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We consider a phase space stability error control for numerical simulation of dynamical systems. We illustrate
how variable time-stepping algorithms perform poorly for long time computations which pass close to a fixed
point. A new error control was introduced in [9], which is a generalization of the error control first proposed

in [8]. In this error control, the local truncation error at each step is bounded by a fraction of the solution arc
length over the corresponding time interval. We show how this error control can be thought of either a phase
space or a stability error control. For linear systems with a stable hyperbolic fixed point, this error control
gives a numerical solution which is forced to converge to the fixed point. In particular, we analyze the forward
Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues . We
also consider the dynamics in the neighborhood of saddle points. We introduce a step-size selection scheme
which allows this error control to be incorporated within the standard adaptive algorithm as an extra constraint
at negligible extra computational cost. Theoretical and numerical results are presented to illustrate the behavior
of this error control.
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1 Introduction

Variable time-stepping algorithms are often used to solve the dynamical systems defined by autonomous initial
value ordinary differential equations (ODES)

ye=rf(y), y0)=y°eR™, 1)

wheref : R™ — IR™ is assumed to be Lipschitz continuous.

In a dynamical systems context an accurate solution of (1) over a given finite time-interval with a particular
y is often of little relevance; rather, it is the global behavior of the system for general valyganhe limit as
t — oo that is of interest.

When a fixed time-stepping numerical method is used to approximate the flow of (1) on or near to a chaotic
attractor the error between the numerical approximation and exact solution grows exponentially in time. This
leads us to question the meaningfulness of the numerical solution in the limit-aso. This issue has now
been studied in detail, and the approach of considering the numerical solution as a discrete dynamical system in
its own right, and then comparing the dynamics of this system with the dynamics of (1), has been particularly
fruitful (see [12] and the references therein).

It is widely accepted that to be efficient an ODE algorithm must be adaptive; that is, the step-size must be
varied according to some error measure. In contrast to the fixed step-size case, a dynamical systems oriented
theory for variable step-size algorithms is far from complete. Contributions in this area include [2, 5, 6] on
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behavior near stable equilibria, [7, 11] on systems with particular nonlinear structures, and [1] on spurious fixed
points.

Although typical adaptive algorithm performs well during finite time integration with fixed initial condition,it
is observed that three areas in which this algorithm performs badly. The first is behavior around a stable fixed
point. Hall [5] showed that typical methods fail to capture the correct dynamics in this very simple and important
scenario. An illustration of this behavior was given in [8]. A second area where poor behavior can arise was
identified in [1], where it was shown that almost all adaptive explicit Runge-Kutta methods admitsgiabitaus
fixed points for arbitrarily small tolerances.

The third area of poor performance of a typical adaptive ODE algorithm, and perhaps the most important in
a dynamical systems context, is near to saddle points. In a chaotic attractor it is often the unstable manifolds of
the fixed points which organdie the flow on the attractor. The numerical solution will thus only be give a good
approximation to the flow on the attractor if it models the unstable manifolds well. But to do this it must produce
good approximations to the local unstable manifolds. It was shown in [8], and is illustrated again in section 4.2
that the typical adaptive ODE algorithm fails to do this. Trajectories of (1) which approach a saddle point close
to the stable manifold and should pass close to the fixed point before exiting close to the unstable manifold,
can result in numerical trajectories which do not pass close to the fixed point and unstable manifold, or which
oscillate about the unstable manifold. In this case, we cannot be confident that the numerical solution is giving a
good approximation to the attractor or the dynamics on it.

To overcome these difficulties, a new error control, the phase s{{BS) error control, was introduced in
[9]. In this error control,the numerical solutidw,, } 52, satisfies the constraint

[Yn+1 = Yn = hal(1 = 0)f(yn) + 0.f (Yn+ Il < Phnll(1 = 0)f(yn) + 0.f (Yn+1)ll, )

at every step, wherg € (0,1) is a user defined parameter akin to a tolerance faad0, 1] is also a parameter

to be chosen. This is a generalization of the PS error control introduced in [8], which corresponded to (2) with
6 = 1/2. It was seen in [9] that this error control automatically controls the step-size relative to the stability
limit.Although the P$ constraint is applicable to arbitrary numerical method, we will concentrate on its use with
embedded Runge-Kutta pairs.

