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We consider a phase space stability error control for numerical simulation of dynamical systems. We illustrate
how variable time-stepping algorithms perform poorly for long time computations which pass close to a fixed
point. A new error control was introduced in [9], which is a generalization of the error control first proposed
in [8]. In this error control, the local truncation error at each step is bounded by a fraction of the solution arc
length over the corresponding time interval. We show how this error control can be thought of either a phase
space or a stability error control. For linear systems with a stable hyperbolic fixed point, this error control
gives a numerical solution which is forced to converge to the fixed point. In particular, we analyze the forward
Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues . We
also consider the dynamics in the neighborhood of saddle points. We introduce a step-size selection scheme
which allows this error control to be incorporated within the standard adaptive algorithm as an extra constraint
at negligible extra computational cost. Theoretical and numerical results are presented to illustrate the behavior
of this error control.
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1 Introduction

Variable time-stepping algorithms are often used to solve the dynamical systems defined by autonomous initial
value ordinary differential equations (ODEs)

yt = f(y), y(0) = y0 ∈ IRm, (1)

wheref : IRm → IRm is assumed to be Lipschitz continuous.
In a dynamical systems context an accurate solution of (1) over a given finite time-interval with a particular

y0 is often of little relevance; rather, it is the global behavior of the system for general values ofy0 in the limit as
t →∞ that is of interest.

When a fixed time-stepping numerical method is used to approximate the flow of (1) on or near to a chaotic
attractor the error between the numerical approximation and exact solution grows exponentially in time. This
leads us to question the meaningfulness of the numerical solution in the limit ast → ∞. This issue has now
been studied in detail, and the approach of considering the numerical solution as a discrete dynamical system in
its own right, and then comparing the dynamics of this system with the dynamics of (1), has been particularly
fruitful (see [12] and the references therein).

It is widely accepted that to be efficient an ODE algorithm must be adaptive; that is, the step-size must be
varied according to some error measure. In contrast to the fixed step-size case, a dynamical systems oriented
theory for variable step-size algorithms is far from complete. Contributions in this area include [2, 5, 6] on
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behavior near stable equilibria, [7, 11] on systems with particular nonlinear structures, and [1] on spurious fixed
points.

Although typical adaptive algorithm performs well during finite time integration with fixed initial condition,it
is observed that three areas in which this algorithm performs badly. The first is behavior around a stable fixed
point. Hall [5] showed that typical methods fail to capture the correct dynamics in this very simple and important
scenario. An illustration of this behavior was given in [8]. A second area where poor behavior can arise was
identified in [1], where it was shown that almost all adaptive explicit Runge-Kutta methods admit stablespurious
fixed points for arbitrarily small tolerances.

The third area of poor performance of a typical adaptive ODE algorithm, and perhaps the most important in
a dynamical systems context, is near to saddle points. In a chaotic attractor it is often the unstable manifolds of
the fixed points which organdie the flow on the attractor. The numerical solution will thus only be give a good
approximation to the flow on the attractor if it models the unstable manifolds well. But to do this it must produce
good approximations to the local unstable manifolds. It was shown in [8], and is illustrated again in section 4.2
that the typical adaptive ODE algorithm fails to do this. Trajectories of (1) which approach a saddle point close
to the stable manifold and should pass close to the fixed point before exiting close to the unstable manifold,
can result in numerical trajectories which do not pass close to the fixed point and unstable manifold, or which
oscillate about the unstable manifold. In this case, we cannot be confident that the numerical solution is giving a
good approximation to the attractor or the dynamics on it.

To overcome these difficulties, a new error control, the phase spaceθ(PSθ) error control, was introduced in
[9]. In this error control,the numerical solution{yn}∞n=0 satisfies the constraint

‖yn+1 − yn − hn[(1− θ)f(yn) + θf(yn+1)]‖ 6 ϕhn‖(1− θ)f(yn) + θf(yn+1)‖, (2)

at every step, whereϕ ∈ (0, 1) is a user defined parameter akin to a tolerance, andθ ∈ [0, 1] is also a parameter
to be chosen. This is a generalization of the PS error control introduced in [8], which corresponded to (2) with
θ = 1/2. It was seen in [9] that this error control automatically controls the step-size relative to the stability
limit.Although the PSθ constraint is applicable to arbitrary numerical method, we will concentrate on its use with
embedded Runge-Kutta pairs.

Next,we outline the traditional standard error control which performs badly near fixed points as mentioned
above, and we illustrate these performances in sections 4.1 and 4.2 and we see that how these are removed by the
addition of the PSθ constraint.

Most of the ideas in this work apply to general variable time-stepping algorithms. In order to state precise
results, we focus on embedded explicit Runge-Kutta (ERK) pairs. The main details of a typical adaptive ERK
algorithm of the type available in numerical software libraries are described below. Further details of these
methods can be found, for example, in [3, 10].

