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Dynamics of a Mathematical Hematopoietic Stem-Cell Population Model\ast 
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Abstract. We explore the bifurcations and dynamics of a scalar differential equation with a single constant
delay which models the population of human hematopoietic stem cells in the bone marrow. One-
parameter continuation reveals that with a delay of just a few days, stable periodic dynamics can
be generated of all periods from about one week up to one decade! The long period orbits seem to
be generated by several mechanisms, one of which is a canard explosion, for which we approximate
the dynamics near the slow manifold. Two-parameter continuation reveals parameter regions with
even more exotic dynamics including quasi-periodic and phase-locked tori, and chaotic solutions.
The panoply of dynamics that we find in the model demonstrates that instability in the stem cell
dynamics could be sufficient to generate the rich behavior seen in dynamic hematological diseases.
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1. Introduction. We study the dynamics and bifurcations of the delay-differential equa-
tion (DDE)

Q\prime (t) =  - (\kappa + \beta (Q(t)))Q(t) +A\beta (Q(t - \tau ))Q(t - \tau ),(1.1)

where Q(t) \geqslant 0 represents the concentration of hematopoietic stem cells (HSCs) in the bone
marrow, A \in (1, 2) is the amplification factor for cells undergoing division, \tau > 0 is the division
time, the rate at which cells enter division, \beta (Q), is a monotonically decreasing function of
Q with limQ\rightarrow \infty \beta (Q) = 0, and \kappa > 0 is the rate that the stem cells differentiate to the
progenitors of circulating blood cells.

The DDE (1.1) represents the G0 cell proliferation model of Burns and Tannock [11]. A
full derivation of the DDE can be found in Mackey and Rudnicki [41], though it was first
stated in the form (1.1) in Mackey [39]. In Bernard, B\'elair, and Mackey [5], (1.1) was used to
describe the stem cell dynamics as one component of a larger model describing the regulation
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of circulating neutrophil concentrations. Since then many mathematical models have appeared
which contain (1.1), or a variant, within larger hematopoiesis models for the production and
regulation of neutrophils, erythrocytes, and platelets [2, 15, 16, 18, 37]. Multiple versions
of (1.1) have also been coupled together to model discrete levels of stem cell maturity [1, 51].

The human hematopoietic system produces about 1011 blood cells of various types per
day [32], of which erythrocytes (red blood cells), neutrophils (a type of white blood cell), and
platelets are the most common, in a production process which is tightly regulated by myriad
feedback loops. In dynamical diseases including cyclic neutropenia (CN), cyclic thrombocy-
topenia (CT), and periodic chronic myelogenous leukemia (PCML), oscillations are observed
in the circulating concentrations of one or more of the cell lines [23].

In mathematical models of hematopoiesis these oscillations arise through Hopf bifurca-
tions as one or more parameters are varied in the model. Two principle mechanisms have
been proposed to drive the oscillations in different dynamical diseases [5]. There can be an
instability in the production of the HSCs themselves, with the oscillating HSC numbers then
leading to oscillations in the concentrations of peripheral cells. This occurs in PCML where
leukemic HSCs typically present a chromosome abnormality [49]. An alternative mechanism
is that oscillations in one cell line can be created through an abnormality in the production
of precursor cells in that cell lineage, with the feedback loops from that lineage causing os-
cillations in the numbers of HSCs differentiating into other cell lines creating concomitant
oscillations in the other cell lineages. This occurs in CN, for which a mutation in the ELANE
gene that encodes neutrophil elastase leads to increased apoptosis in the neutrophil progenitor
cells during mitosis [19].

In other dynamical diseases it remains an open question whether the oscillations are driven
by an inherent instability in the HSCs or whether an instability in production of one of
the blood cell lineages is creating the oscillations seen in circulating concentrations. The
second possibility is difficult to investigate directly, due to the complexity of the hematopoietic
models, with, for example, the granulopoiesis model of Craig, Humphries, and Mackey [18]
having five equations, over 20 parameters, and state-dependent delays. In the current work,
motivated by the first possibility, we investigate the dynamics of the simple HSC model (1.1)
as parameters are varied and explore the dynamics that arise. Such an approach alone will
not definitively answer the question of whether the oscillations in specific dynamical diseases
are driven by inherent instability in the HSC dynamics. However, (1.1) is often incorporated
in more complicated hematopoietic models, and if the HSCs can oscillate in the decoupled
equation (1.1), these oscillations could drive oscillations in the production rates of the mature
circulating blood cells which are all produced from the HSCs. Thus, studying the dynamics
of (1.1) allows us to determine when instabilities in the HSC dynamics may arise, and hence
if it is feasible for these to drive oscillations in the circulating blood cells concentrations.

Although (1.1) has been used and studied in numerous models, the codimension-one bi-
furcation analysis is incomplete, and little is known about codimension-two bifurcations. In
section 2 we review the model (1.1) and its basic dynamical properties including existence
and positivity of solutions, nondimensionalized formulation, homeostasis (the stable state of
an organism maintained by physiological processes) parameter values, and existence and sta-
bility of steady states. In section 2.1 we discuss the stability boundary of the steady state
with respect to the delay \tau .
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In section 3 we carry out a numerical bifurcation analysis of (1.1) by performing parame-
ter continuation on solutions as three of the parameters that control the dynamics are varied
individually or pairwise. The one-parameter continuations reveal sub- and supercritical Hopf
bifurcations, fold bifurcations of periodic orbits, and period-doubling bifurcations. This re-
sults in bistability between a stable periodic orbit and a steady state and bistability of two
periodic orbits. We also find limit cycles of periods ranging from a week to over 9 years,
and an apparent canard explosion [4]. The two-parameter continuations allow us to map out
the curves of Hopf, period-doubling, and fold bifurcations to determine regions of parame-
ter space for which interesting dynamics occur, and also reveal torus (or Neimark--Sacker)
bifurcations.

In the following sections we explore some of the more interesting dynamics in more detail.
In section 4 we study a canard explosion for which the period of solutions increases from
about 50 days to over 700 days over an exponentially small parameter interval. We show
how to approximate the slow manifold associated with these solutions and show that this
manifold has both stable and unstable components. In section 5 we consider nonperiodic and
chaotic solutions. First in section 5.1 we investigate the torus bifurcations found in section 3
and find a stable invariant torus in the dynamics. We compute Lyapunov exponents and a
Poincar\'e section to show that the dynamics do indeed correspond to a quasi-periodic orbit
which envelops the unstable periodic orbit from which the torus bifurcated. We also find
parameter values for which there is phase locking on the torus and present the resulting stable
periodic orbits. In section 5.2 we study the dynamics between the period doublings and find
period-doubling cascades leading to chaos. The chaotic nature of the dynamics is verified
numerically by showing that the leading Lyapunov exponent is positive and by visualizations
of the attractor which reveal some of its fractal structure. Parameter continuation in opposite
directions reveals hysteresis with parameter intervals for which stable chaotic dynamics can
coexist with a stable periodic orbit, or even coexist with a second chaotic attractor. We also
find parameter values for which there appears to be transient chaos. In section 5.3 we present
an example of a branch of periodic orbits which snakes in parameter space resulting in a small
parameter region in which over 50 limit cycles coexist. Period-doubling cascades either side
of this region lead to additional parameter regions of chaotic dynamics.

In section 6 we discuss the physiological plausibility and implications of the results with
regard to periodic hematological disorders, and section 7 includes further discussion and con-
clusions.

2. Hematopoietic stem cell equation. HSC dynamics can be described by the classic G0

cell cycle model of Burns and Tannock [11]. The HSCs are distinguished between two phases,
the proliferating phase and the resting or G0 phase. We denote the concentration of HSCs in
the resting phase by Q. From the resting phase HSCs may enter the proliferating phase at a
rate \beta (Q), or differentiate at a constant rate \kappa , or remain in the resting phase. Once HSCs
enter the proliferating phase they are lost by apoptosis with a constant rate \gamma or undergo
mitosis. The time to complete the cell cycle is \tau . After mitosis cells return to the G0 resting
phase, from whence the cycle may begin again. In the resting phase HSCs are quiescent, while
in the proliferating phase they are active and distinguished between four subphases: G1, S,
G2 and M . Cells at gap G1 increase in size and are committed to go through the cell cycle
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Figure 1. Schematic representation of the classical G0 model for HSCs. The proliferating phase of the cell
cycle is divided between four subphases: gap one G1, synthesis S, gap two G2, and mitosis M . Cells in the
resting phase (gap zero G0) may differentiate with rate \kappa or enter the cell cycle with rate \beta (Q). Cells in the
proliferation phase may be lost by apoptosis with rate \gamma ; otherwise they reenter the resting phase after mitosis,
\tau time units after they left the resting phase.

and undergo mitosis. At S phase DNA synthesis occurs, at gap G2 cells continue to grow,
while in the mitotic phase M cells stop growing and undergo cell division.