Next,we outline the traditional standard error control which performs badly near fixed points as mentioned
above, and we illustrate these performances in sections 4.1 and 4.2 and we see that how these are removed by the
addition of the Pg constraint.

Most of the ideas in this work apply to general variable time-stepping algorithms. In order to state precise
results, we focus on embedded explicit Runge-Kutta (ERK) pairs. The main details of a typical adaptive ERK
algorithm of the type available in numerical software libraries are described below. Further details of these
methods can be found, for example, in [3, 10].

Let ¢,, denote sequence of unequally spaced grid points in timgyamnote an approximation @f(¢,,) of
(1.1) andh,, a step-size at, such thati,, = t,,41 — t,, andt,, = Z;‘;Ol h;. Giveny, andh,,, the ERK pair is
defined as follows: An embedded Runge-Kutta pair is defined by

i—1
}/7', = Yn + hnzaijf(y})’ 1 g ? g S. (3)

j=1

Yn+1 = Yn + hnZ@f(K)v (4)
=1

Jot1 = Yot hod bif(Vi). ®)
=1

Here{a,;, bi,gi}, 1<j<i—1,1<1< sare the coefficients of the ERK pair. In equation 4),1 gives
an approximation to the solutia(¢,,+1) of (1.1) whereag,,+1, obtained from (5), is used only for local error
estimation and step-size selection. The coeffici¢nts, bi,E;}, 1<j<i—1,1<1i< s, of the above ERK
pair are usually represented by the Butcher array
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A
b .

b

Equations (3)-(5) are denoted B p(q), wherep is the order of the method usig andy,, 1, andq(# p)
is the order of the method usirg andy, 1. If p > ¢, then the method is said to be éxtrapolation mode
Otherwise, it is said to be inon-extrapolation moddn general, eithep = ¢+ 1 0orqg = p + 1.

In typical local error control, the differenag,. 1 — ¥,+1 yields an estimate of the local error which can be
used to alter the step-size during integration. An estimate of the local error is bounded at each time-step by a
user-defined tolerancewhich allows the step-size to either increase or decrease over the next step. Let

1 ~
E(ynvhn) = hT(?/n-ﬁ-l - yn+1)7 (6)

be an approximation to the local truncation error over a step with 0 (Error-Per-Step (EPS)) or with = 1
(Error-Per-Unit-Step (EPUS)). The error estimpfe(y,,, h,,)|| is used for two purposes, error control and step-
size selection. For both cases(EPS & EPUS), the stephsizchosen at each step such that

1E(Yn, bn)|| < 7, )

where0 < 7 <« 1. In this case an approximatiaf,+ is regarded as acceptable, otherwise the step-size is
rejected and re-computed with smaller step-size until the constraint (7) becomes true. The standard formula for
the next step is

NT 1/q
S @
B b

whereg is the largest integer such thaE (y,,, h,,)|| = O(h%). So, g = min(p,q) + 1 — p. The constant safety
factory € (0,1) is included to avoid rejecting too many steps. Values between 0.8 and 0.9 are typical.

In the next section, we discuss the behavior of the forward Euler method wijtheRSr control(2) when
applied to linear systems. In particular, for linear system, whose coefficient matrix has eigenvalues which are real
and negative, with a stable hyperbolic fixed point, it is shown that this error control gives a numerical solution
which is forced to converge to the fixed point. In section 3, the new step-size selection scheme is introduced
and step-size stability is discussed. In particular, we show that, in the neighborhood of fixed point, the step-size
h,, tends a constant value when degor control applied to the system of ODEs (1). In section 4, we present
some numerical simulations which illustrate and confirm our analysis, as regards the dynamics of the numerical
solutions and step-size sequences near fixed points. The work is summarized in section 5.

2 Linear System

In this section, we restrict to discuss the behavior of the forward Euler method ungermcontrol (2) when
applied to the linear system

v = Ay, y(0) =yo € R™ 9)

with realm x m matrix A.
When the forward Euler method is applied to the above system (9), the numerical sdlytiprevolves
according to

y" ' = R(h, A)y", (10)
whereR(h, A) is the stability polynomial matrix given by
R(hnA) =1+ h, A. (11)
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With (10) the P$ constraint (2) becomes
[R(hnA) =1 = hn[(1 = 0)A+ 0AR(hy A)ly" || < ohnl|[(1 — 0)A + 0AR(hn A)]y" |, (12)

for any vector normj| - ||.