Let tn denote sequence of unequally spaced grid points in time andyn denote an approximation ofy(tn) of
(1.1) andhn a step-size attn such thathn = tn+1 − tn andtn =

∑n−1
j=0 hj . Givenyn andhn, the ERK pair is

defined as follows: An embedded Runge-Kutta pair is defined by

Yi = yn + hn

i−1∑

j=1

aijf(Yj), 1 6 i 6 s. (3)

yn+1 = yn + hn

s∑

i=1

bif(Yi), (4)

ỹn+1 = yn + hn

s∑

i=1

b̃if(Yi). (5)

Here{aij , bi, b̃i}, 1 6 j 6 i− 1 , 1 6 i 6 s are the coefficients of the ERK pair. In equation (4),yn+1 gives
an approximation to the solutiony(tn+1) of (1.1) whereas̃yn+1, obtained from (5), is used only for local error
estimation and step-size selection. The coefficients{aij , bi, b̃i}, 1 6 j 6 i − 1, 1 6 i 6 s, of the above ERK
pair are usually represented by the Butcher array
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A
b

b̃

.

Equations (3)-(5) are denoted byRKp(q), wherep is the order of the method usingYi andyn+1, andq( 6= p)
is the order of the method usingYi and ỹn+1. If p > q, then the method is said to be inextrapolation mode.
Otherwise, it is said to be innon-extrapolation mode. In general, eitherp = q + 1 or q = p + 1.

In typical local error control, the differenceyn+1 − ỹn+1 yields an estimate of the local error which can be
used to alter the step-size during integration. An estimate of the local error is bounded at each time-step by a
user-defined toleranceτ which allows the step-size to either increase or decrease over the next step. Let

E(yn, hn) =
1
hρ

n
(yn+1 − ỹn+1), (6)

be an approximation to the local truncation error over a step withρ = 0 (Error-Per-Step (EPS)) or withρ = 1
(Error-Per-Unit-Step (EPUS)). The error estimate‖E(yn, hn)‖ is used for two purposes, error control and step-
size selection. For both cases(EPS & EPUS), the step-sizehn is chosen at each step such that

‖E(yn, hn)‖ 6 τ, (7)

where0 < τ ¿ 1 . In this case an approximationyn+1 is regarded as acceptable, otherwise the step-size is
rejected and re-computed with smaller step-size until the constraint (7) becomes true. The standard formula for
the next step is

hn+1 =
(

γτ

‖E(yn, hn)‖
)1/q

hn, (8)

whereq is the largest integer such that‖E(yn, hn)‖ = O(hq
n). So, q = min(p, q) + 1− ρ. The constant safety

factorγ ∈ (0, 1) is included to avoid rejecting too many steps. Values ofγ between 0.8 and 0.9 are typical.
In the next section, we discuss the behavior of the forward Euler method with PSθ error control(2) when

applied to linear systems. In particular, for linear system, whose coefficient matrix has eigenvalues which are real
and negative, with a stable hyperbolic fixed point, it is shown that this error control gives a numerical solution
which is forced to converge to the fixed point. In section 3, the new step-size selection scheme is introduced
and step-size stability is discussed. In particular, we show that, in the neighborhood of fixed point, the step-size
hn tends a constant value when PSθerror control applied to the system of ODEs (1). In section 4, we present
some numerical simulations which illustrate and confirm our analysis, as regards the dynamics of the numerical
solutions and step-size sequences near fixed points. The work is summarized in section 5.

2 Linear System

In this section, we restrict to discuss the behavior of the forward Euler method under PSθ error control (2) when
applied to the linear system

yt = Ay, y(0) = y0 ∈ IRm (9)

with realm×m matrixA.
When the forward Euler method is applied to the above system (9), the numerical solution{yn} evolves

according to

yn+1 = R(hnA)yn, (10)

whereR(hnA) is the stability polynomial matrix given by

R(hnA) = I + hnA. (11)
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With (10) the PSθ constraint (2) becomes

‖R(hnA)− 1− hn[(1− θ)A + θAR(hnA)]yn‖ 6 ϕhn‖[(1− θ)A + θAR(hnA)]yn‖, (12)

for any vector norm‖ · ‖.
We require the following theorem in order to discuss the behavior of the forward Euler method applied to the

system (9) under PSθ control (2).

Theorem 2.1 Consider the forward Euler method under PSθ error control (2) in ‖ · ‖∞ with ϕ < θ/(1 − θ)
applied to the system

yt = Λy, Λ = Diag[λ1, λ2, . . . , λm], λi < 0 ∀i, y(0) = y0 ∈ IRm (13)

with λ1 < λ2 < . . . < λm−1 < λm < 0, and the initial conditions satisfyy(0) = y0 = [y0
1 , . . . , y0

m] ∈ IRm with
y0

m 6= 0. Then‖yn‖∞ → 0 asn →∞ with the following:

1. yn
m → 0 monotonically asn →∞;

2. If λi > θ(1+ϕ)
ϕ λm thenyn

i → 0 and yn
i

yn
m
→ 0 both monotonically asn →∞;

3. If θ(1+ϕ)
ϕ λm > λi >

[
2θ(1+ϕ)

ϕ − 1
]
λm thenyn

i → 0 and
∣∣∣ yn

i

yn
m

∣∣∣ → 0 asn →∞;

4. For all remaining components ofyn, we haveyn
i → 0 asn →∞ with

lim sup
n→∞

∣∣∣∣
yn

i

yn
m

∣∣∣∣ <
ϕ

θ − ϕ
1+ϕ

;

5. Letθn be the angle betweenyn and[0, 0, · · · , 0, 1] ∈ IRm. Then

lim inf
n→∞

cos θn > 1√
1 + (m− 1)

(
ϕ

θ− ϕ
1+ϕ

)2
> 1− 1

2
(m− 1)

ϕ2

θ2
+O(ϕ3).