A schematic of the model is presented in Figure 1. Following Mackey [39, 41] this model
can be stated as the DDE (1.1) where \beta (Q) is a Hill function defined by

\beta (Q) = f
\theta s

\theta s +Qs
,(2.1)

and the HSC amplification factor A is given by

A = 2e - \gamma \tau .(2.2)

The parameters \kappa , \gamma , \tau , \theta , f , and s are all strictly positive, and we are interested in non-
negative solutions Q(t) \geqslant 0, since Q(t) represents a blood cell population.

Aspects of the dynamics of the HSC model (1.1) have been studied by a number of authors,
mainly concentrating on the existence and stability of the steady states, and one-parameter
continuation of some of the periodic orbits that arise [3, 6, 41]. A special case of (1.1) with
\beta (Q) replaced by a step function, corresponding to the limit as s \rightarrow \infty in (2.1), allows explicit
stable periodic solutions to be constructed [49, 50]. The existence of stable periodic solutions
for s large was subsequently established [40], as a perturbation of the s = \infty solutions. In
contrast, we will study the dynamics of (1.1) with \beta (Q) a Hill function, with s small, as is
usually considered to be the case in hematopoiesis models.

In order to solve the DDE (1.1) for t \geqslant 0 it is necessary to define an initial function
Q(t) = \varphi (t) for t \in [ - \tau , 0]. For \varphi \in C := C([ - \tau , 0], [0,\infty )), that is continuous, bounded,
and nonnegative, from the following theorem the solution of (1.1) is also bounded and non-
negative. It follows that the DDE (1.1) can be considered as an infinite-dimensional dynamical
system with phase space C [54].

Theorem 2.1. If Q(t) = \varphi (t) for t \in [ - \tau , 0] where \varphi \in C([ - \tau , 0], [0,\infty )), then (1.1) has a
unique solution Q(t) defined for all t \geqslant 0 and which satisfies Q(t) \in [0,M ] for all t \geqslant 0 for
some M < \infty .
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Proof. As already noted by other authors, uniqueness and local existence of solutions
follow from the method of steps. It suffices to show that solutions are bounded to obtain
global existence and complete the proof [40, 49, 50].

To show positivity of the solution, let t\ast \geqslant 0 such that Q(t) \geqslant 0 for t \in [ - \tau , t\ast ]. It follows
easily from (1.1) that Q\prime (t) > 0 for all t \in (t\ast , t\ast + \tau ) for which Q(t) \in ( - \theta , 0). This leads
to a contradiction unless Q(t) \geqslant 0 for all t \in (t\ast , t\ast + \tau ). Hence Q(t) \geqslant 0 for all t \geqslant 0. The
existence of an upper bound Q(t) \leqslant M follows from lim supt\rightarrow \infty Q(t) being bounded, which
was shown by Mackey and Rudnicki [41] for nonnegative solutions with a general class of
monotonic functions \beta (Q) that includes (2.1).

In (1.1)--(2.2) there are six parameters \{ \kappa , \gamma , \tau , \theta , f, s\} , but we can reduce these to four
by nondimensionalizing the equations. Let \^t := t/\tau , \^f := \tau f, \^\kappa := \kappa /f , \^\gamma := \gamma \tau , and \^Q(\^t) :=
Q(t)/\theta ; then \^Q(\^t  - 1) = Q(t  - \tau )/\theta . It is also convenient to define \^A := 2e - \^\gamma = 2e - \gamma \tau = A
and notice that \beta ( \^Q) = f/(1 + \^Qs). Then (1.1) becomes

1

\^f

d \^Q

d\^t
(\^t) =  - \^\kappa \^Q(\^t) - 

\^Q(\^t)

1 + \^Q(\^t)s
+ \^A

\^Q(\^t - 1)

1 + \^Q(\^t - 1)s
,(2.3)

which depends on the four parameters \^f , \^\kappa , s, and \^A (or \^\gamma ). Although many mathematicians
would prefer to study the nondimensionalized DDE (2.3) instead of (1.1), we chose to work
with (1.1) so that the solutions and bifurcations that we find have direct physiological interpre-
tations. But, as suggested by the nondimensionalization, we need only vary four parameters
in (1.1). It is easily seen that varying the four parameters \gamma , \kappa , \tau , and s in (1.1), with the
other parameters held constant, we can reproduce all possible values of \^f , \^\kappa , s, and \^A in (2.3),
and hence we will only need to consider the variation of parameters from among these four.

In Table 1 we state homeostatic values of the parameters for the model (1.1)--(2.2). The
values in Table 1 are all taken from Craig, Humphries, and Mackey [18]. The first two param-
eters in the table, Qh the homeostatic concentration of HSCs, and \beta (Qh) the homeostatic rate
that cells enter the cell cycle, do not appear explicitly in the model (1.1)--(2.2) but are used to
calculate the last two parameters. To ensure that Qh is exactly the homeostatic concentration

Table 1
Homeostasis values of the parameters for the mathematical granulopoiesis model (1.1)--(2.2), which are all

taken from Craig, Humphries, and Mackey [18]. The last three parameters with values denoted by \ast are only
stated to four significant figures here, but actual values are computed to full double precision in MATLAB [45]
using (2.2) and (2.4).

Name Interpretation Value Units

Qh HSC homeostasis concentration 1.1 106cells/kg

\beta (Qh) Homeostasis cell cycle entry rate 0.043 days - 1

\gamma HSC apoptosis rate 0.1 days - 1

\tau Time for HSC reentry 2.8 days
f Maximal HSC reentry rate 8 days - 1

s HSC reentry Hill coefficient 2  - 
A HSC amplification factor 1.512\ast  - 
\theta Half-effect HSC concentration 0.08086\ast 106cells/kg
\kappa HSC differentiation rate to all lines 0.022\ast days - 1
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of HSCs in the model (1.1)--(2.2), the last three parameters are computed in double precision.
While A is given directly by (2.2), rearranging (1.1) and (2.1) at homeostasis implies that

\theta = Qh

\biggl( 
f

\beta (Qh)
 - 1

\biggr)  - 1/s

, \kappa = (A - 1)\beta (Qh).(2.4)

We will use the parameters of Table 1 as a starting point for our bifurcation studies.
For general parameter values, from (1.1), steady states satisfy

0 = [(A - 1)\beta (Q) - \kappa ]Q.(2.5)

Hence the DDE (1.1) has the trivial steady state Q(t) = 0 for all values of the parameters. The
trivial steady state has been shown to be globally asymptotically stable if \kappa > f(A - 1) [41].
Equation (2.5) has another solution Q\ast which satisfies

\beta (Q\ast ) =
\kappa 

(A - 1)
.(2.6)

Since \beta (Q) is monotonic, this defines a unique nontrivial steady state Q\ast . Using (2.1) we have

Q\ast = \theta 

\biggl[ 
f
(A - 1)

\kappa 
 - 1

\biggr] 1/s
.(2.7)

From (2.7), along with the relation (2.2) we obtain that Q\ast > 0 if and only if the upper bounds

\kappa < f(A - 1), \gamma \tau < ln

\biggl( 
2f

\kappa + f

\biggr) 
,(2.8)

on the parameters \kappa , \gamma , and \tau are satisfied. In the rest of this work, we will consider the case
where (2.8) holds and there are two steady states, Q = 0 and Q\ast > 0. From (2.2) and (2.8)
we require A \in (1 + \kappa /f, 2) for Q\ast > 0 to exist. Regarding the steady state Q\ast > 0 as a
function of the differentiation rate \kappa , the death rate \gamma , or the cell cycle duration \tau , it is easy
to see from (2.7) that Q\ast is a monotonically decreasing function with respect to each of these
parameters, as would be expected from a physiological point of view. Furthermore Q\ast \rightarrow 0
as equality is approached in (2.8). We denote the nonzero steady state by Qh only when the
parameters take their homeostasis values from Table 1, and by Q\ast otherwise. Unless otherwise
stated, all the values in this paper are given in the same units as in Table 1.

2.1. Stability boundary. To determine the stability of the steady state Q\ast , linearize the
DDE (1.1) around Q\ast with z(t) := Q(t) - Q\ast to get

z\prime (t) = az(t) + bz(t - \tau ).(2.9)

It is convenient to define

h(x) := x\beta (x);(2.10)

then the parameters a and b can be written as

a =  - \kappa  - \beta (Q\ast ) - Q\ast \beta \prime (Q\ast ) =  - \kappa  - h\prime (Q\ast ), b = A
\bigl( 
\beta (Q\ast ) +Q\ast \beta \prime (Q\ast )

\bigr) 
= Ah\prime (Q\ast ).

