type Ising model
and [20] for the nonsymmetric logarithmic nonlinearity, see also [8])

v̇i + vi = tanh
( β

2d1d2
(J ∗ v)i −

1

4d2
(b− vi)−

1

2
ln(

1− b
1 + b

)
)

, i ∈ ZZ(3.9)

where β > 0, d1 > 0, 0 < d2 < 1−b2

4 , −1 < b < +1, (J ∗ v)i =
∑∞

j=1 αj(vi+j + vi−j) and
∑∞

j=1 αj = 1. Applying the traveling wave ansatz ϕ(i− ct) = vi(t) to (3.9) we obtain

−cϕ′(ξ) + ϕ(ξ) = tanh
( β

2d1d2
(J̃ ∗ ϕ)(ξ)− 1

4d2
(b− ϕ(ξ))− 1

2
ln(

1− b
1 + b

)
)

, ξ ∈ IR(3.10)
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where (J̃ ∗ ϕ)(ξ) =∑∞
j=1 αj(ϕ(ξ + j) + ϕ(ξ − j)).

After normalizing, grouping, and renaming some parameters we consider the equation

−cϕ′(ξ) + ϕ(ξ) = tanh((J̃ ∗ ϕ)(ξ) + α0ϕ(ξ) + β), ξ ∈ IR(3.11)

where α0 > 0 and β ∈ IR. We wish to find connecting orbits between two homogeneous equilibria.
A homogeneous equilibria, z, satisfies

1

2
ln
(1 + z

1− z
)

= (2 + α0)z + β.(3.12)

Thus, a necessary condition for the existence of one positive and one negative homogeneous equi-
librium solution is that |β| < (2+α0). We can guarantee the existence of such equilibria by taking
α0 sufficiently large. For β > 0, the existence of one negative homogeneous equilibria typically
implies the existence of two negative homogeneous equilibria, and similarly for β < 0.

Next consider the linearization about an arbitrary homogeneous equilibrium solution, z. We
focus on the case where α1 = 1 and αj = 0 for j = 2, 3, .... The characteristic function is given by

h(λ) = cλ− 1 + α0γ + 2γ cosh(λ)(3.13)

where γ = sech2((2 + α0)z + β), so 0 6 γ 6 1. So, to have one positive and one negative real
eigenvalue we must have 2+α0 < 1/γ. Thus, a necessary condition for a connecting orbit between
one positive, z+, and one negative, z−, homogeneous equilibria is

|β| < 2 + α0 < 1/γ(3.14)

where γ = max{γ−, γ+} and γ• = sech2((2 + α0)z• + β) for • = + or −.
The Fredholm theory of Mallet-Paret [29, 30] is applicable to (3.11) and shows the existence

of monotone solutions and a monotone (β, c) curve for c 6= 0. The condition (ii) on page 56 of [30]
requires that αj > 0 for all j, while our condition (3.14) implies condition (v), page 56 of [30]. In
Figure 3.7 we show the results of some of our numerical experiments. Figure 3.7 is a plot of the
function in (3.12) and a plot of a (β, c) curve, the analogue for this problem of an (a, c) curve.
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beta vs c for Ising with \alpha_0 = 0.1

Fig. 3.7. (i) Plots of 0.5 ln((1 + z)/(1− z))− 2− α0 = 0, for different values of α0. The roots of (3.12) may
thus be determined by intersection with a horizontal line corresponding to values of β. (ii) A (β, c) curve for the
Ising model with α0 = 0.1.
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3.5. Frenkel-Kontorova type equations. Consider the Frenkel-Kontorova (FK) type equa-
tion [40, 41]

ẍj + γẋj = xj−1 − 2xj + xj+1 − d sinxj + F, j = 1, ..., N,(3.15)

xj+N = xj + 2πM.(3.16)

Here the xj ’s denote the positions of particles in a chain, N is the number of particles, F is an
applied force, and M is an arbitrary integer. This equation was first proposed to describe the
motion of dislocations in crystals, but is now used to model a number of processes. The equation
admits traveling wave solutions, which are referred to as uniform sliding states in the physics
literature.

Using the traveling wave ansatz xj(t) = ϕ(σj − ct), where σ = 2πM
N , equation (3.15),(3.16)

becomes

c2ϕ̈(ξ)− γcϕ̇(ξ) = Lσϕ(ξ)− d1 sin(ϕ(ξ)) + F,(3.17)

ϕ(ξ + 2π) = ϕ(ξ) + 2πM,(3.18)

where

Lσϕ(ξ) = ϕ(ξ − σ)− 2ϕ(ξ) + ϕ(ξ + σ) and ξ = σj − ct.