Proof. For the system (13), the stability polynomial matrixR(hnA) given by (11) is a diagonal matrix which is
expressed as

R(hnA) = Diag[1 + hnλ1, 1 + hnλ2, · · · , 1 + hnλm]. (14)

With the∞-norm,‖ · ‖∞, from (12), (14) we have
∥∥∥∥∥∥∥∥∥




−θh2
nλ2

1y
n
1

−θh2
nλ2

2y
n
2

...
−θh2

nλ2
myn

m




∥∥∥∥∥∥∥∥∥
∞

6 ϕhn

∥∥∥∥∥∥∥∥∥




λ1(1 + θλ1hn)yn
1

λ2(1 + θλ2hn)yn
2

...
λm(1 + θλmhn)yn

m




∥∥∥∥∥∥∥∥∥
∞

· (15)

This implies that at least one of the following

hnθλ2
i |yn

i | 6 −ϕλi|1 + θλihn||yn
i |, i = 1, 2, · · · ,m (16)

must hold. Sincehn > 0, the above constraint (16) implies that theith inequality of (16) holds if and only if

hn 6 − ϕ

λiθ(1 + ϕ)
, i = 1, 2 · · · ,m.

Since
− ϕ

λi(1 + ϕ)
6 − ϕ

λm(1 + ϕ)
, i = 1, 2, · · · ,m
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and one of (16) holds,hn 6 −ϕ/λmθ(1 + ϕ) for every stephn satisfying PSθ error constraint (2), and so (16)
is satisfied withi = m at every step. Sinceϕ < θ/1− θ, it follows thathn < − 1

λm
for every stephn satisfying

PSθ error constraint (2). Now consider the evolution ofyn
m. From (10), we obtain

yn+1
m = (1 + hnλm)yn

m. (17)

Since0 < 1 + hnλm < 1 for every stephn satisfying (2), it follows from (17) thatyn
m → 0 monotonically as

n →∞ .
Suppose that theith inequality of (16) holds. Then by Theorem 5.2 of [9],0 < 1 + hnλi < 1. Now consider

the evolution

yn+1
i = (1 + hnλi)yn

i , (18)

yn+1
m = (1 + hnλm)yn

m. (19)

It follows from (18) and (19) that ∣∣yn+1
i

∣∣
∣∣yn+1

m

∣∣ =
1 + hnλi

1 + hnλm

|yn
i |

|yn
m|

which gives ∣∣yn+1
i

∣∣
∣∣yn+1

m

∣∣ <
|yn

i |
|yn

m|
sinceλi < λm. That is, the ratio|y

n
i |

|yn
m| , i < m, decreases at any step for whichith inequality of (16) holds. Since

1 + hnλi > 0 and1 + hnλm > 0,

Sign

{
yn+1

i

yn+1
m

}
= Sign

{
yn

i

yn
m

}
.

Suppose that theith inequality of (16) fails andjth component of the right hand side of (15) gives‖·‖∞. Then

− ϕ

λiθ(1 + ϕ)
< hn 6 − ϕ

λjθ(1 + ϕ)
. (20)

From (15), we have

hnθλ2
i |yn

i | 6 −ϕλj |1 + θλjhn||yn
j |. (21)

Sincehn 6 − ϕ
λjθ(1+ϕ) , 1 + hnθλj > 0. Thus the constraint (21) gives

|yn
i | 6 − ϕλj

hnθλ2
i

(1 + θλjhn)
∣∣yn

j

∣∣ . (22)

Since− ϕ
λjθ(1+ϕ) < hn, it follows from (22) that

|yn
i | < −ϕλj

(
1− λj

λi

ϕ
1+ϕ

)

λ2
i

ϕ
(−λi)(1+ϕ)

∣∣yn
j

∣∣ =
λj

λi

(
1 + ϕ− λj

λi
ϕ

) ∣∣yn
j

∣∣ <
λj

λi
(1 + ϕ)|yn

j |. (23)

Now consider the evolution at the next step

yn+1
i = (1 + λihn)yn

i , (24)

yn+1
j = (1 + λjhn)yn

j . (25)

It follows from (24) and (25) that
∣∣yn+1

i

∣∣
|yn+1

j | =
|1 + λihn|
(1 + λjhn)

|yn
i |

|yn
j |
· (26)
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Let

F (hn) =
1 + λihn

1 + λjhn
. (27)