We require the following theorem in order to discuss the behavior of the forward Euler method applied to the
system (9) under R ontrol (2).

Theorem 2.1 Consider the forward Euler method under P&tor control (2) in|| - ||co With ¢ < 6/(1 — 0)
applied to the system

ye = Ay, A =DiagA;,Xo,..., Am], N <O0Vi, y(0)=y"€R™ (13)

with A} < X2 < ... < Apm—1 < Ay < 0, and the initial conditions satisfy(0) = y° = [¢?,...,¢%] € R™ with
y9, # 0. Then||y" |« — 0 asn — oo with the following:

1. y» — 0 monotonically as: — oo;

2.0\ > WAm theny” — 0 and %= — 0 both monotonically as — oo;

n
Ym

3. If 9(%“")/\,%>/\i> [%f“")—l} Am theny™ — 0 and ;’T — 0asn — oo;

m

4. For all remaining components gf*, we havey] — 0 asn — oo with

;'

n
ym

lim sup

n—oo

<

5. Letd,, be the angle betweeyt and[0,0,--- ,0,1] € R™. Then

1 1 .
lim inf cos 0, > i 21,§(m,1)£+0(¢3)_
_ )
\/1+(m 1)< 71f¢)

Proof. For the system (13), the stability polynomial matfxh,, A) given by (11) is a diagonal matrix which is
expressed as

R(h,A) = Diag[l + hnA1, 1+ hpdo, - 14+ hpAp). (14)
With the co-norm, || - ||, from (12), (14) we have
—Hh%/\fy? >\1(1 + 9>\1hn)y?
—Oh2 N2y A2(1+ OAahn)ys
—0h2X2um 1l Am (1 +0Anhn)ym 11
This implies that at least one of the following
haO X2y < —oNi|l+ ONho |y, i=1,2,--- ,m (16)

must hold. Sincé,, > 0, the above constraint (16) implies that tile inequality of (16) holds if and only if

(pi , ..
Ab(L+ )’ ’ ’

hn\_

Since

¥ P .
- < - y 1 ]_,2,”',771
Aill+9) = An(l+¢)
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and one of (16) holdgy,, < —¢/\,.0(1 + ¢) for every steph,, satisfying P$ error constraint (2), and so (16)
is satisfied withi = m at every step. Sincg < 6/1 — 6, it follows thath,, < —ﬁ for every steph,, satisfying
PS error constraint (2). Now consider the evolutionyf. From (10), we obtain

Yt = (14 B A )y 17)

Since0 < 1+ hpA,, < 1 for every steph,, satisfying (2), it follows from (17) thag;!, — 0 monotonically as
n—oo.

Suppose that th&h inequality of (16) holds. Then by Theorem 5.2 of [9]< 1 + h,A; < 1. Now consider
the evolution

yrtt = (14 )yl a
Yy = (14 By )y (19)

It follows from (18) and (19) that
[ _ 1t bk 7]
’y%f-l 1+ hpAm |y17711|

which gives
sl
| Tyl

since); < A,,. Thatis, the ratiq'j/’#,i < m, decreases at any step for whith inequality of (16) holds. Since

1+ h,\ >0 andl + hpAm >0,
n+1 n
sin{ e} = san{ -
merl yﬁz

Suppose that th&h inequality of (16) fails angth component of the right hand side of (15) gile§~. Then

® ®
- _<h, < ——T—. 20
Ai0(1 + @) 201+ ) (20)

From (15), we have

hafAZ[YP] < =X |1+ 0Xhnly7 |- (21)
Sinceh,, < —m, 1+ h,0X; > 0. Thus the constraint (21) gives
)\.
el < = (L 0Mha) [y (22)

S h,62

Since—m < hp, it follows from (22) that

(1-3v%) A A A
] < At i = 2 (1+ 0 — o) |y < LA+ olyjl. (23)
A ; A Yy
i (A A+9) : i i
Now consider the evolution at the next step
vith o= (L M)y (24)
yith = (L Ny (25)
It follows from (24) and (25) that
n+1
; 1+ Xihnl |y
|.%n+1! _ A Aiha \yzn\. (26)
;| (L4 Ajhn) [y}
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Let
1 + Aihn

Flhn) = T (27)

This implies that
Fi(h) = 212 <
" (14 Ajhy)?
and hence is decreasing function df,,. SinceF'(0) = 1, it follows thatF'(h,,) < 1V h,, > 0. Then by (20)
¥ P
< S S S S )
Flnlls max{‘F ( N0+ w)) ’ i ( 2601+ w)) ’} 29