The particular choice of σ is made in order to achieve a simple relationship between the velocity c
of the traveling wave and the average particle velocity. The boundary conditions (3.16) imply

xj

(

t− 2πM

c

)

= ϕ

(

σj − c
[

t− 2πM

c

])

= ϕ(σj+2πM−ct) = ϕ(σj−ct)+2πM = xj(t)+2πM.

Thus the average particle velocity is −c, the negative of the traveling wave velocity.
Because of the discrete translational symmetry in (3.17) it is sufficient to solve (3.17) subject

to ϕ(ξ + 2π) = ϕ(ξ) + 2π to obtain solutions to (3.17),(3.18). We choose to solve (3.17) on the
interval [−π, π] subject to the conditions

ϕ(π) = ϕ(−π) + 2π and ϕ(0) = 0(3.19)

where ϕ(0) = 0 is a phase condition, and specifies a unique phase when ϕ is monotonic. In the case
of non-monotonic ϕ (as will arise in this example), this condition no longer guarantees a unique
solution to the equations, but in general solutions will be locally unique, a sufficient condition for
the numerical convergence.

An alternative formulation of this problem is







c2ψ̈(ξ)− γc[1 + ψ̇(ξ)] = Lσψ(ξ)− d1 sin(ξ + ψ(ξ)) + F,
ψ(π) = ψ(−π),
ψ(0) = 0.

(3.20)

with

ϕ(ξ) = ξ + ψ(ξ).(3.21)

The function ψ, referred to as the dynamic hull function, is periodic.
We numerically solve both formulations, where we choose F and solve the auxiliary equation

ċ = 0 to find c, as in previous examples. One can also fix c and solve an auxiliary equation Ḟ = 0
to find F , which is often easier.

In the linear case where d1 = 0 it is simple to verify that ϕ(ξ) = ξ and ψ(ξ) = 0 solve
(3.17),(3.19), and (3.20) respectively with F = −γc.
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Fig. 3.8. Solutions of (3.17),(3.19) with γ = 0.5, M = 89, N = 233. (i) Traveling Wave Velocity c against
applied Force F for d1 = 1, 2 and 3. (ii) Traveling Wave profiles for d = 2.

Following [40] in Figure 3.8 we present computations for γ = 0.5,M = 89, N = 233 and d1 = 1,
2 and 3. There is good agreement between the velocity-force characteristics in Figure 3.8(i) and
those in Fig 2 of [40], which were computed by a different method. The cusps seen in Figure 3.8(i)
are caused by resonances.

For −c large, above the first resonance, all the graphs are close to the line F = −γc which cor-
responds to the linear case d1 = 0. As in the previous examples, propagation failure is numerically
resolvable depending on the parameter d1, with an interval of propagation failure become obvious
for d1 large (d1 > 2).

In Figure 3.8(ii) we show the evolution of the traveling wave profile as −c is decreased towards
the first resonant velocity. For large velocities, motion is essentially linear, but as the traveling
wave velocity is decreased becomes less so, and becomes non-monotonic at the first turning point
of the graph at −c ≈ 2.5.

For d1 = 2 and F ∈ [1.5, 2] it is clear from Figure 3.8(i) that there exist traveling waves with
three different wave speeds. We find numerically that only the wave of largest speed is monotonic.
In Figure 3.9(i) we show the three traveling waves for F = 1.75.

As the wave speed decreases the form of the traveling wave solution becomes progressively
more complicated as demonstrated in Figure 3.9(ii).

Consider briefly the caseM = 1, N = 200, d1 = 2 and γ = 1/20. For this case the first resonant
velocity is very small at approximately π/100. Figure 3.10(i) shows the F against c profile to the
first resonant velocity. Figure 3.10(ii) shows corresponding traveling wave profiles. For M/N ¿ 1
we obtain step-like traveling wave solutions, much like the behavior seen in the other examples
(with the exception that the F (c) curve again fails to be monotonic).