This implies that

F ′(hn) =
λi − λj

(1 + λjhn)2
< 0

and henceF is decreasing function ofhn. SinceF (0) = 1, it follows thatF (hn) < 1 ∀ hn > 0. Then by (20)

|F (hn)| 6 max
{∣∣∣∣F

(
− ϕ

λiθ(1 + ϕ)

)∣∣∣∣ ,

∣∣∣∣F
(
− ϕ

λjθ(1 + ϕ)

)∣∣∣∣
}

. (28)

Now, consider two cases.
Case (i)λi > θ(1+ϕ)

ϕ λm

In this case, we have1 + hnλi > 0. Since, clearly1 + hnλi < 1 , it follows from (18) and (24) thatyn
i → 0

monotonically asn →∞ whether or not theith inequality of (16) holds. Further, we have

F

(
− ϕ

λjθ(1 + ϕ)

)
=

θ(1 + ϕ)− λi

λj
ϕ)

θ(1 + ϕ)− ϕ
> 0

which gives0 < F (hn) < 1 ∀ hn satisfying (20). Hence from (26) and (27), we obtain that the ratio|yn
i |

|yn
j |

decreases at any step in whichith inequality of (16) fails. Sincejth constraint of (16) holds, we obtain that the

ratio
|yn

j |
|yn

m| decreases as before. Thus the ratio|yn
i |

|yn
m| decreases at any step for whichith inequality of (16) fails and

hence the ratioy
n
i

yn
m
→ 0 monotonically asn →∞ whether or not theith inequality holds.

Case (ii) θ(1+ϕ)
ϕ λm > λi >

[
2θ(1+ϕ)

ϕ − 1
]
λm

In this case we have
λi

λm
6 2θ(1 + ϕ)

ϕ
− 1.

⇒
λi

λj
6 2θ(1 + ϕ)

ϕ
− 1.

⇒
λi

λj
− θ(1 + ϕ)

ϕ
6 θ(1 + ϕ)

ϕ
− 1. (29)

This implies that

F

(
− ϕ

λjθ(1 + ϕ)

)
=

θ(1 + ϕ)− λi

λj
ϕ)

θ(1 + ϕ)− ϕ
> −1.

Thus−1 < F (hn) < 1 ∀ hn satisfying (20). It follows from (26) and (27) that the ratio|y
n
i |
|yn

j | decreases. Since the

ratio
|yn

j |
|yn

m| also decreases , it follows that the ratio|y
n
i |

|yn
m| decreases and hence|y

n
i |

|yn
m| → 0 asn →∞. Sinceyn

m → 0
monotonically, it follows thatyn

i → 0 asn →∞.
For all remaining components ofyn, there are two cases.
If λi

λj
6 2θ(1+ϕ)

ϕ − 1 < λi

λm
, it can be shown that−1 < F (hn) < 1 ∀ hn satisfying (20). Hence the result

follows from case(ii).
If 2θ(1+ϕ)

ϕ − 1 < λi

λj
6 λi

λm
, then

F

(
− ϕ

λjθ(1 + ϕ)

)
=

θ(1 + ϕ)− λi

λj
ϕ)

θ(1 + ϕ)− ϕ
< −1. (30)
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Thus from (23), (26), (27), (28), (30) we obtain that

|yn+1
i |

|yn+1
j | 6

(
λi

λj

ϕ
θ(1+ϕ) − 1

1− ϕ
θ(1+ϕ)

)
λj

λi
(1 + ϕ)

=
ϕ
θ −

λj

λi
(1 + ϕ)

1− ϕ
θ(1+ϕ)

<
ϕ
θ

1− ϕ
θ(1+ϕ)

=
ϕ

θ − ϕ
1+ϕ

. (31)

Since the ratio
|yn

j |
|yn

m| → 0 asn →∞, for largen,

|yn+1
j |

|yn+1
m | < 1. (32)

Thus from (31) and(32), we have
∣∣yn+1

i

∣∣
∣∣yn+1

m

∣∣ <
ϕ

θ − ϕ
1+ϕ

for largen. Hence the result4 follows.
Let θn be the angle betweenyn and[0, 0, . . . , 0, 1] ∈ IRm. Then

cos θn =
|yn

m|√∑m
i=1(y

n
i )2

=
1√∑m

i=1(y
n
i /yn

m)2
.

Hence

lim inf
n→∞

cos θn =
1

lim supn→∞
√∑m

i=1(y
n
i /yn

m)2

> 1√∑m
i=1 lim supn→∞(yn

i /yn
m)2

=
1√

1 +
∑m−1

i=1 lim supn→∞(yn
i /yn

m)2

It follows from the result (4) that

lim inf
n→∞

cos θn > 1√
1 +

∑m−1
i=1

(
ϕ

θ− ϕ
1+ϕ

)2

=
[
1 + (m− 1)ϕ2(1 + ϕ)2(θ − (1− θ)ϕ)−2

]−1/2

=
[
1 + (m− 1)

ϕ2

θ2
(1 + ϕ)2

(
1− (1− θ)

ϕ

θ

)−2
]−1/2

=
[
1 + (m− 1)

ϕ2

θ2
(1 + ϕ)2

(
1 + 2(1− θ)

ϕ

θ
+O(ϕ2)

)]−1/2

=
[
1 + (m− 1)

ϕ2

θ2
+O(ϕ3)

]−1/2

= 1− 1
2
(m− 1)

ϕ2

θ2
+O(ϕ3).