Now, consider two cases.
Case ()\; > W)‘m
In this case, we have+ h,A; > 0. Since, clearlyl + h,A; < 1, it follows from (18) and (24) thag? — 0
monotonically as: — oo whether or not théth inequality of (16) holds. Further, we have

0(1+¢) — 3¢
© ):( ) ,\])>0

Fl—

( A0(1+ @) 01+¢)—¢

which gives0 < F(h,) < 1V h, satisfying (20). Hence from (26) and (27), we obtain that the rj%%)
decreases at any step in whiith inequality of (16) fails. Sincgth constraint of (16) holds, we obtain that the

ratlol‘yi “ decreases as before. Thus the r:%aa‘L decreases at any step for whiith inequality of (16) fails and

hence the ratu# — 0 monotonically as: — oo whether or not théth inequality holds.

Case (ii) 9(““")/\ S>> [29(1“’) - 1} A

In this case we have

< 1.
Am ¥
- A 20
Ai A+y)
Aj @
=
X 00ty _00+e) (29)

Aj @ ¢
This implies that

%) _9(1+S0)_,>\\*;<P)
F<_A<6(1+so)> T dire e 0

Thus—1 < F(h,) < 1V h,, satisfying (20). It follows from (26) and (27) that the ra | | decreases. Since the

ratio ‘;’f; | also decreases , it follows that the raﬁeﬁ decreases and henf;ﬁ}%| — 0 asn — oo. Sincey), — 0
monotonically, it follows thay? — 0 asn — co. '

For all remaining components of, there are two cases.
If >\ < 200+¢) _
%}

(hn) < 1V h, satisfying (20). Hence the result
follows from case(u)
20(1+¢) i
If W“” —1<? v < M,then

© >:9(1+90)_§:;‘P)

F(_/\jt‘)(lﬂﬁ) it 9 " (30)
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Thus from (23), (26), (27), (28), (30) we obtain that

Ai
lyp st ~ L\ A
S 1_7@ At
] 3

0(1+)
Rty
T e
0(1+¢)
i
< 1 %
0(1+¢)
_ ¥
- o
0 — I+

Since the ratiq% — 0 asn — oo, for largen,

ly; |

Thus from (31) and(32), we have

vt ¢
’yn-&-l 9 _ m
for largen. Hence the result follows.
Let #,, be the angle betweeyf and|0, 0, 0,1] € R™. Then
0 Y B 1
COS — — —>"
\/ZL 1(y7) \/Zi:l(yi Jym)
Hence
. 1
lim inf cos 4,, - —
e hm Supn—»oo Zi:l (yln/y;z)Q
1 1

>

It follows from the result (4) that

1
liminf cos#, >

n— oo me1 v 2
1+ 25 ()

[1 +(m—1)p*(1+ @)% — (1 — 0)@),2}—1/2

= it m- 1)999—(1—#99)2 (1 ~Q —9)?)_2} /
g

—1/2
= [1+m-1D)S0+¢)? (1+2(1-0)= +(9( ))}

- (
}
)-

Hence the result (5) follows.

™ f -
\/Zizl limsup,,_, (y?/yﬁm)z \/1 + E:’:ll lim supn_)oo(y;l/y%)z

(31)

(32)

[m]
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Note that the bound if4) is independent of the stiffness/eigenvalues of the system and it can be made arbi-
trarily small by reducinge. In result (5), note that the exact solution will be tangerfot®, - - - , 0, 1] at the fixed
point, so this result gives us a bound on the angle between the exact and numerical solutions at the fixed point.
By reducingp, we can make the angle arbitrarily small(independent of the stiffness/eigenvalues).

Remark This results are extended to arbitrary norms and to non-diagonal linear system in the following theorem.

Theorem 2.2 Consider the forward Euler method undergSror control (2) with sufficiently smalb applied to
the system (9) where the matrixis diagonalizable with real negative eigenvalugsi = 1,2, - - - , m, satisfying
A <Ay <o < A1 < A < 0. Then||y™|| — 0 asn — oco.