4. Numerical Analysis. In this section we describe the implementation of our methods in
the software package COLMTFDE (COLocation for Mixed Type Functional Differential Equations)
we are developing, which was used to produce the results presented above, and the numerical
analysis issues which arise. COLMTFDE is a collocation boundary value problem solver, and is a
member of the COLSYS family [2, 6, 13, 42]. Thus we pay particular attention to the differences
between our code and other members of the COLSYS family. The main difference is the ability to
handle delayed (and advanced) terms directly. The size of the delays {sσ(x)}nσ=1 and even their
number n may be dependent on x. FI in (1.1) can be a fully nonlinear function of uI(x + sσ)
and its derivatives up to and including the m-th derivative (which we made use of in Section 3.4).
Also of significance is COLMTFDE’s ability to handle implicitly defined boundary functions, as
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Fig. 3.9. Solutions of (3.17),(3.19), with γ = 0.5, M = 89, N = 233 and d1 = 2. (i) Three Traveling Waves
for F = 1.75. (ii) Traveling Waves for c = −0.7, c = −0.5, c = −0.3.
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Fig. 3.10. Solutions of (3.17),(3.19) with γ = 1/20, M = 1, N = 200 and d1 = 2. (i) Applied force F against
traveling wave velocity c. (ii) Traveling Wave profiles.

described in Section 2.3 as well as explicitly defined boundary functions. COLMTFDE also allows
non-separated boundary conditions of the form

m∗

∑

J=1

BJy(ζ(J)) = βJ ,(4.1)

whereas most of the COLSYS family of BVP solvers require that the boundary conditions for the
problem are separated.

The introduction of the scalar factors τI(x) multiplying the highest order term on the left-hand
side of (1.1) also constitutes a significant generalization from other members of the COLSYS family,
further extending the range of problems which may be solved. This is particularly important in
problems such as the spatially discrete Nagumo equation where a traveling wave with speed c
satisfies (3.4). Two boundary conditions are needed to compute a numerical solution due to the
presence of the second-order difference term (ϕ(ξ+1)−2ϕ(ξ)+ϕ(ξ−1)) on the right-hand side of
(3.4). However, since there is only a first-order derivative term present, a boundary value problem
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solver will only expect and indeed allow one boundary value, which will result in a singular linear
system. This difficulty is resolved by introducing a second-order derivative term τϕ̈(ξ) as in (3.4)
and then solving the problem with τ = 0, as in Figure 3.3.

Other members of the COLSYS family use local parameter condensation, to eliminate variables
which are internal to subintervals of the mesh, thus simplifying the linear system, and reducing
storage requirements. They also take advantage of the almost-block-diagonal nature of the resulting
linear matrix to solve this system extremely efficiently.

However, parameter condensation is not practical for a functional differential equation solver,
as the forward and backward delay terms typically fall between collocation points in different
mesh intervals, and hence the so-called local variables are no longer truly local. Also, these delay
terms will not usually fall on the sub- or super-diagonals of the matrix, and their relative locations
will therefore not only depend on the size of the mesh but will require updating with each mesh
refinement. The resulting linear matrix will therefore not in general be almost-block-diagonal.

COLMTFDE therefore cannot make use of parameter condensation or block diagonal structure.
This has significant computational costs, as construction and storage of the full linear matrix, which
has size (N(m∗ + kd) +m∗)2 requires considerably more memory than the condensed matrix, of
size N(2m∗2+3m∗kd+kd2) stored by COLMOD. In addition, since the matrix is no longer sparse
almost-block-diagonal we cannot take advantage of efficient solvers for such systems, and use a full
forward-backward substitution method. The loss of sparseness cannot be avoided in general, as
problems such as the Ising Problem of Section 3.5 will always result in dense matrices.

4.1. Collocation Formulation. We consider a k-stage collocation scheme for (1.1). Let

π : T− = x0 < x1 < ... < xN−1 < xN = T+

and hi := xi+1 − xi and h := maxi=0,...,N{hi}. Let {ρi}ki=1 denote k Gaussian collocation points
ordered so that

0 6 ρ1 < · · · < ρk 6 1.

We seek a collocation solution

uπ(x) = (uπ1 , u
π
2 , . . . , u

π
d )

T ,

such that for each I = 1, ..., d, the I-th component uπI (x) is a piecewise polynomial function such
that uπi ∈ Pk+mI ,π ∩ CmI−1(T−, T+), where Pk+mI ,π is the space of functions which reduce to
polynomials of order k+mI on each of subintervals [xi, xi+1] of π, for some k > maxI=1,dmI . The
differential equation is satisfied at the kN collocation points

xij = xi + hiρj , j = 1, ..., k, i = 1, ..., N.