Hence the result (5) follows. 2
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Note that the bound in(4) is independent of the stiffness/eigenvalues of the system and it can be made arbi-
trarily small by reducingϕ. In result (5), note that the exact solution will be tangent to[0, 0, · · · , 0, 1] at the fixed
point, so this result gives us a bound on the angle between the exact and numerical solutions at the fixed point.
By reducingϕ, we can make the angle arbitrarily small(independent of the stiffness/eigenvalues).

Remark This results are extended to arbitrary norms and to non-diagonal linear system in the following theorem.

Theorem 2.2 Consider the forward Euler method under PSθ error control (2) with sufficiently smallϕ applied to
the system (9) where the matrixA is diagonalizable with real negative eigenvaluesλi, i = 1, 2, · · · ,m, satisfying
λ1 < λ2 < · · · < λm−1 < λm < 0. Then‖yn‖ → 0 asn →∞.

Proof. Since the matrixA is diagonalisable, there exists a non-singular matrixP such thatP−1AP = D a
diagonal matrix whose diagonal entries areλ1, λ2, · · · , λm. Then the stability polynomial matrixR(hnA) given
by (11) satisfies

P−1R(hnA)P = Diag[1 + hnλ1, 1 + hnλ2, · · · , 1 + hnλm] = R(hnD)(Say). (33)

With (33), the inequality (12) becomes,

‖P{R(hnD)− I − hn[(1− θ)D + θDR(hnD)]}zn‖ 6 ϕhn‖P [(1− θ)D + θDR(hnD)]zn‖ (34)

wherezn = P−1yn. Now we define a new norm‖ · ‖P by

‖x‖P = ‖Px‖, ∀x ∈ IRm. (35)

With this norm, the constraint (34) becomes

∥∥{R(hnD)− I − hn[(1− θ)D + θDR(hnD)]}zn
∥∥

P
6 ϕhn

∥∥[(1− θ)D + θDR(hnD)]zn
∥∥

P
. (36)

Since norms are equivalent on a finite dimensional linear space,∃c1, c2 > 0 such that

c1‖x‖∞ 6 ‖x‖P 6 c2‖x‖∞ ∀x ∈ IRm. (37)

By combining (36) and (37), we obtain

∥∥{R(hnD)− I − hn[(1− θ)D + θDR(hnD)]}zn
∥∥
∞ 6 ϕ

(
c2

c1

)
hn

∥∥[(1− θ)D + θDR(hnD)]zn
∥∥
∞.

(38)

This gives
∥∥∥∥∥∥∥∥∥




−θh2
nλ2

1z
n
1

−θh2
nλ2

2z
n
2

...
−θh2

nλ2
mzn

m




∥∥∥∥∥∥∥∥∥
∞

6 ϕ1hn

∥∥∥∥∥∥∥∥∥




λ1(1 + θλ1hn)zn
1

λ2(1 + θλ2hn)zn
2

...
λm(1 + θλmhn)zn

m




∥∥∥∥∥∥∥∥∥
∞

· (39)

whereϕ1 = ϕ
(

c2
c1

)
(< 1 for sufficiently smallϕ.) This implies that at least one of the following

hnθλ2
i |zn

i | 6 −ϕ1λi|1 + θλihn||zn
i |, i = 1, 2, · · · ,m (40)

must hold. Sinceϕ is sufficiently small, we can chooseϕ so thatϕ < c1
c2

θ
1−θ giving ϕ1 < θ

1−θ . Hence by
theorem (2.1), we obtain that‖zn‖ → 0 asn → ∞. This implies that‖yn‖ → 0 asn → ∞ for any norm‖ · ‖
sinceyn = Pzn andP is non-singular.

2
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3 Step-size selection and step-size stability

3.1 Step-size selection

The step-size selection strategies used in [8, 9] are not entirely satisfactory. So, we introduce a new step-size
strategy based on step-sizes derived from the standard error control and PSθ error control respectively. First,
we derive the step-size which satisfies the PSθ constraint(2). This step-size can be combined with the step-size
obtained from the standard algorithm in order to select a new step-size. Let

R(yn, hn) =
‖yn+1 − yn − hn[(1− θ)f(yn) + θf(yn+1)‖

hn‖(1− θ)f(yn) + θf(yn+1)‖ . (41)

Now suppose the numerical solutions{yn} is generated by a method of orderp and letu(t) be an exact
solution of the ODEs (1) with initial condition perturbed so thatu(tn) = yn. Then

yn+1 − yn − hn [(1− θ)f(yn) + θf(yn+1)]
= [u(tn+1) +O(hp+1

n )]− u(tn)− hn

[
(1− θ)f(u(tn)) + θ[f(u(tn+1)) +O(hp+1

n )]
]