(2.11)
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Seeking a nontrivial solution z(t) = z0e
\lambda t for (2.9), we get the characteristic equation

p(\lambda ) := \lambda  - a - be - \lambda \tau = 0,(2.12)

first studied by Hayes [28]. According to the principle of linearized stability [54] the stability
analysis of the steady states for the nonlinear DDE (1.1) is reduced to the stability analysis
of the steady state of the linearized equation (2.9). Stability analysis of (2.9) is a standard
example in DDEs and can be found in [8, 26, 29, 54]. The steady state is unstable if b >  - a
with a characteristic value \lambda > 0, and it is asymptotically stable if a <  - | b| < 0, which is
sometimes called the delay-independent stability region [33]. The interesting parameter region
is for b \leqslant  - | a| < 0, where the steady state is asymptotically stable for

\tau < \tau 1(a, b) := cos - 1( - a/b)/
\sqrt{} 

b2  - a2(2.13)

and unstable if \tau > \tau 1(a, b). The curve C0 described by \tau 1(a, b) is contained in the region
a \leqslant 1/\tau and b \leqslant  - 1/\tau and can be parameterized [54] as

C0 =
\bigl\{ 
(a, b) = (\omega cot(\omega )/\tau , - \omega csc(\omega )/\tau ), \omega \in [0, \pi )

\bigr\} 
.(2.14)

On this curve the characteristic equation (2.12) has an imaginary solution \lambda = \pm i\omega . The
parameter region (a\tau , b\tau ) \in \BbbR 2 for which Q\ast is stable is illustrated in Figure 2.

In the context of the DDE (1.1) the trivial steady state Q = 0 is unstable when Q\ast > 0 [51].
For the stability of Q\ast , from (2.6) and (2.11) we have a + b = (A  - 1)Q\ast \beta \prime (Q\ast ), and hence
using (2.1) and (2.7) we find that  - s\kappa <  - s\kappa (1  - \kappa /[f(A  - 1)]) = a + b < 0. Thus when
Q\ast > 0 we have a + b < 0, and Q\ast can only lose stability if (a, b) crosses the curve C0 as
parameters are varied.

The steady state Q\ast > 0 is stable for all \tau sufficiently small, since \lambda =  - (a+ b) < 0 when
\tau = 0. It is also stable for all \tau sufficiently large. This follows from noting that b > 0 when
h\prime (Q\ast ) > 0, which holds whenever \tau > \tau 2 where \tau 2 is defined by (2.16) below. Then, for
\tau > \tau 2 the parameters (a, b) are in the upper half of the delay-independent stability region
a <  - | b| < 0.

a\tau 

b\tau 

\tau  - 1
\tau +1

\tau 2

\tau h

C0

Figure 2. The parameter regions for which the steady state of (2.9) is stable (white) and unstable (shaded).
Also shown (red) is the locus in (a, b) of the parameters defined by (2.11) as \tau is varied with the other parameters
all at their values from Table 1. The values of \tau from (2.15) are indicated on this curve.
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The steady state Q\ast may lose stability in a Hopf bifurcation if the parameters cross the
curve C0 in the (a, b) parameter space, but since the steady state is stable for \tau small and
for \tau large, such Hopf bifurcations will occur in pairs, corresponding to crossings of C0 in
opposite directions. For many DDEs the steady state gains ever more characteristic values
with positive real part as the delay \tau is increased [46]. The Burns--Tannock DDE (1.1) does
not behave like that because of the exponential term in A = 2e - \gamma \tau representing mortality
during the cell cycle.

For the homeostasis parameter values in Table 1 we have f(A - 1) = 4.093 > \kappa = 0.022 so
(2.8) is satisfied and there exists a unique positive steady state, Qh = 1.1 > 0. Furthermore,
at homeostasis a = 0.020540 and b =  - 0.064298 and \tau = 2.8 which is inside the stability
region, as illustrated in Figure 2, so the homeostasis steady state Qh is asymptotically stable.

If \tau is varied and all the other parameters are at their homeostasis values from Table 1,
we find that Q\ast > 0 is stable for \tau \in [0, \tau  - 1 ) and for \tau \in (\tau +1 , \tau \mathrm{m}\mathrm{a}\mathrm{x}) where

0 < \tau h = 2.8 < \tau  - 1 = 5.74851 < \tau +1 = 6.87437 < \tau 2 = 6.87662 < \tau \mathrm{m}\mathrm{a}\mathrm{x} = 6.90401.(2.15)

Here, \tau \mathrm{m}\mathrm{a}\mathrm{x} is given by (2.8), while

\tau \pm 1 =
cos - 1((\kappa + h\prime (Q\ast ))/Ah\prime (Q\ast ))\sqrt{} 
(Ah\prime (Q\ast ))2  - (\kappa + h\prime (Q\ast ))2

, \tau 2 =
1

\gamma 
ln

\biggl( 
1

2

\biggl[ 
1 +

\kappa s

f(s - 1)

\biggr] \biggr)  - 1

.(2.16)

The formula for \tau 2 is found by using the expressions for h(Q) andQ\ast and solving for b = 0. This
formula was already stated by Pujo-Menjouet and others [49, 50], where it was erroneously
claimed that \tau = \tau 2 was a stability boundary. As noted above, and as shown in Figure 2, the
parameters corresponding to \tau = \tau 2 are in the interior of the stability region.

The expression for \tau \pm 1 in (2.16) is obtained from (2.13) on substituting the values
from (2.11). The two values for \tau 1 correspond to the parameters (a, b) defined by (2.11)
crossing the curve C0 twice as \tau is increased. The equation \tau = \tau 1 from (2.13) can have two
solutions, because in the expression for \tau 1 the value of A itself depends on \tau , making the
equation \tau = \tau 1 implicit in \tau . The locus of the parameters (a, b) and the corresponding \tau 
values from (2.15) are illustrated in Figure 2.

If parameters are varied so that \tau crosses the boundary \tau 1, either by varying \tau itself or by
varying parameters to change the values of \tau 1, then the stability of Q\ast changes and a periodic
orbit with period 2\pi /\omega is created in a Hopf bifurcation. The periodic orbits thus created have
been explored to some extent [24, 40, 49, 50], but the details of the Hopf bifurcation and its
normal form have only been studied more recently [51].

Because (2.12) has infinitely many roots, it is possible for additional pairs of complex conju-
gate characteristic values to cross the imaginary axis resulting in additional Hopf bifurcations.
These will occur on curves C2n, which are defined by (2.14) but for \omega \in [2n\pi , (2n+ 1)\pi ) [54].
None of these curves intersect, so there are no double-Hopf bifurcations in which two pairs of
characteristic values cross the imaginary axis at the same time.

3. Bifurcations of the HSC equation. In this section we vary parameters from their
homeostasis values so that the perturbed steady state Q\ast becomes unstable, and we survey
the bifurcations and dynamics that arise. We begin our numerical bifurcation analysis of the
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DDE (1.1), by studying codimension-one bifurcations performing parameter continuation on
\tau , \gamma , and \kappa , one at a time. We will also study codimension-two bifurcations carrying out a
two-parameter continuation for each pair of these three parameters. Our numerical bifurcation
diagrams are constructed using the well-established DDEBiftool package [21, 53], which runs
under MATLAB [45]. This software finds periodic orbits using a boundary value approach
and is able to find stable and unstable solutions and continue the solutions as parameters are
varied and detect stability and bifurcations.

As noted after (2.3), the dynamics of the HSC DDE (1.1) only depend on the four pa-
rameters \tau , \gamma , \kappa , and s. The dependence of the dynamics on the parameter s has previously
been studied for small integer values of s (through numerical simulation) and analytically
in the limit as s \rightarrow \infty (in which case the Hill function (2.1) simplifies to a Heaviside func-
tion) [40, 49, 50]. In the current work we will keep s = 2 fixed and equal to its value in
Craig, Humphries, and Mackey [18], and we will only vary the parameters \tau , \gamma , and \kappa . In
the following, unless mentioned otherwise, all parameters take the values stated in Table 1.
Recall that the homeostasis steady state Qh is stable.