Proof. Since the matrix4 is diagonalisable, there exists a non-singular maftisuch thatP~'AP = D a

diagonal matrix whose diagonal entries aie Ao, - - - , A,,,. Then the stability polynomial matriR(h.,, A) given
by (11) satisfies
P 'R(h,A)P = Diag[l + h, A1, 14+ hyde, - -+, 1+ hphy] = R(h, D)(Say). (33)

With (33), the inequality (12) becomes,

IP{R(7nD) = I = hn[(1 = 0)D + 0DR(hn D)|}2"[| < han || P[(1 = 0)D + 0D R(hy D)]2"| (34)
wherez" = P~1y". Now we define a new nor- || p by
[l p = 1Pz], VaeR™ (35)

With this norm, the constraint (34) becomes

|{R(hnD) — I = hyy[(1 — 0)D + DR (h,, D)]}2"|| ,, < @hl|[(1 — 0)D + DR(h,,D)]2"| .. (36)
Since norms are equivalent on a finite dimensional linear spage;, > 0 such that
allzlle < llzllp < c2flzfl, Vo € R™. (37)

By combining (36) and (37), we obtain

|{R(hnD) — I — hy[(1 — 0)D + 0DR(h, D)]}2"|| _ < ¢ <Cl> hn|/[(1 = 6)D + 6DR(h,D)]z"| .

(38)
This gives
9h A2z )\2(1 + GAghn)z”
e < pihn S : (39)
GhELA%l Zin 1l Am(1+ 0Amhn)zg, |||
wherep; = ¢ (z—j)(< 1 for sufficiently smalkp.) This implies that at least one of the following
hnOA7 |20 < —p1 Ni|l + 0Nk, |20, i =1,2,--- ,m (40)

must hold. Sincep is sufficiently small, we can chooseso thaty < <% giving ¢1 < ;. Hence by
theorem (2.1), we obtain thiit”|| — 0 asn — oo. This implies that|y™| — 0 asn — oo for any norm|| - ||
sincey™ = Pz™ and P is non-singular.

[m]
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3 Step-size selection and step-size stability

3.1 Step-size selection

The step-size selection strategies used in [8, 9] are not entirely satisfactory. So, we introduce a new step-size
strategy based on step-sizes derived from the standard error control aredrBScontrol respectively. First,

we derive the step-size which satisfies the B&nstraint(2). This step-size can be combined with the step-size
obtained from the standard algorithm in order to select a new step-size. Let

s — 9 — ol — 0)F () + 0F )|
Blynho) = 2 T 0) fl) + 0F )|

Now suppose the numerical solutiofig,} is generated by a method of orderand letu(t) be an exact
solution of the ODEs (1) with initial condition perturbed so thét,,) = y,,. Then

Ynt+1 = Yn — ha [(1 = 0) f(yn) + 0f (yn+1)]
[w(tns1) + ORET)] = u(tn) — ha [(1 = 6) f(u(tn)) + 0[f (ultn+1)) + O(RETH]]
= ultpsr) = ultn) = b [(1=0)f(u(tn)) + 0f (u(tnsr)] + O(REF)
= Lo(u(tntr)) + O(RE™)

whereLy is the local truncation error of thmethod. Hence
Ynt1 = Yn — hu [(1 = 0)f(yn) + 0f (Yns1)] = O(h; ") + O(RETY)
wherer = 2if § = 1/2 andr = 1 otherwise. Hence from (41), we have

Riga, i) = — ORI _ A7 0(n) + OGET)]|_ A1 ()]
M hall f(ya) + O) | hallf (ya) + O(hn)l 17 )

wherey(-) is a function off and its derivatives aj,,, andg > min(p, r) with ¢ = min(p, r) if p # r. Thus

(41)

+O(hIT) (42)

1. Method (4) of ordep = 1 andf = 1/2 impliesg = 1;
2. Method (4) of ordep = 2 andf = 1/2 impliesq > 1;
3. Method (4) of ordep > 2 andf # 1/2 impliesq = 1;
4. Method (4) of ordep > 3 andf = 1/2 impliesq = 2.