= u(tn+1)− u(tn)− hn [(1− θ)f(u(tn)) + θf(u(tn+1))] +O(hp+1
n )

= Lθ(u(tn+1)) +O(hp+1
n )

whereLθ is the local truncation error of theθ-method. Hence

yn+1 − yn − hn [(1− θ)f(yn) + θf(yn+1)] = O(hr+1
n ) +O(hp+1

n )

wherer = 2 if θ = 1/2 andr = 1 otherwise. Hence from (41), we have

R(yn, hn) =
‖O(hq̃+1

n )‖
hn‖f(yn) +O(hn)‖ =

∥∥hq̃+1ψ(yn) +O(hq̃+2
n )

∥∥
hn‖f(yn) +O(hn)‖ =

hq̃
n‖ψ(yn)‖
‖f(yn)‖ +O(hq̃+1

n ) (42)

whereψ(·) is a function off and its derivatives atyn, andq̃ > min(p, r) with q̃ = min(p, r) if p 6= r. Thus

1. Method (4) of orderp = 1 andθ = 1/2 implies q̃ = 1;

2. Method (4) of orderp = 2 andθ = 1/2 implies q̃ > 1;

3. Method (4) of orderp > 2 andθ 6= 1/2 implies q̃ = 1;

4. Method (4) of orderp > 3 andθ = 1/2 implies q̃ = 2.

Other cases can be computed using Taylor series expansions.
Now, when advancing fromtn to tn+1, we want to choose a step-sizehn+1 to satisfy the constraintR(yn+1, hn+1) 6

ϕ. To achieve this, we require that

R(yn+1, hn+1) ≈ χϕ, (43)

whereχ ∈ (0, 1) is a constant safety factor. By approximating

|ψ(yn+1)‖
‖f(yn+1)‖ ≈

‖ψ(yn)‖
‖f(yn)‖ ,

we obtain from (42) that

R(yn+1, hn+1)
R(yn, hn)

=
(

hn+1

hn

)q̃

. (44)

It follows from (43) that

hn+1 =
(

χϕ

R(yn, hn)

)1/q̃

hn. (45)
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We now describe in detail the strategy for computing the new step-size,hnew, from the step-sizes derived
from the standard error control and the PSθ error control. Consecutive step-sizes must satisfyhn+1 6 αhn; this
restricts the relative increase of the step-size over each step, whereα is amaximum step-size ratiowhich is set at
α = 5. It is also common to impose a maximum step-size,hmax, so thathn 6 hmax for all n. Thus, using the
formulae (8) and (45) we calculate

hS
n+1 =

(
γτ

‖E(yn, hn)‖
)1/q

hn, (46)

hθ
n+1 =

(
χϕ

R(yn, hn)

)1/q̃

hn, (47)

and compute

hnew = min{hS
n+1, h

θ
n+1, αhn, hmax}. (48)

3.2 Step-size stability

In this section, we show that, in the neighborhood of fixed point, the step-sizehn tends to a constant value when
PSθ constraint applied to the initial value problem (1). For the numerical solution is driven to be fixed point by
our algorithm, we require that in a neighborhood of the fixed point at every step, the step-sizes are chosen in (48)
according to the step-size given by (47).

Thus, in near fixed point, the evolution of the step-size will be determined by

hn+1 =
(

χϕ

R(yn, hn)

)1/q̃

hn := G(hn), (49)

provided R(yn, hn) 6 ϕ, whereR(yn, hn) is given by (41). This iteration (49) has a fixed pointh∗ = G(h∗)
at h∗ such thatR(yn, h∗) = γ1ϕ. For this iteration to be stable, we require that|G′(h∗)| < 1, with quadratic
convergence ifG′(h∗) = 0. We will now show that convergence of this iteration can be achieved with quadratic
convergence in the limit asϕ → 0.

From (49), we have

G′(h∗) =
(

χϕ

R(yn, h∗)

)1/q̃

− h∗

q̃

(
χϕ

R(yn, h∗)

)(1/q̃)−1
χϕ

R(yn, h∗)2
Rh(yn, h∗)

= 1− h∗

q̃

1
R(yn, h∗)

Rh(yn, h∗). (50)

whereRh(·, ·) denotes the derivative ofR with respect toh. Equation (42) implies that

Rh(yn, h) = q̃
‖ψ(yn)‖
‖f(yn)‖hq̃−1 +O(hq̃). (51)

From (50),(42),(51), we have

G′(h∗) = 1− (1 +O(h∗)) = O(h∗). (52)

SinceR(yn, h∗) = χϕ, from (42), we have

O((h∗)q̃) = χϕ. (53)