3.1. One-parameter continuation. We begin by varying the differentiation rate \kappa (with
all the other parameters held constant) with the bifurcation diagram presented in Figure 3.
The nontrivial steady state Q\ast (given by (2.7)) is seen to be unstable for an interval of \kappa 
values between two Hopf bifurcation points and stable for \kappa outside this interval. The Hopf
bifurcation point at \kappa \approx 0.17632 is subcritical leading to a branch of unstable periodic orbits
which becomes stable at \kappa \approx 0.16872 in a fold bifurcation of periodic orbits. This creates
a small interval of bistability between the stable steady state Q\ast and the stable periodic
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Figure 3. (i) Bifurcation diagram showing stability of the steady state Q\ast , along with the branch of periodic
orbits which bifurcates from Q\ast at the Hopf bifurcation points. All parameters except \kappa take values from Table 1.
In all bifurcation diagrams stable (unstable) steady states are represented by solid (dotted) black lines, while the
stable (unstable) limit cycles are represented by solid (dotted) blue lines. For periodic orbits we plot both the
maximum and the minimum value of Q over the period, so the upper and lower curves both represent the same
periodic orbit. Hopf bifurcation points \ast , saddle-node bifurcation of limit cycles points 2, and period-doubling
bifurcation points # are indicated and also highlighted in insets. The saddle-node bifurcation in the right inset
creates an interval for \kappa \in (0.16872, 0.17632) of bistability between the periodic orbit and the steady state Q\ast ,
while the pair of steady fold bifurcations seen in the left inset creates an interval for \kappa \in (0.97254, 1.0247) of
bistability between two different periodic orbits. (ii) Period of the periodic orbits seen in (i). Two period-doubling
bifurcations and an interval for \kappa \in (1.173, 1.2506) of period-doubled solutions are also shown. These can also
be seen in the left inset in (i).
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orbit of amplitude close to 1. Similar bistability has been observed before in hematopoiesis
models. Bernard, B\'elair, and Mackey [5, 6] studied a model for white blood cell (WBC)
production which incorporated (1.1) to model the stem cell dynamics and found bistability
for WBCs between a stable steady state and a stable periodic orbit. But in that model the
bistability was seen by varying an amplification parameter in the WBC proliferation and was
not associated with the variation of any parameter in the HSC equation. We are not aware
of bistability having been observed previously in a standalone model for HSC dynamics.

There is a pair of fold bifurcations of periodic orbits which creates an interval for \kappa \in 
(0.97254, 1.0247) of bistability of periodic orbits. Bistability is interesting, as it allows the
possibility for a short-term perturbation of the system (such as during treatment) to cause
the solution to switch between one solution and another and for the new stable dynamics
to persist indefinitely. The two instances of bistability observed here occur for relatively
small parameter intervals far from the homeostasis parameters and so are unlikely to be of
great direct physiological relevance for healthy subjects. However, the existence of bistability
is interesting in the context of dynamical diseases which are related to bifurcations that
occur when parameters in the system are varied. There is also a pair of period-doubling
bifurcations on the branch of periodic orbits illustrated in Figure 3. This leads to an interval
for \kappa \in (1.173, 1.2506) where a period-doubled orbit is stable.

The amplitude of the periodic orbits on the main branch tends to decrease along the
branch, and the periodic orbits disappear in a supercritical Hopf bifurcation at \kappa \approx 1.5317.
For \kappa between this value and its bound given by (2.8), the steady state Q\ast is stable. The
periods of the orbits shown in Figure 3(ii) strongly correlate with the amplitude of the orbits.
The periods are all larger than a week, much larger than the delay \tau = 2.8 days.

Figure 4 illustrates some of the more interesting periodic orbits found during the \kappa con-
tinuation, including examples of bistability and period doubled orbits. The left panels show
periodic solution profiles over one period, while the right panels display the time-delay embed-
ding of the same solutions. Recalling that Q(t) is a scalar, but that the DDE (1.1) defines an
infinite-dimensional dynamical system, (Q(t), Q(t - \tau )) gives a useful two-dimensional projec-
tion of the infinite-dimensional solutions, which has been used widely since it was introduced
by Glass and Mackey [25]. Since it is only a projection of phase space, orbits may appear to
cross each other, but because it incorporates both the terms Q(t) and Q(t  - \tau ) that appear
in (1.1) this projection is often very revealing.

Figure 5 shows the results of applying one-parameter continuation in the apoptosis rate
\gamma , with the other parameters all held at their values in Table 1. The steady state Q\ast is stable
unless \gamma is close to its upper bound defined by (2.8). There is again a pair of Hopf bifurcations
with the left bifurcation at \gamma \approx 0.227918 subcritical leading to an unstable periodic orbit with
period \approx 36.7 days at the bifurcation point. The period grows to about 82 days at a fold
bifurcation of periodic orbits with \gamma \approx 0.227766. The periodic orbit becomes stable at the
fold bifurcation leading to a very short interval of bistability between the stable periodic orbit
and the stable steady state. As \gamma is increased from the fold bifurcation the stable periodic
orbits gradually decrease in amplitude but increase in period reaching a maximum period
of about 714 days when \gamma \approx 0.2453692. Some of these stable periodic orbits are illustrated
in Figure 6. These orbits all have a single peak above Q\ast which is only achieved once per
period. After this peak the value of Q quickly drops to below 0.1, and there is then a very
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Figure 4. Periodic orbits from the branch seen in Figure 3. (i) For \kappa = 0.17 the stable (solid line) and
unstable (dotted line) periodic orbits which coexist with the stable steady state Q\ast just before the subcritical Hopf
bifurcation. (ii) The same periodic orbits shown in the two-dimensional (Q(t), Q(t  - \tau )) projection of phase
space. (iii)--(iv) For \kappa = 1 the two coexisting stable periodic orbits along with the unstable periodic orbit and
unstable steady state. (v)--(vi) For \kappa = 1.2 the stable period-doubled orbit (solid line), along with the unstable
periodic orbit from which it bifurcates (in panel (v) we show two periods of this orbit).

low amplitude oscillation in Q with a period of about 3 days (slightly larger than the delay
\tau = 2.8) which decays in amplitude before the next spike in the number of HSCs. From (2.7),
at \gamma = 0.2453692 the nonzero steady state is Q\ast = 0.089673 and the longest period orbit shown
in Figure 6 is close to homoclinic to the steady state Q\ast (Q\prime (t) \approx 0.00025 when Q(t) = Q\ast ).

The long period orbits appear to be relaxation oscillations; these have been observed and
studied previously for (1.1) [14, 24]. Visually, these solution profiles are more reminiscent of
a spiking neuron [30] than what one would naively expect to see in blood cell concentrations.
After the maximum period is achieved at \gamma \approx 0.2453692 the period declines precipitously to
approximately 48 days at the Hopf bifurcation when \gamma \approx 0.245375 in an apparent canard
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Figure 5. Continuation in \gamma with other parameters taking values from Table 1. (i) Bifurcation diagram
showing stability of the steady state Q\ast , along with the branch of periodic orbits which bifurcates from the steady
state at the Hopf bifurcation points at \gamma = 0.227918 and \gamma = 0.245375. A saddle-node bifurcation seen in the
top inset creates an interval for \kappa \in (0.227766, 0.227918) of bistability between the periodic orbit and the steady
state Q\ast . (ii) Period of the periodic orbits seen in (i).
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Figure 6. Three example periodic orbits from the branch shown in Figure 5. (i) Solution profiles and (ii)
the corresponding (Q(t), Q(t  - \tau )) delay embeddings, with the location of the orbits on the bifurcation branch
indicated on the insets.

explosion. We are not aware of a canard being observed in a scalar DDE before, and we will
investigate this phenomenon in section 4.

In Figure 7 we present the dynamics observed from applying one parameter continuation
in the delay \tau , with the other parameters held at their values in Table 1. The steady state
Q\ast is again stable unless the delay \tau is close to its upper bound and is only unstable for \tau 
between the pair of Hopf bifurcation points, which occur at \tau = \tau  - 1 and \tau = \tau +1 , where \tau \pm 

are defined in (2.15). The left Hopf point is subcritical, leading to unstable orbits of period
about 52 days, growing to a period of about 124 days at a saddle-node bifurcation of periodic
orbits with \tau \approx 5.72940 days, where the periodic orbits become stable, creating an interval of
bistability between the steady state and the stable periodic orbits. Ripples are visible in the
amplitude of the branch of stable periodic orbits, with the magnitude of these undulations
decreasing to zero as \tau approaches the right Hopf bifurcation point, as shown in the bottom
right inset of Figure 7(i). There are corresponding ripples in the period of the orbits, visible
in the first inset of Figure 7(ii). The other insets show details of the branch of periodic orbits
near the Hopf bifurcation points.
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Figure 7. Continuation in \tau with other parameters taking values from Table 1. (i) Bifurcation diagram
showing stability of the steady state Q\ast , along with the branch of periodic orbits which bifurcates from the steady
state at the Hopf bifurcation points at \tau = 5.74851 and \tau = 6.87437. A saddle-node bifurcation seen in the top
inset creates an interval for \tau \in (5.72939, 5.74851) of bistability between the periodic orbit and the steady state
Q\ast . (ii) Period of the periodic orbits seen in (i).
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Figure 8. Four stable periodic orbits from neighboring peaks and troughs of the ripples illustrate how they
arise. As seen in the inset of the time-embedding plot, the large period and amplitude orbits from the peaks of
the ripples perform one more small amplitude oscillation before escaping to Q(t) \gg Q\ast compared to the smaller
period and amplitude solution from the preceding trough in the ripples.