Note that since Pk+mI ,π ∩ CmI−1(T−, T+) is of dimension kN +mI , and there are kN collocation
conditions associated with the I-th equation, there must be mI side conditions resulting from this
equation, and thus m∗ side conditions in total. This exactly matches the number of boundary
conditions in (1.1), which uπ is thus required to satisfy.

We employ the now standard monomial Runge-Kutta basis representation. Consider a fixed
mesh element x ∈ [xi, xi+1]. Then, writing u for an arbitrary component uI , and m for mI ,
I ∈ 1, . . . , d, each polynomial uπ(x) can be expressed in terms of its Taylor series about xi as

uπ(x) =

k+m
∑

j=1

(x− xi)j−1

(j − 1)!
Dj−1uπ(xi) =

m
∑

j=1

(x− xi)j−1

(j − 1)!
yij + hmi

k
∑

j=1

ψmj(
x− xi
hi

)zij ,(4.2)

where

Dl−1ψmj(0) = 0, 1 6 l 6 m, 1 6 j 6 k,
Dmψmj(ρl) = δjl, 1 6 l 6 k.
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Hence, corresponding to (4.2)

yij = Dj−1uπ(xi), 1 6 j 6 m, and zij = Dmuπ(xij), 1 6 j 6 k.

and so the collocation solution, uπ, can now be written in terms of

yi := (yi1, . . . , yim)T , zi := (zi1, . . . , zik)
T ,(4.3)

and approximating the solution of (1.1) is reduced to finding these vectors. However even in the
linear case the details of the construction of this system are somewhat complicated, and we describe
them below.

4.1.1. Linear Systems. The functions FI and GJ in (1.1) are usually non-linear. When
they are linear, the system can be written in the form

γID(mI)uI(x) =

d
∑

t=1

[

mt
∑

l=1

cItl(x)D
(l−1)ut(x) +

mt+1
∑

l=1

α
I
tl(x)D

(l−1)ūt(x)

]

+ qI(x),

with I = 1, . . . , d , x ∈ (T−, T+),

α
I
tl(x) := (αItl(x+ s1(x)), . . . , α

I
tl(x+ sn(x)))

T ,

and boundary conditions as in (1.1).
The process described above leads to a linear system of equations for uπ and its first (m− 1)

derivatives. We now outline the construction of this system, first for d = 1, and then in the more
complicated higher-dimensional case.

4.1.2. One dimensional System. Write the one-dimensional linear delay system as

τDmu(x) =
m
∑

l=1

cl(x)D
(l−1)u(x) +

n
∑

σ=1

[

m+1
∑

l=1

αl(x+ sσ)D
(l−1)u(x+ sσ)

]

+ q(x),(4.4)

and suppose that for some delay sσ, where σ ∈ {1, . . . , n} and some collocation point xir, i ∈
{1, . . . , N}, r ∈ {1, . . . , k}, we have xω 6 xir + sσ < xω+1, i.e. we identify the mesh interval
[xω, xω+1] in which the delayed collocation point lies. For convenience, we denote xirσ := xir + sσ,
then, from (4.2), we have the following representation for the function uπ and its derivatives at
the point xirσ,

D(l−1)uπ(x
i
rσ) =

m
∑

j=l

(xirσ − xω)j−l
(j − l)! yωj + hm−l+1

ω

k
∑

j=1

D(l−1)ψmj(
xirσ − xω

hω
)zωj ,

Dmu(xirσ) = hω

k
∑

j=1

Dmψmj(
xirσ − xω

hω
)zωj .

Since uπ must satisfy equation (4.4) at each collocation point xij , applying the collocation equations
yields the k equations for yi and zi:

−(Vi +
n
∑

σ=1

Pσi )yi + (Wi −
n
∑

σ=1

Qσi )zi = qi, 1 6 i 6 N,

where Vi and Pi are k ×m matrices, with entries

Virj =
j
∑

l=1

cl(xir)(hiρr)
j−l

(j − l)! , Pirj =
j
∑

l=1

αl(x
i
rσ)(x

i
rσ − xω)j−l

(j − l)! , 1 6 r 6 k, 1 6 j 6 m,
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and Wi and Qi are k × k matrices, with entries

Wi
rj = τδrj −

m
∑

l=1

cl(xir)h
m+1−l
i D(l−1)ψmj(ρr),

Qirj =
m+1
∑

l=1

αl(x
i
rσ)h

m+1−l
i D(l−1)ψmj

(

xirσ − xω
hω

)

,























1 6 r, j 6 k.