Hence from (52) and (53), we obtain

G′(h∗) = O
(
(χϕ)1/q̃

)
. (54)
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Thus, we expect that the step-sizehn → h∗ in the neighborhood of a fixed point with quadratic convergence as
ϕ → 0. We now illustrate this approximate analysis by considering the following example. Consider the forward
Euler method applied to the scalar linear problem

yt = λy, y(0) = y0 ∈ IR (55)

with λ < 0. Since this method is of order1, we havẽq = 1. From (41), we have

R(h) =
|θhλ|

|1 + θhλ| = ± θhλ

1 + θhλ
. (56)

If R(h) =
θhλ

1 + θhλ
, then from (49) the fixed pointh∗ satisfiesR(h∗) = χϕ, we have

χϕ =
θh∗λ

1 + θh∗λ
. (57)

This gives

θh∗ =
χϕ

λ(1− χϕ)
< 0, (58)

a contradiction. Thus

R(h) = − θhλ

1 + θhλ
. (59)

This implies that

R′(h) = − θλ

(1 + θλ)2
. (60)

SinceR(h∗) = χϕ, from (59), we have

θh∗λ = − χϕ

1 + χϕ
(61)

and hence

1 + θh∗λ =
1

1 + χϕ
. (62)

Thus, from (49), (59), (60) we have

G′(h∗) = 1 +
h∗θλ
q̃χϕ

(1 + χϕ)2 = 1− 1
q̃χϕ

(
χϕ

1 + χϕ

)
(1 + χϕ)2 = 1− 1

q̃
(1 + χϕ) = −χϕ

sinceq̃ = 1. So if ϕ = 0, thenG′(h∗) = 0 and we obtain quadratic convergence of the step-size given by the
iteration (49). Further,−1 < G′(h∗) < 0 for all χ, ϕ ∈ (0, 1), the step-sizehn converges toh∗ for anyχ ∈ (0, 1)
and for anyϕ ∈ (0, 1).

4 Numerical solutions and Step-size sequences

In this section, the efficiency of the PSθ augmented algorithm with new step-size selection scheme is evaluated
by carrying out a variety of numerical experiments. These results are compared with the results obtained by the
standard adaptive algorithm. Results for some selected problems and methods are reported here and conclusions
shown here have been found to be valid in general. The values ofθ for each method given by [9] are used here
for the corresponding methods.
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4.1 Stable fixed point Example

We consider the forward Euler (RK12) method applied to the system

yt =
[ −5 0

0 −1

] [
y1

y2

]
. y = [y1, y2]T (63)

and y(0) = [1, 10−4]T . A typical adaptive algorithm as defined in Section 1 withτ = 10−2 produces the
dynamics observed in Figure 1.

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

y
1

y 2
RK12 method with standard

y
n

y(t)

Fig. 1 Numerical solutions of a typical adaptive algorithm near a stable fixed point for RK1(2).
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n
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Fig. 2 (i) Numerical solution using RK1(2) with PSθ augmented algorithm around a stable fixed point. (ii) Step-sizes used
by the typical and PSθ augmented algorithms.

For the RK1(2) method the numerical solution gives a persistent spurious oscillation. Although the final
solution is order of the tolerance from the fixed point, the spurious behavior persists for arbitrary small tolerances,
and it is not possible to force the solution to converge to the fixed point.

If we now apply the RK1(2) method with PSθ error control andϕ = 0.1, we obtain the numerical solution in
Figure 2(i), where we see that the numerical solution converges to the true fixed point. In Figure 2(ii) we show
the step-size sequences used by the two algorithms. The typical adaptive algorithm has some step-size rejections,
whilst the PSθ algorithm has no rejections and quickly converges to a constant value.
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4.2 Saddle point Example

We apply the RK2(3) and Fehlberg4(5) methods under standard adaptive error control to the system

yt) =
[ −1 0

0 1

] [
y1

y2

]
, y = [y1, y2]T (64)

so that the origin is a saddle point, and takey(0) = [0.99, 10−10]T ; very close to the stable manifold.
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Fig. 3 Numerical solutions of a typical adaptive algorithm near a saddle point for (i) RK2(3), (ii) Fehlberg4(5).

For RK2(3) method, it is observed in the Figure 3(i) that the numerical solution does not pass as close to the
fixed point or the local unstable manifold as it should, and there is also a significant phase difference between the
exact and numerical solutions. As in the previous example this behavior persists for arbitrary small tolerances. For
Fehlberg4(5) method, the numerical solution has a spurious oscillation about the unstable manifold, and although
this oscillation decays as the solution moves away from the fixed point, the numerical solution can ultimately
end up on either side of the unstable manifold depending on the exact initial condition; thus the property of the
unstable manifold of the fixed point acting as a separatrix is lost by the numerical solution.

If we now apply the RK2(3) method under PSθ augmented error control withϕ = 0.1, we obtain the numerical
solution in Figure 4(i), where we see that the numerical solution follows the exact solution very closely. In
Figure 4(ii) we show the step-sizes used by the two algorithms. The PSθ algorithm quickly settles to a constant
step-size whilst the solution is near the local stable manifold then adjusts to a different constant step-size whilst
the solution is near to the local unstable manifold. In contrast the poorer dynamical behavior of the typical
adaptive algorithm results from the large step-sizes that it uses whilst the solution is near to the origin. Note that
ultimately asy2 becomes large the local error estimate determines and reduces the step-size in both algorithms;
the different times at which it does so reveals the large phase shift introduced by the typical adaptive algorithm.
Similar behavior is seen for the Fehlberg4(5) method in Figure 5.