Figure 8 illustrates stable periodic orbits from the left part of this branch. Although
these orbits superficially resemble those of Figure 6, with a single peak above Q\ast and a small
amplitude oscillation close to Q = 0, the periodic orbits seen in Figure 8 have a quite different
character to those seen in Figure 6. Specifically the orbits have a growing oscillation close to
Q = 0 with a period close to the delay \tau . In contrast, the solutions seen in Figure 6 have
a decaying oscillation near their minimum value, which is not particularly close to Q = 0.
Figure 8(ii) shows the delay embedding of the solutions, from which we see that the ripples
in the amplitude and period along the branch are related to the number of low amplitude
oscillations in the solution, with the smaller amplitude and period solutions at the bottom of
the ripples performing one less oscillation in the (Q(t), Q(t  - \tau )) projection before escaping
to Q(t) \gg Q\ast .

The dynamics of the oscillations close to Q(t) = 0 are easy to describe but harder to
explain. The trivial steady state Q = 0 has one positive real characteristic value (\lambda = 0.017605
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when \tau = 6) and infinitely many complex conjugate characteristic values, three pairs of which
have positive real part. Thus the steady state Q = 0 of the DDE (1.1) has a seven-dimensional
unstable manifold and an infinite-dimensional stable manifold in the full infinite-dimensional
phase space of the functional differential equation. However, complex characteristic values
would give rise to oscillatory solutions about Q = 0 which change sign. Since, by Theorem 2.1,
solutions with positive initial conditions remain positive, oscillations about Q = 0 will not
arise with physiological initial history functions. (Note that this implies that | \omega | \geqslant \pi /\tau , for
any complex characteristic value \lambda = \alpha \pm i\omega , since otherwise \tau would be less than half the
period of the oscillation, and the positive half of the oscillation could be used to define an
initial function \varphi =  - \varepsilon e\alpha t sin(\omega t) for t \in [ - \tau , 0] so the DDE that would have a solution
close to Q(t) =  - \varepsilon e\alpha t sin(\omega t) for 0 < t \ll 1, which would violate the positivity of solutions.)
Consequently, in the restricted phase space of positive solutions that we consider Q = 0 has
a one-dimensional unstable manifold and a trivial stable manifold.

In the inset of Figure 8(ii) we see that in the delay embedding (Q(t), Q(t - \tau )) that Q(t)
takes its minimum value on the periodic orbit when Q(t  - \tau ) is close to 0.5 but decreasing.
Q(t) then increases slightly before decreasing again to its next minimum, which occurs very
close to the minimum of Q(t  - \tau ) on the solution. This sets in train a clockwise oscillation
in the (Q(t), Q(t  - \tau )) projection close to 0. Along this oscillation the local minima of Q(t)
and Q(t - \tau ) occur very close to each other in time because the period of this low amplitude
oscillation (as seen in Figure 8(i)) is very close to the delay \tau . After the double local minima
the solution grows close to the local unstable manifold of Q = 0 with Q(t  - \tau ) \approx Q(t)e - \lambda \tau 

for a time, until Q(t - \tau ) starts to decrease again (toward the previous local minima of Q(t)),
after which Q\prime (t) becomes negative and Q(t) decreases to its next local minima, completing
one cycle. The amplitude of this oscillation grows slightly with each subsequent cycle, until
eventually the oscillation escapes to Q(t) \gg Q\ast .

As \tau increases across the branch of stable orbits the character of the periodic orbits
changes (not illustrated), with the growth rate of the small amplitude oscillations progressively
decreasing and the period of the orbit increasing. For \tau sufficiently large the small amplitude
oscillations decay instead of grow, and thereafter the periodic orbits resemble the longest
period orbit shown in Figure 6(i). The period of the orbit, but not the amplitude, continues
to grow until the amplitude and period of the solutions decrease abruptly just before the right
bifurcation point, apparently in a canard explosion. The period reaches its maximum value
of 3281 days for \tau \approx 6.874295373 and decreases dramatically to 182 days, while the value of
\tau remains constant to 10 significant digits (see right inset of Figure 7(ii)).

Although we do not find a homoclinic bifurcation, the longest period orbit is about 9
years, nearly 500 times larger than the delay in the system, with the orbit close to homoclinic
to the nontrivial steady state Q\ast . The solutions in this region are similar to the long period
orbits displayed in Figure 6.

3.2. Two-parameter continuation. Recent versions of DDEBiftool [21, 53] have the facil-
ity to perform two-parameter continuation of bifurcations of periodic orbits, and we used this
to study the bifurcations of the DDE (1.1) as the parameters \kappa , \gamma , and \tau are varied pairwise.

In Figure 9 we present the two-parameter bifurcation diagram as \kappa and \tau are varied,
with all other parameters at their values in Table 1, which reveals the curves of Hopf,
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Figure 9. Two parameter (\kappa , \tau )-bifurcation diagram for the DDE (1.1) with other parameter values given
by Table 1. Each solid curve represents the locus of bifurcation of periodic orbits, as indicated in the key.
The brown square 2 denotes a Bautin bifurcation; see text. The black cross marks the homeostasis values of
the parameters. Within the inset, the black square indicates the parameter values of the torus investigated in
section 5.1, and the red and blue triangles represent chaotic attractors seen in section 5.2.

period-doubling, saddle-node, torus, and steady state bifurcation as this pair of parameters
are varied. Taking a straight line through Figure 9 with \tau = 2.8 or with \kappa = 0.022 reveals the
bifurcations found in Figures 3 and 7, respectively. From Figure 9 we see that the homeostasis
parameters (\kappa , \tau ) = (0.022, 2.8) are not particularly close to any bifurcations, with the Hopf
curve and an associated curve of saddle-node of limit-cycle bifurcations being the only other
bifurcations near that part of parameter space. The Hopf bifurcations are subcritical to the
left of the Bautin or generalized Hopf bifurcation at (\kappa , \tau ) = (0.4960, 1.525) and supercritical
otherwise. We already saw instances of the subcritical Hopf bifurcations in Figures 3 and 7;
Bernard, B\'elair, and Mackey [6] previously presented an example with both Hopf bifurcations
supercritical.

If the delay is small (\tau < 1) there are no bifurcations at all, while the bifurcation structures
become more complicated as \tau is increased with two curves of fold bifurcations of periodic
orbits created in a cusp bifurcation at (\kappa , \tau ) \approx (0.81600, 2.3956), and a further cusp bifurcation
and torus bifurcation curves only occurring for \tau > 3. Figure 9 suggests that for one-parameter
continuation in \kappa , taking \tau close to 4 will lead to more complicated dynamics than was seen
in Figure 3 for \tau = 2.8. Indeed, the curves seen in Figure 9 were seeded by performing a one-
parameter continuation in \kappa with \tau = 3.9 (see Figure 15) and consequently Figure 9 shows all
the bifurcation curves that cross \tau = 3.9. There may be other bifurcation curves that remain
above \tau = 3.9, but it appears from Figure 9 that they would be constrained to be near the
right Hopf bifurcation.

Figure 10 shows the bifurcation curves found for two-parameter continuation in (\kappa , \gamma ) with
all the other parameters taking their values from Table 1, revealing an alternating sequence of
curves of period-doubling and fold bifurcations (of limit cycles) and associated cusp bifurcation
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Figure 10. Continuation in (\kappa , \gamma ) with other parameters at homeostasis (see Table 1). Each solid curve
represents the locus of a certain type of bifurcation of periodic orbits as specified in the key.

of limit cycles. The closed curves of bifurcations become shorter and narrower as parameters
approach the upper bound on \gamma for periodic orbits to exist and also progressively more delicate
to compute numerically. There may be additional curves of bifurcations for \gamma > 0.2 which we
were not able to compute. A straight line through Figure 10 with \gamma = 0.1 or with \kappa = 0.022
reveals the bifurcations found in Figures 3 and 5, respectively. The inset reveals that the
period-doubling and saddle-node loci do not overlap.

The results of two-parameter continuation in (\gamma , \tau ) are shown in Figure 11. This reveals
the locus of the Hopf bifurcations already observed in Figures 5 and 7. There is also a Bautin
bifurcation at (\gamma , \tau ) = (0.4020, 1.651) and a branch of saddle-node bifurcations of limit cycles
which emerges this point. This branch represents the two-parameter continuation of the fold
bifurcation seen in Figures 5 and 7. This bifurcation is very delicate for DDE-Biftool to
compute and continue numerically, and we were not able to compute the full branch. For
\tau = 2.8, 4, 6, and 8 we performed one parameter continuation in \gamma to confirm that the fold
bifurcation persists for larger \tau values and also to verify that there are not other bifurcation
curves missing from the diagram. For the larger values of \tau , DDEBiftool is not able to identify
the fold bifurcation. While we are able to find the fold from a one-parameter continuation
by simply looking for the minimum value of \gamma along the branch (and we added these points
to Figure 11), DDEBiftool computes and continues fold bifurcations of limit cycles in two
parameters by solving the defining equations for a fold bifurcation of periodic orbits [53],
which is a considerably more complicated computation.