Other cases can be computed using Taylor series expansions.
Now, when advancing from, to¢,,.1, we want to choose a step-sizg, ; to satisfy the constraim®(y,, 11, hn+1) <
. To achieve this, we require that

R(yn+17 h’n+1) ~ XP, (43)

wherey € (0, 1) is a constant safety factor. By approximating

1 s~ 1F )l
we obtain from (42) that
R(Yn+1,hny1) B\

= . 44
Ry, hn) B (44)

It follows from (43) that

1/q
X¥

hpi1 = =———— . 45
= (7255) (45)
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We now describe in detail the strategy for computing the new step+sjzg, from the step-sizes derived
from the standard error control and thegRSror control. Consecutive step-sizes must safisfy; < ah,; this
restricts the relative increase of the step-size over each step, wigeamaximum step-size ratishich is set at
a = 5. Itis also common to impose a maximum step-sizg,., So thath,, < hyax for all n. Thus, using the
formulae (8) and (45) we calculate

hyy = (W )Uq B, (46)
£ (Yns hn) |
1/3
o=} n, 47
n+1 (R(yn’ hn)) ’ ( )

and compute

hnew = min{h§+17 hz,+17 ahy, hmax}- (48)

3.2 Step-size stability

In this section, we show that, in the neighborhood of fixed point, the steprsitEnds to a constant value when
PS constraint applied to the initial value problem (1). For the numerical solution is driven to be fixed point by
our algorithm, we require that in a neighborhood of the fixed point at every step, the step-sizes are chosen in (48)
according to the step-size given by (47).

Thus, in near fixed point, the evolution of the step-size will be determined by

xe  \"°
hn+1 (R(yn, hn)> hn . g(hn)a (49)
provided R(y.,h,) < ¢, whereR(y,,h,) is given by (41). This iteration (49) has a fixed polrit= G(h*)
at h* such thatR(y,, h*) = 1. For this iteration to be stable, we require th@t(h*)| < 1, with quadratic
convergence i’ (h*) = 0. We will now show that convergence of this iteration can be achieved with quadratic
convergence in the limit as — 0.

From (49), we have

1/q * (1/9)-1
gty = (W) _ (W) _XP g )
R(yn7 h*) q R(yn7 h*) R(yna h*)
h* 1
— = _Ru(yn, h). 50
NS h(Yn, B) (50)
whereR;,(-, ) denotes the derivative @t with respect tdh. Equation (42) implies that
Nyl -1 7
Ru(yn, h) = g0 g0~ 4 O(R). (51)
R TiT8T ")

From (50),(42),(51), we have

G'(h*)=1-(1+0O(h*)) = O(h*). (52)
SinceR(yn, h*) = x¢p, from (42), we have

O((h*)7) = xe. (53)
Hence from (52) and (53), we obtain

g'(h") = 0 ((x)"/1). (54)
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Thus, we expect that the step-sizg — h* in the neighborhood of a fixed point with quadratic convergence as
» — 0. We now illustrate this approximate analysis by considering the following example. Consider the forward
Euler method applied to the scalar linear problem

ye =Xy, y(0) =y €R (55)

with A < 0. Since this method is of ordér we have; = 1. From (41), we have

|Oh | Oh\
h)= =+ . 56
R(n) |14 6h\| 1+ 60hA (56)
OhA , . i
If R(h) = T oy then from (49) the fixed poirit* satisfiesR(h*) = xy, we have
Oh* A
X2 T o ®7)
This gives
* X$
Oh' = ———— <0, 58
A x0) 9
a contradiction. Thus
OhA
Rh) = =3 +0h)\ (59)
This implies that
)
"(h) = ————. 60
R'(h) (14+0))2 (60)
SinceR(h*) = xp, from (59), we have
* X$
OR* A= — 61
1+ xe (61)
and hence
14+ 6h*\ = . 62
1+ xp (62)
Thus, from (49), (59), (60) we have
h*OX 1 X 1
gh)=1+ —(1+ 2:1—~( )1+ Z=1-z(1+xp) =—
(h") TP (1+x¥) o \ T3 xo (1+x¥) q( Xp) = —Xx¢

sinceq = 1. Soify = 0, thenG’(h*) = 0 and we obtain quadratic convergence of the step-size given by the
iteration (49). Further-1 < G'(h*) < 0forall x, ¢ € (0, 1), the step-sizé,, converges tag* for anyy € (0, 1)
and for anyy € (0,1).

4 Numerical solutions and Step-size sequences

In this section, the efficiency of the P@&ugmented algorithm with new step-size selection scheme is evaluated

by carrying out a variety of numerical experiments. These results are compared with the results obtained by the
standard adaptive algorithm. Results for some selected problems and methods are reported here and conclusions
shown here have been found to be valid in general. The valug$onfeach method given by [9] are used here

for the corresponding methods.
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4.1 Stable fixed point Example
We consider the forward Euler (RK12) method applied to the system

Y = [ 78 _01 ] [ ‘Z; ] y=[y1,52)" (63)

andy(0) = [1,107%]T. A typical adaptive algorithm as defined in Section 1 with= 10~2 produces the
dynamics observed in Figure 1.