4.3 Maximum step-size sequences

In this section, we plot the maximum acceptable step-sizes in phase space for both PSθ and standard error controls
in order to get the region in space where either one of these error controls determines the step-sizes. The maximum
step-sizes occur when the error control(PSθ or standard) is satisfied with equality. These maximum step-sizes are
computed when numerical methods with these error controls are applied to the linear systems (63), (64) and the
non-linear system, given by [4],

yt =
[

2y2

2y1 − 3y2
1 − y2(y3

1 − y2
1 + y2

2 − c)

]
, y = [y1, y2]T (65)

with the constantc = 0.
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Fig. 4 (i) Numerical solution using RK2(3) with PSθ augmented error control around a saddle point. (ii) Step-sizes used by
the typical and PSθ augmented algorithms.
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Fig. 5 (i) Numerical solution using RK4(5) with PSθ augmented error control around a saddle point. (ii) Step-sizes used by
the typical and PSθ augmented algorithms.

The figures 6-8 show that PSθ error control only determines step-sizes near fixed point and standard error
control determines the step-sizes away from fixed points. In figure 9 we see that the PSθ method controls the
step-sizes in most of phase space since the value ofϕ reduces to10−3.
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Fig. 6 Surface plot of the maximum acceptable step-size sequences when RK1(2) method is applied to the system (63) under
(1) PSθ error control. (ii) standard adaptive error control. (iii) PSθ and standard (iv) PSθ and standard, where the maximum
step-sizes due to PSθ is set at 1 and step-sizes due to standard is set at 0.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



484 Tony Humphries and R.Vigneswaran: Phase Space Stability Error Control with Variable Time-stepping

−0.02

−0.01

0

0.01

0.02

−0.01
−0.005

0
0.005

0.01

0.55

0.6

0.65

0.7

0.75

0.8

X

RK2(3) with PSθ ,φ=10−1

Y

h

−0.02

−0.01

0

0.01

0.02

−0.01
−0.005

0
0.005

0.01

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

X

RK2(3) with Standard , τ=10−3

Y

h

−0.02

−0.01

0

0.01

0.02

−0.01
−0.005

0
0.005

0.01

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

X

RK2(3) with PSθ & Standard,φ =10−1, τ = 10−3

Y

h

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

X

Y

RK2(3) with PSθ & Standard, φ=10−1, τ = 10−3

Fig. 7 Surface plot of the maximum acceptable step-size sequences when RK2(3) method is applied to the system (64) under
(1) PSθ error control. (ii) standard adaptive error control. (iii) PSθ and standard . (iv) PSθ and standard, where the maximum
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Fig. 9 Surface plot of the maximum acceptable step-size sequences when RK2(3) method is applied to the system (64) under
PSθ error control and standard adaptive error control withϕ = 10−3 andτ = 10−5.
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4.4 Average step-size sequences

In this section, minimum, average and maximum step-sizes are computed for different values ofϕ when RK1(2)
method with PSθ constraint is applied to the scalar differential equationyt = −y and the linear system

yt =



−1 0 0

0 −10 0
0 0 −100


 y. (66)

These step-sizes are plotted againstχϕ
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Fig. 10 (i) Minimum,average and maximum step-sizes when RK1(2) method is applied to the scalar equationyt = −y
under PSθ error control. (ii) Minimum, average and maximum step-sizes when RK1(2) method is applied to the system (66)
under PSθ error control .

The figure 10(i) shows that all steps are below the stability limit. This ensures the monotonic convergence of
the solution. In figure 10(ii), we see that all steps are below the stability limit forλ = −1, ensuring the monotonic
convergence of this component. It is also observed that the average step sizes are below the stability limit for
λ = −10 except some step-sizes above this limit forχϕ > 0.9 and average and maximum step-sizes are above
the stability limit forλ = −100.

5 Conclusions

In summary, the error control (2) does not influence the numerical solution in most region of phase space, but
improves the performance near fixed points. More precisely, the error control is designed to positively affect the
linear stability property around true fixed points. The new step-size scheme, which is introduced in this paper,
leads to stable step-sizes(with quadratics convergence, in the limit asϕ → 0, to a constant value) near fixed
points.

In this paper, the PSθerror control is analyzed only for forward Euler method applied to the linear system
whose coefficient matrix has only real(negative) eigenvalues and it is shown that for the linear system of this
type with a stable hyperbolic fixed point, the numerical solution which is forced to converge to the fixed point.
The analysis of this error control for forward Euler method applied to the linear system, whose coefficient matrix
has complex eigenvalues with negative real part, could be considered. The analysis of the error control for
general explicit Runge-Kutta methods will also be possible. These two issues will be focused and analyzed in the
forthcoming paper.
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