We let qi := (q(xi1, . . . , q(xik))
T , and recall that yi and zi were defined in (4.3).

From the m global continuity requirements, we obtain the additional relations,

Ciyi +Dizi = yi+1, 1 6 i 6 N,

where C is a m×m matrix, with entries

Cirj =
hj−ri

(j − r)! , j > r

and D is of order m× k, with entries

Dirj = hm+1−r
i D(r−1)ψmj(1), 1 6 r 6 m, 1 6 j 6 k.

We therefore have a linear system for uπ and its first m− 1 derivatives.

4.1.3. Higher Dimensional System. For systems of equations, the situation is more com-
plicated, and the notation becomes rather convoluted. However, it is worth giving in detail, as the
construction of the linear matrix for a mixed system is not immediately obvious.

Applying the collocation equations for a system with d > 1, yields kd equations for yi and zi,

−(V̄i +
n
∑

σ=1

P̄σi )yi + (W̄i −
n
∑

σ=1

Q̄σi )zi = qi, 1 6 i 6 N,

where V̄i is a kd×m∗ matrix, whose entries are themselves matrices, so

V̄iRJ = [V i], 1 6 R 6 k, 1 6 J 6 d,

where V i is a d×mJ matrix with entries

V i
Ij =

j
∑

l=1

cIJl(xiR)(hiρR)
j−l

(j − l)! , 1 6 I 6 d, 1 6 j 6 mJ .

In a similar fashion, W̄i is a kd× kd matrix, with entries again consisting of submatrices,

W̄i
RT = [W i], 1 6 R, T 6 k,

W i
Ij = τIδRT δIj −

mj
∑

l=1

cIjl(xiR)h
mj+1−l
i D(l−1)ψmjT (ρR), 1 6 I, j 6 d.

Also, P̄σi is an kd×m∗ matrix with d×mJ matrix subentries

P̄iσRJ = [P iσ],
1 6 R 6 k,
1 6 J 6 d,

where P iσ
Ij =

j
∑

l=1

αIJl(x
i
Rσ − xω)j−l
(j − 1)!

,
1 6 I 6 d,
1 6 j 6 mJ ,
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and Q̄σi is a kd× kd matrix, with entries again consisting of submatrices,

Q̄iσRT = [Qiσ], 1 6 R, T 6 k,

Qiσ
Ij =

mj+1
∑

l=1

αIjl(x
i
rσ)h

mj+1−l
i D(l−1)ψmjT

(

xiRσ − xω
hω

)

, 1 6 I, j 6 d.

¿From the m∗ boundary conditions, we obtain m∗ additional relations,

C̄iyi + D̄izi = yi+1, 1 6 i 6 N,

where C̄ is a m∗ ×m∗ matrix, with matrix entries

C̄iIS = δIS [C
i], 1 6 I, S 6 d, where Ci

rj =
hj−ri

(j − r)! , 1 6 r 6 mI , 1 6 j 6 mS .

We have that D̄ is of order m∗ × kd, with entries

D̄iIJ = δIS [D
i],

1 6 I 6 d,
1 6 J 6 k,

with Di
rs = hmI+1−r

i D(r−1)ψmIJ(1),
1 6 r 6 mI ,
1 6 s 6 d.

The resulting linear systems are of the form





































−V1 −W1 0 · · · −P 1
1 −Q1

1 · · · · · · · · ·

−C1 −D1 I

· ·

· ·

−P 1
i −Q1

i · · · −Vi −Wi 0 · · · −Pn

i −Qn

i

−Ci −Di I

· ·

· ·

· · · −P 1
N −Q1

N · · · −Pn

N −Qn

N · · · −VN −WN 0

−CN −DN I

B1 · · · Bm∗









































































y1

z1
.

.

yi

zi

.

.

yN

zN

yN+1





































=





































q1
0

.

.

qi

0

.

.

qN

0

β





































4.1.4. Nonlinear Systems. For general nonlinear problems of the form (1.1) our code uses
the method of quasilinearisation, which is common to all members of the COLSYS family of
codes. The changes made to allow for delay terms to be treated directly are to the construction
and storage of the linear system. The method of solving the non-linear problem (1.1) is therefore
almost identical to that used for COLMOD [1]. The differences involve the order in which quantities
are obtained or constructed due to the backward and forward delay terms.

4.2. Convergence. Assuming sufficient smoothness of the problem coefficients and of the
exact solution (except at a finite number of points which form part of the mesh π), much of the
standard stability and approximation theory for ODE BVP collocation solutions presented in [3]
holds in the presence of delays, with some important changes.