The two-parameter continuations in Figures 9, 10, and 11 reveal that the nontrivial steady
state solution Q\ast > 0 remains stable for all reasonably small perturbations from the home-
ostasis parameter values of Table 1. We also see from Figures 9 and 11 that Q\ast is stable for all
small delays \tau < 1 (at least when the other parameters are varied one at a time). This suggests
that an ODE model would not capture the instabilities driven by the delays. Since the cell
cycle time for stem cells is estimated to be much larger than 1 day (2.8 days in Craig,
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the locus of a bifurcation of periodic orbits, as specified in the key to Figure 10. The brown square 2 denotes a
Bautin bifurcation. The brown dots and arc of brown curve emanating from the Bautin bifurcation form part
of a curve of fold bifurcations of limit cycles, which DDEBiftool is only partially able to compute (see text).

Humphries, and Mackey [18]) it is essential to include the delay in the DDE model (1.1)
to properly capture the possible dynamics of the system. That the two-parameter continua-
tions in (\kappa , \gamma ) and (\gamma , \tau ) reveal less interesting bifurcation diagrams than for continuation in
(\kappa , \tau ) is probably not intrinsic to the properties of the parameters in the model but rather
is determined by the homeostasis value of the third parameter from Table 1 when we per-
form two-parameter continuation. More complicated bifurcation diagrams can be generated
by taking (\kappa , \tau ) close to (0.86, 4), in the interesting part of Figure 9, and then doing two-
parameter continuation in any pair of these three parameters. For example, with \kappa = 0.68,
two-parameter continuation in (\gamma , \tau ) (not shown) reveals torus and period-doubling curves,
quite unlike anything seen in Figure 11. However, here we have based our continuation on
using the homeostasis values of the parameters from Table 1 to start one- and two-parameter
continuations. If we allowed all the parameters to vary it is likely that we could find more
exotic dynamics, but what the relationship, if any, that dynamics would have to the Burns--
Tannock HSC model is not clear.

4. Long period orbits and Canard explosion. A canard explosion is a dynamical phe-
nomenon seen in fast-slow or singularly perturbed systems whereby over an exponentially
small range of the continuation parameter a periodic orbit is transformed into a long period
relaxation oscillation. For ODEs this requires at least two space dimensions, with classical
examples being the van der Pol oscillator and Fitzhugh--Nagumo equations [4, 55]. Canard
explosions have already been explored in DDEs [13, 34], but only in systems with at least
two spatial dimensions that incorporate a delay. However, since DDEs are inherently infinite-
dimensional there is no reason why a canard explosion should not be seen in a scalar DDE
such as (1.1).
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Recalling the continuation in \gamma shown in Figure 5, at the right Hopf bifurcation point
\gamma \approx 0.2453746 a periodic orbit is born with period approximately 48 days, but at \gamma \approx 
0.2453692 the period increases dramatically to about 700 days while the value of \gamma remains
constant to seven significant figures. This would appear to be a canard explosion. Figure 12
illustrates orbits from this part of the branch as the period increases. Comparing the time
plot with the (Q(t), Q(t - \tau )) phase space projection, the slow manifold appears to be close to
Q(t) = Q(t - \tau ), with Q\prime (t) gradually increasing along this curve, followed by a fast transition
layer as Q(t) decreases to close to its minimum value while Q(t  - \tau ) remains close to its
maximum. Then Q(t - \tau ) passes through the transition layer to also be close to its minimum
value, after which there is a slowly decaying oscillation with a period of about 3 days as
the solution converges back to the slow manifold. The largest period orbit illustrated has a
period of about 701.3 days, with Q(t) crossing the steady state Q\ast once in each direction, with
Q(t) > Q\ast for approximately 191.3 days and Q(t) < Q\ast for the remaining 510.0 days. Here
the delay \tau = 2.8 days, so this is an example of a (very) slowly oscillating periodic solution.

Fast-slow systems in ODEs often have separate fast and slow variables which can be con-
sidered separately in the fast and slow subsystems. That separation of variables does not occur
in the DDE (1.1), for which we have only one variable. Nevertheless, relaxation oscillators with
both fast and slow segments within the solution can arise and have been studied in DDEs, by
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Figure 12. (i) Solution profiles and (ii) time-delay embedding (Q(t), Q(t  - \tau )) of periodic solutions from
the same \gamma continuation shown in Figure 5 show an apparent canard explosion at \gamma \approx 0.2453692. The insets
indicate where the illustrated orbits lie on the branch. (iii)--(iv) Parts of (ii) at a much larger scale. (iii)
Oscillatory convergence of the solutions onto a slow manifold for Q < Q\ast . (iv) Dynamics near to Q\ast . The
nullcline Q\prime (t) = 0 is indicated by the red curves in panels (ii)--(iv).
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tackling the fast and slow segments of the solution separately. In particular a relaxation oscil-
lator for the HSC DDE (1.1) has been studied using singular perturbation analysis [14, 24]. Of
particular note is the extensive work of Mallet-Paret and Nussbaum studying slowly oscillating
periodic solutions in singularly perturbed constant and state-dependent DDEs [42, 43, 44].

A complete analysis of how the canard explosion arises in (1.1) will be beyond the scope of
this work, but we will show that (1.1) can be considered as a singular perturbation problem.
We identify the critical manifold and also investigate its persistence by approximating the
resulting slow manifold and studying its stability. We will show that a segment of this manifold
for Q < Q\ast is stable with oscillatory convergence of nearby trajectories onto the manifold (see
Figures 12(ii) and (iii)), while a segment for Q > Q\ast is unstable, leading to the divergence of
trajectories from the manifold. In the current work, we will not study the fast dynamics in
the transition layer.

For \gamma = 0.2453692 and all other parameters taking their values from Table 1, we notice
that \kappa \approx 0 and A \approx 1, so we introduce the perturbation parameter \varepsilon \geqslant 0 and let

\varepsilon = A - 1 = 2e - \gamma \tau  - 1, \kappa =
\varepsilon f

C
.(4.1)

For the nonzero steady state Q\ast to exist the inequality (2.8) must hold; equivalently the
constant C must satisfy C > 1. Then Q\ast > 0 is given from (2.7) by

Q\ast = \theta (C  - 1)1/s,(4.2)

independent of the value of \varepsilon > 0. For the parameters used in Figure 12 we have \varepsilon =
6.132 \times 10 - 3 and C = 2.23 with Q\ast = 0.0896868 when \gamma = 0.2453692. The parameter
definitions in (4.1) could be applied to the nondimensionalized equation (2.3) with \^A = \varepsilon and
\^\kappa = \varepsilon /C, but we prefer to continue to study (1.1) directly.

Letting h(Q) = Q\beta (Q), as in (2.10), and using (4.1) we rewrite (1.1) as

Q\prime (t) =  - \varepsilon f

C
Q(t) - h(Q(t)) + (1 + \varepsilon )h(Q(t - \tau )).(4.3)

When \varepsilon = 0 this reduces to

Q\prime (t) =  - h(Q(t)) + h(Q(t - \tau )) =  - fQ(t)

1 + (Q(t)/\theta )s
+

fQ(t - \tau )

1 + (Q(t - \tau )/\theta )s
.(4.4)

While (4.3) has the unique positive steady state Q\ast given by (4.2), when \varepsilon = 0 there is a line
of equilibria for (4.4) with Q being an arbitrary constant, which is the critical manifold. The
linearization of (4.4) is given by (2.9) with a =  - h\prime (Q) and b =  - a and so the characteristic
function (2.12) becomes

p(\lambda ) = \lambda  - a+ ae - \lambda \tau .

This satisfies p(0) = 0 and p\prime (0) = 1  - a\tau and has \lambda = 0 as a solution for any value of a.
There is an additional real negative root if p\prime (0) > 0, i.e., a\tau < 1. This root crosses zero when
p\prime (0) = 0 and becomes positive for a\tau > 1 when p\prime (0) < 0. Thus the steady state stability
changes when h\prime (Q) =  - 1/\tau . Using (2.1) and (2.10) and the nondimensionalized variables of
(2.3) the identity h\prime (Q) =  - 1/\tau reduces to a quadratic equation for \^Qs:

\^Q2s + (2 - (s - 1) \^f) \^Qs + 1 + \^f = 0.
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Solving this with parameters corresponding to Figure 12 we find that the stability on the
critical manifold changes when Q = \theta \^Q = 0.0893174, very close to the value Q\ast .