RK12 method with standard
T T T

10” T T T

s

= il L L
-0.002 0 0.002 0.004 0.006 0.008 0.01

107 L L =
-0.01 -0.008 -0.006 -0.004

Fig. 1 Numerical solutions of a typical adaptive algorithm near a stable fixed point for RK1(2).

RK1(2) with PS & Standard RK1(2) with PS;, & Standard

1" Linear stability fimit(x =5)

»-
S,
T

Step-size

PS, and Standard

0 F - = Standard
Rejected hn for Standard

L L L L L L L L 2 ) ) ) )
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25 30

Fig. 2 (i) Numerical solution using RK1(2) with RSaugmented algorithm around a stable fixed point. (ii) Step-sizes used
by the typical and PSaugmented algorithms.

For the RK1(2) method the numerical solution gives a persistent spurious oscillation. Although the final
solution is order of the tolerance from the fixed point, the spurious behavior persists for arbitrary small tolerances,
and it is not possible to force the solution to converge to the fixed point.

If we now apply the RK1(2) method with B®rror control and> = 0.1, we obtain the numerical solution in
Figure 2(i), where we see that the numerical solution converges to the true fixed point. In Figure 2(ii) we show
the step-size sequences used by the two algorithms. The typical adaptive algorithm has some step-size rejections,
whilst the P$ algorithm has no rejections and quickly converges to a constant value.
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4.2 Saddle point Example
We apply the RK2(3) and Fehlberg4(5) methods under standard adaptive error control to the system

w=| "o V[ %] v=tnr 69

so that the origin is a saddle point, and take) = [0.99,10~19]7; very close to the stable manifold.

RK2(3) with Standard RK4(5) with Standard
T T

Fig. 3 Numerical solutions of a typical adaptive algorithm near a saddle point for (i) RK2(3), (ii) Fehlberg4(5).

For RK2(3) method, it is observed in the Figure 3(i) that the numerical solution does not pass as close to the
fixed point or the local unstable manifold as it should, and there is also a significant phase difference between the
exact and numerical solutions. As in the previous example this behavior persists for arbitrary small tolerances. For
Fehlberg4(5) method, the numerical solution has a spurious oscillation about the unstable manifold, and although
this oscillation decays as the solution moves away from the fixed point, the numerical solution can ultimately
end up on either side of the unstable manifold depending on the exact initial condition; thus the property of the
unstable manifold of the fixed point acting as a separatrix is lost by the numerical solution.

If we now apply the RK2(3) method under P&ugmented error control with = 0.1, we obtain the numerical
solution in Figure 4(i), where we see that the numerical solution follows the exact solution very closely. In
Figure 4(ii) we show the step-sizes used by the two algorithms. The8rithm quickly settles to a constant
step-size whilst the solution is near the local stable manifold then adjusts to a different constant step-size whilst
the solution is near to the local unstable manifold. In contrast the poorer dynamical behavior of the typical
adaptive algorithm results from the large step-sizes that it uses whilst the solution is near to the origin. Note that
ultimately asy> becomes large the local error estimate determines and reduces the step-size in both algorithms;
the different times at which it does so reveals the large phase shift introduced by the typical adaptive algorithm.
Similar behavior is seen for the Fehlberg4(5) method in Figure 5.

4.3 Maximum step-size sequences

In this section, we plot the maximum acceptable step-sizes in phase space for pattdR&ndard error controls

in order to get the region in space where either one of these error controls determines the step-sizes. The maximum
step-sizes occur when the error control{®standard) is satisfied with equality. These maximum step-sizes are
computed when numerical methods with these error controls are applied to the linear systems (63), (64) and the
non-linear system, given by [4],

_ 2y2

T
( L y=ly, 65
2y1 — 3y7 — y2(y? —yT + 43 — ) y=lyvel (65)

Yt

with the constant = 0.
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RK2(3) with PSy RK2(3) with PS,, & Standard

10 T T T T T
Sy,
___ Py

- Standard
10° - o Rejected h_for Standard

9
-4 7
X107 F 1%
IS
g
n
\ \
& \ Y
0" 7 w0t \ 5
\ Y
\
\
| \
10° H \ B '
L N
\
~—_ \
- \
—_— .
107 ‘ s s s s ——S 0 ‘ ‘ ‘ ‘ ‘ y
-0.1 ) 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 0 5 10 15 20 25 30

Fig. 4 (i) Numerical solution using RK2(3) with RSaugmented error control around a saddle point. (ii) Step-sizes used by
the typical and Pgaugmented algorithms.