A basic convergence result for the solution of delay differential equations of this type by
collocation is given in [5], and we reproduce it here. Following [5], in order to keep the notation
as simple as possible, the result is given in the case of the first-order equation

τu′(x) = F (x, u(x), ū), x ∈ (T−, T+),(4.5)

with ūI = (u(x+ s1(x)), . . . , u(x+ sn(x)))
T , and where {sσ(x)}nσ=1 is a finite collection of delays,

possibly dependent on x. Generalization to systems of higher order such as (1.1) is straightforward.
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The mesh π is defined on the interval [T−, T+], such that

π : T− = x0 < x1 < ... < xN−1 < xN = T+,

with hi := xi+1 − xi and h := maxi hi. Then, denoting

min
x∈[T−,T+]

s1(x) = T̄−, max
x∈[T−,T+]

sn(x) = T̄+,

a solution u∗ of (4.5), is in general only a piecewise smooth function for x ∈ [T̄−, T̄+], and in fact
the solution may be discontinuous at x = T− or x = T+.

To establish convergence assume the right-hand side F of the DDE (4.5) is sufficiently smooth.
Then, since the delayed terms {sσ(x)}nσ=1 depend only on x, the locations at which the solution and
its derivatives up to order p have potentially non-smooth behavior can be precomputed. Including
all these points in the partition π yields

u∗ ∈ Cp
π[a, b] ∩ C[a, b].

Note that if more smoothness, or in other words a larger p, is required, then the partition π = π(p)
becomes more dense in general. The appropriate choice of p for practical computation depends on
the BVP and the required accuracy of the numerical solution.

The following convergence results for (4.5) are due to Bader [4, 5].
Theorem 4.1. Let u∗ ∈ Cp+1[a, b] for p > 1 be a solution of the problem (4.5) and suppose

i) F is sufficiently smooth
ii) the linearized problem associated with u∗ is uniquely solvable and has a Green’s function H(x, xi).
Then there exists δ, ε so that
a) there is no other solution ũ for |D(u∗ − ũ)| < ε
b) for h 6 δ there is a unique collocation solution uπ ∈ Pk+1,π ∩ C[a, b] in this neighborhood of u∗
c) Newton’s method applied to the collocation equations converges quadratically in a neighborhood
of uπ for h 6 δ.
d) the following error estimates hold for r = 0, 1

|Dr(u− uπ)| 6 κhmin(p,k)

e) Furthermore, for the collocation solution of the linearized problem ulinπ the following estimates
hold

|Dr(u− ulinπ )| 6 κhmin(p,k) and |Dr(u− uπ)| = Dr(u− ulinπ ) +O(h2 min(p,k)).

Proof. See [5] Theorem 2.1: pg.231, and [4].
For ODEs this is usually the departure point in deriving an even higher order of convergence

at mesh points, i.e. superconvergence for special sets of collocation points. A crucial basis for
all these results is that the Green’s matrix H(x, xi) has essentially the same smoothness as the
solution itself when x 6= xi. This property does not hold for DDEs, see [4] for a simple example. As
a consequence, superconvergence can not be shown in general. However, under severe restriction of
the class of problems considered and for a special construction of the partition π, superconvergence
can be shown to hold. In fact, for superconvergence to occur for DDEs of the form (4.5) the mesh
needs to be chosen such that mesh points are mapped into mesh points, and collocation points into
collocation points, by the delays. This implies that we can only expect to obtain superconvergence
when the sσ’s are rationally related.

This has been further analyzed by Bellen [10] for the special case of initial value problems. How-
ever, even if superconvergence is lost, the improvement of order of convergence over approximation
techniques is still substantial, since approximation theory uses systems of ODEs to approximate the
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solution of DDEs, and hence attempts to approximate solutions which are only usually piecewise
smooth through globally smooth functions (see for example [7]).

In contrast with the case of differential equations the error is not necessarily localized when
approximating these mixed type delay equations. This impacts the error estimation and hence the
mesh selection, and a future improvement will be to address this issue. The error estimation and
mesh selection employed are adopted from COLMOD and are described in [42]. Error estimation
is based upon the maximum moduli of the left-sided and right-sided approximations to the appro-
priate derivatives on each subinterval. Mesh selection is based upon so-called semi-equidistribution
in which the error over each subinterval is approximately equidistributed.
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