The critical manifold should persist where it is transversally hyperbolic as a slow manifold
following the theory of Fenichel [22]. However, that theory was developed for ODEs in multiple
space dimensions with at least one fast and one slow variable. Likewise, the previous examples
of canards in DDEs considered systems with two spatial dimensions with one fast and one slow
variable [13, 34]. For the scalar DDE (1.1) there is not an obvious separation into fast and
slow variables and it is not apparent how to proceed rigourously. Nevertheless, it is apparent
from Figure 12 that there is a slow manifold, and in the remainder of this section we will show
how to approximate the slow manifold and determine its stability.

The slow manifold on which Q\prime \approx 0 should be close to the nullcline Q\prime (t) = 0, which
from (1.1) is given by

0 =  - \kappa 

f
Q(t) - Q(t)

1 + (Q(t)/\theta )s
+ 2e - \gamma \tau Q(t - \tau )

1 + (Q(t - \tau )/\theta )s
.(4.5)

If one of Q(t) or Q(t  - \tau ) is fixed, then for Q\prime (t) = 0 with s = 2 from (4.5) the value of
the other one is defined by a cubic equation. The resulting nullcline is displayed as the two
red curves in Figure 12(ii), which are seen to be disjoint in Figure 12(iv), which shows an
expanded view near to (Q\ast , Q\ast ). Typically, canard explosions are seen close to a bifurcation
of the intersections of the nullclines of the slow and fast variables. Here we do not have
separate fast and slow variables, but we see that we are close to a bifurcation of the Q\prime (t) = 0
nullcline itself, with the two disjoint parts coming very close to each other in Figure 12(iv).
Figure 12(iv) also shows that the periodic orbits that form the canard explosion appear to
lie on a slow manifold between the branches of the nullcline and switch from following the
lower branch to following the upper branch at the point close to Q\ast where the two curves are
closest. It is thus likely essential for the canard explosion that the parameter set is close to
this bifurcation of the nullcline structure.

To obtain a simple approximation to the slow manifold, let h(Q) = Q\beta (Q), as in (2.10),
so (1.1) becomes

Q\prime (t) =  - \kappa Q(t) - h(Q(t)) +Ah(Q(t - \tau )).(4.6)

Then use the approximation

h(Q(t - \tau )) \approx h(Q(t)) - \tau 
d

dt
h(Q(t)) = h(Q(t)) - \tau Q\prime (t)h\prime (Q(t))(4.7)

to remove the delay from (4.6). Note that \tau \gg 0 so (4.7) is useful only if \tau 2 d2

dt2
h(Q(t)) \ll 1.

Substituting (4.7) into (4.6) and rearranging we obtain

Q\prime (t) =
 - \kappa Q(t) + (A - 1)h(Q(t))

1 +A\tau h\prime (Q(t))
.

On the slow manifold Q(t  - \tau ) \approx Q(t)  - \tau Q\prime (t) so we can approximate the manifold in the
delay embedding (Q(t), Q(t - \tau )) by the curve (Q,Q\tau ) where
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Figure 13. Approximations (Q,Q\tau ) to the slow manifold of the canard solution where (i) Q\tau is given
by (4.8) and shown in violet; (ii) Q\tau is given by (4.17) with Qr replaced by Q and shown in green. Both
approximations are shown in the insets.

Q\tau =
(1 + \kappa \tau +A\tau h\prime (Q))Q - \tau (A - 1)h(Q))

1 +A\tau h\prime (Q)
.(4.8)

This gives a good approximation to the slow manifold for Q \in (0, 0.23), except for a very small
interval | Q - Q\ast | < 0.003 about the nontrivial steady state. This is shown in Figure 13(i). The
curve (Q,Q\tau ) is also an approximation to the unstable manifold of Q = 0; the trivial steady
state has a single positive characteristic value and infinitely many pairs of complex conjugate
characteristic values with negative real part. The canard explosion is not associated with a
solution homoclinic to Q = 0 though; no such homoclinic solution can exist in the space of
nonnegative solutions, as all solutions in the stable manifold of Q = 0 will be oscillatory and
violate the positivity of solutions (as already noted earlier).

To determine the dynamics close to the slow manifold, it is necessary to take proper
account of the delayed term, and so we will derive another slow manifold approximation. For
this, linearize h(Q) about Q = Qr for general Qr as

h(Q) \approx h(Qr) + h\prime (Qr)(Q - Qr).(4.9)

Then let Qs(t) be a solution on the slow manifold, and let Q(t) be some other solution in a
neighborhood of this manifold, and let w(t) = Q(t)  - Qs(t) be the difference between these
two solutions, then using (4.9) and (4.6) we find that

w\prime (t) = Q\prime (t) - Q\prime 
s(t) \approx  - (\kappa + h\prime (Qs(t)))w(t) +Ah\prime (Qs(t - \tau ))w(t - \tau ).(4.10)

The linearization (4.10) is actually valid as an approximation of the dynamics about any
solution Qs(t) of the DDE (1.1). However, it is problematic to use, even about solutions on
the slow manifold, since although (4.10) is linear it is nonautonomous and the time-dependent
terms depend on the as yet unknown slow-manifold solution Qs(t). As an alternative, rather
than linearize about a particular solution, close to the slow manifold we can use (4.9) to
linearize h about Q = Qr for some reference value of Q and convert (1.1) into a linear DDE
for the dynamics near to Q = Qr, with

Q\prime (t) \approx (A - 1)[h(Qr) - h\prime (Qr)Qr] - (\kappa + h\prime (Qr))Q(t) +Ah\prime (Qr)Q(t - \tau ).(4.11)
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We rewrite (4.11) as

Q\prime (t) = aQ(t) + bQ(t - \tau ) + c,(4.12)

where letting

G(Q) := (A - 1)\beta (Q)Q - \kappa Q = (A - 1)h(Q) - \kappa Q,(4.13)

we see that the constants a, b, and c satisfy

a =  - (\kappa + h\prime (Qr)), b = Ah\prime (Qr),

c = (A - 1)[h(Qr) - h\prime (Qr)Qr] = G(Qr) + [\kappa  - (A - 1)h\prime (Qr)]Qr = G(Qr) - (a+ b)Qr.

Noting that
G\prime (Qr) = (A - 1)h\prime (Qr) - \kappa = a+ b,

we can rewrite c as c = G(Qr) - G\prime (Qr)Qr.
The function G is unimodal, and recalling (2.5) it follows that G(0) = G(Q\ast ) = 0, and

G has a unique maximum for Q = Qf for some Qf \in (0, Q\ast ). Thus G\prime (Qr) > 0 (resp.,
G\prime (Qr) < 0) for Q < Qf (resp., Q > Qf ). Another value of Q which will be relevant below is
Qh, the value of Q such that h\prime (Qh) = 0. It follows easily that Qh > Qf . With \gamma = 0.2453692
and the other parameters from Table 1 we have

Qf = 0.042263 < Qh = (s - 1) - 
1
s \theta = \theta < Q\ast = 0.089686.

Solutions to the nonhomogeneous linear DDE (4.12) consist of a particular solution
of (4.12) and any linear combination of solutions of the homogeneous linear DDE

Q\prime (t) = aQ(t) + bQ(t - \tau ).(4.14)

The DDE (4.14) is of the same form as (2.9) and has the same characteristic equa-
tion (2.12). This has infinitely many complex roots, which would lead to oscillatory solu-
tions of (4.14). However, from above the slow manifold appears to be monotonic, hence we
will seek a monotonic solution of (4.11), for which we require real roots of (2.12). Since
p\prime (\lambda ) = 1 + b\tau e - \lambda \tau , for Q \leqslant Qh we have p\prime (\lambda ) \geqslant 1 and (2.12) has a unique real root. Real
roots of (2.12) can be found using the Lambert-W function [17]. Rearranging (2.12) we see
that any root \lambda satisfies b\tau e - a\tau = (\lambda  - a)\tau e(\lambda  - a)\tau . Hence W (b\tau e - a\tau ) = (\lambda  - a)\tau , and so

\lambda = a+
1

\tau 
W (b\tau e - a\tau ).(4.15)

Consider first the case where Qr < Qf . Then G\prime (Qr) = a + b > 0 and b > 0 > a.
Since p(0) =  - (a+ b) and p\prime (\lambda ) \geqslant 1 the characteristic equation (2.12) has a unique real root
\lambda + = \lambda +(Qr) \in (0, G\prime (Qr)) given by (4.15). Equation (4.12) then admits a constant solution,
Q(t) = k, where

k =
 - c

a+ b
=

 - G(Qr) +G\prime (Qr)Qr

G\prime (Qr)
= Qr  - 

G(Qr)

G\prime (Qr)
.