RK4(5) with PS, & Standard RK2(3) with PS, & Standard
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Fig. 5 (i) Numerical solution using RK4(5) with RSaugmented error control around a saddle point. (ii) Step-sizes used by
the typical and PS&augmented algorithms.

The figures 6-8 show that R&rror control only determines step-sizes near fixed point and standard error
control determines the step-sizes away from fixed points. In figure 9 we see thatstimeel®d controls the
step-sizes in most of phase space since the valyerefluces td 0—3.
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Fig. 6 Surface plot of the maximum acceptable step-size sequences when RK1(2) method is applied to the system (63) under
(1) PS error control. (ii) standard adaptive error control. (iii)P&hd standard (iv) PSand standard, where the maximum
step-sizes due to BS$s set at 1 and step-sizes due to standard is set at 0.
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Fig. 7 Surface plot of the maximum acceptable step-size sequences when RK2(3) method is applied to the system (64) under
(1) PS error control. (i) standard adaptive error control. (iii)fP&hd standard . (iv) RSand standard, where the maximum
stepsizes due to BB set at 1 and step-sizes due to standard is $et at
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Fig. 8 Surface plot of the maximum acceptable step-size sequences when RK1(2) method is applied to the system (65) under
(1) PS error control. (i) standard adaptive error control. (iii)P8hd standard. (iv) RSand standard ,where the maximum
stepsizes due to B$s set at 1 and step-sizes due to standard is gkt at
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Fig. 9 Surface plot of the maximum acceptable step-size sequences when RK2(3) method is applied to the system (64) under
PS error control and standard adaptive error control witk: 10~2 andr = 1075,
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4.4  Average step-size sequences

In this section, minimum, average and maximum step-sizes are computed for different vatusheri RK1(2)
method with P constraint is applied to the scalar differential equatjpp- —y and the linear system

-1 0 0
Yy = 0 -10 0|y (66)
0 0 -—100

These step-sizes are plotted agaipgst

RK1(2) method with PS; RK1(2) method with PS;

stability limit for A=-1 stability limit for A, =-1

maximum step-size (:)

maximum step-size ()
average siep-size () stability limit for \,=-10 J\

average step-size ()
stability limit for A,=~100

minimum step-size (--) f

minimum step-size (~-)

L L L L L L L L L 4 [ L L L L
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Xe Xe

Fig. 10 (i) Minimum,average and maximum step-sizes when RK1(2) method is applied to the scalar eguationy
under P$ error control. (i) Minimum, average and maximum step-sizes when RK1(2) method is applied to the system (66)
under P$ error control .

The figure 10(i) shows that all steps are below the stability limit. This ensures the monotonic convergence of
the solution. In figure 10(ii), we see that all steps are below the stability limit fer—1, ensuring the monotonic
convergence of this component. It is also observed that the average step sizes are below the stability limit for
A = —10 except some step-sizes above this limit for > 0.9 and average and maximum step-sizes are above
the stability limit for A\ = —100.

5 Conclusions

In summary, the error control (2) does not influence the numerical solution in most region of phase space, but
improves the performance near fixed points. More precisely, the error control is designed to positively affect the
linear stability property around true fixed points. The new step-size scheme, which is introduced in this paper,
leads to stable step-sizes(with quadratics convergence, in the limit-as0, to a constant value) near fixed
points.

In this paper, the P&rror control is analyzed only for forward Euler method applied to the linear system
whose coefficient matrix has only real(negative) eigenvalues and it is shown that for the linear system of this
type with a stable hyperbolic fixed point, the numerical solution which is forced to converge to the fixed point.
The analysis of this error control for forward Euler method applied to the linear system, whose coefficient matrix
has complex eigenvalues with negative real part, could be considered. The analysis of the error control for
general explicit Runge-Kutta methods will also be possible. These two issues will be focused and analyzed in the
forthcoming paper.
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