Hence a monotonic solution of (4.12) passing through Q(0) = Qr is

Q(t) = Qr + (e\lambda +t  - 1)G(Qr)/G
\prime (Qr).(4.16)
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The general solution of (4.12) which describes the behavior of solutions in a neighborhood
of the monotonic solution is obtained by adding an arbitrary linear combination of the solutions
of (4.14), defined by the roots of (2.12). But since \lambda + > 0, even without solving for the
complex characteristic values, we already know that the monotonic solution is not stable for
Q < Qf . Nevertheless, we can use (4.16) to approximate the slow manifold for Q < Qf .
From (4.16), when Q = Qr we have Q\prime = \lambda +G(Qr)/G

\prime (Qr) < G(Qr), and hence assuming
that Q(t  - \tau ) \approx Q(t)  - \tau Q\prime (t), we can approximate the slow manifold Qs(t) in the delay
embedding (Q(t), Q(t - \tau )) for Q < Qf by the curve (Qr, Q\tau ) where

Q\tau = Qr  - \tau \lambda G(Qr)/G
\prime (Qr)(4.17)

and \lambda = \lambda +(Qr).
Next consider the case for which Qr \in (Qf , Qh). Then b > 0 > a + b = G\prime (Qr). Now,

p(0) =  - (a+ b) > 0 and p\prime (\lambda ) \geqslant 1, so the characteristic equation (2.12) has a unique real root
which is negative, \lambda  - = \lambda  - (Qr) \in (G\prime (Qr), 0) given by (4.15). Similarly to above, (4.12) then
has a monotonic solution

Q(t) = Qr + (e\lambda  - t  - 1)G(Qr)/G
\prime (Qr),(4.18)

passing through Q(0) = Qr \in (Qf , Qh). The behavior of nearby solutions is determined by
the general solution of (4.12), which is

Q(t) = Qr + (e\lambda  - t  - 1)
G(Qr)

G\prime (Qr)
+ \beta 0e

\lambda  - t +
\sum 
j\geqslant 1

e\alpha jt(\beta j cos(\omega jt) + \gamma j sin(\omega jt))(4.19)

for constants \beta j , \gamma j where \lambda j = \alpha j \pm i\omega j are the complex roots of (2.12). For this solution,
not only is \lambda  - < 0, but we can also show that all the complex characteristic values that
solve (2.12) also have strictly negative real part. Taking real and imaginary parts of (2.12)
we find that \lambda j = \alpha j \pm i\omega j satisfies 0 = \alpha j  - a - be - \alpha j\tau cos(\omega j\tau ) = \omega j + be - \alpha j\tau sin(\omega j\tau ), which
implies that \omega 2

j = b2e - 2\alpha j\tau  - (\alpha j  - a)2. But for Qr \in (Qf , Qh) we have a < 0 and  - a > b > 0,

hence for a characteristic root with \alpha j \geqslant 0 we have \omega 2
j \leqslant b2  - a2 < 0, a contradiction, and so

all characteristic values have Re(\lambda j) = \alpha j < 0.
For Q \in (Qf , Qh) we can again approximate the slow manifold Qs(t) in the delay embed-

ding (Q(t), Q(t  - \tau )) by the curve (Qr, Q\tau ) where Q\tau is defined by (4.17) with \lambda = \lambda  - (Qr).
Since \alpha j < 0 for all j and \lambda  - < 0 all the additional solution elements included in (4.19) are
decaying, and the solution defined by (4.18) and the resulting slow manifold are attracting in
this region of phase space.

The convergence onto the slow manifold is oscillatory, as seen in Figure 12. This is
governed by the dominant complex characteristic value of (2.12), the value of which is stated
as \lambda 1 in Table 2. We see from the table that Re(\lambda 1) becomes more negative as Q increases,
implying that the slow manifold becomes more attractive as Q increases toward Qh. This
is clearly visible in Figure 12(iii) with progressively fewer oscillations visible for the orbits
converging onto the slow manifold for larger values of Q. The period of these oscillations
2\pi /\omega 1 also increases with Q, but not greatly, and is close to 3 in the range of Q values where
the oscillations are most visible.
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Table 2
The real characteristic value \lambda  - or \lambda + of (2.12) along with the first pair of complex characteristic values

\lambda 1, the derivative of the solution Q\prime (t) given by (4.16) or (4.18), and the resulting approximation of Q\tau given
by (4.17) for a range of values of Qr.

Qr \lambda \pm Q\prime Q\tau \lambda 1

0.01 1.10\times 10 - 5 1.17\times 10 - 5 9.96\times 10 - 3  - 0.0118\pm 2.15i
0.02 9.56\times 10 - 4 2.45\times 10 - 5 1.99\times 10 - 2  - 0.0155\pm 2.13i
0.03 6.68\times 10 - 4 3.96\times 10 - 5 2.98\times 10 - 2  - 0.0237\pm 2.11i
0.04 1.60\times 10 - 4 5.81\times 10 - 5 3.98\times 10 - 2  - 0.0408\pm 2.07i
0.05  - 7.40\times 10 - 4 8.13\times 10 - 5 4.97\times 10 - 2  - 0.077\pm 2.00i
0.06  - 2.45\times 10 - 3 1.10\times 10 - 4 5.96\times 10 - 2  - 0.157\pm 1.90i
0.07  - 6.28\times 10 - 3 1.47\times 10 - 4 6.95\times 10 - 2  - 0.354\pm 1.75i
0.08  - 1.93\times 10 - 2 1.98\times 10 - 4 7.94\times 10 - 2  - 1.35\pm 1.42i
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Figure 14. (i) Profile and (ii) time-delay embedding, for a periodic solution of the nonlinear DDE (1.1),
and several of its approximations. For \gamma = 0.2453692 the DDE (1.1) has a limit cycle with period 297 days, part
of which is shown here (blue curve). For the approximations we take Qr = 0.063224; then the black curve shows
the approximation (4.18) to the slow manifold. The red curve shows a solution to (4.12) computed numerically
using a segment of the solution of the nonlinear DDE (1.1) for t \in [ - 2.8, 0] to define the initial function. The
green curve shows a solution of (4.12) defined by (4.19) with \beta j = \gamma j = 0 for all j, except \gamma 1 = 0.003935.

Figure 14 illustrates how well our approximations perform in the region Q \in (Qf , Qh)
where the slow manifold is attracting. The blue curves in Figure 14 show part of the limit
cycle of the nonlinear DDE (1.1) with period 297 days when \gamma = 0.2453692, which occurs
in the canard explosion and was previously shown in Figure 12. Taking Qr = 0.063224 we
find that the rightmost characteristic value is \lambda  - =  - 3.33 \times 10 - 3; then (4.18) defines an
approximation to the slow manifold which is shown as the black curve in Figure 14.

The second-rightmost characteristic value \lambda 1 = \alpha 1 + i\omega 1 =  - 0.202 + 1.86i yields the
approximate oscillation time of 3.37 days. To show that this characteristic value governs the
convergence of solutions onto the slow manifold in Figure 14 we show as the green curve the
solution (4.19) of the linearized DDE (4.12) with \beta j = \gamma j = 0 for all j, except for \gamma 1 \not = 0,
so that the only oscillatory mode included in the solution is defined by \lambda 1. Additionally, the
red curve shows the solution of (4.12) incorporating all modes, computed by solving (4.12)
numerically using part of the solution of (1.1) as the initial function. Both approximations
have oscillations about the slow manifold with very similar period and decay rate as for the
solution of the full nonlinear DDE (1.1), demonstrating the validity of our approximations.
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In the current work we will not describe the passage of the slow manifold past the steady
state Q\ast , but note that the behavior of the solutions of (2.12) changes when Qr approaches
Q\ast . For Q > Qh we have b < 0 and the different branches of W (x) in (4.15) for x < 0 can
lead to zero or two real solutions for \lambda . There are two values of Q, Q - 

h\prime < Q\ast < Q+
h\prime , such that

when Q = Q\pm 
h\prime , we have b\tau e - a\tau =  - e - 1 and the two branches of the Lambert-W function

coalesce. These points can be computed from the solution on each branch of h\prime (Q\pm 
h\prime ) =

W ( - e - 1 - \kappa \tau /A)/\tau , which leads to Q - 
h\prime = 0.08626 and Q+

h\prime = 0.09389. For Q \in (Q - 
h\prime , Q

+
h\prime ),

(2.12) has no real roots. At the boundaries, Q\pm 
h\prime , of this interval a pair of complex conjugate

characteristic roots coalesce, and for Q < Q - 
h\prime or Q > Q+

h\prime there are two real characteristic
roots. At the steady state Q\ast \in (Q - 

h\prime , Q
+
h\prime ), there is a single pair of characteristic roots with

positive real part and leading characteristic roots of (2.12) are \lambda 1 = 0.0070 \pm 0.1303i and
\lambda 2 =  - 0.73\pm 2.67i.

For Q > Q+
h\prime , the function p(\lambda ) in (2.12) is convex with p(0) =  - (a+ b) > 0 and p(\lambda ) > 0

for \lambda \geqslant a. With the other parameters as stated, (2.12) has two positive solutions provided
Qr \leqslant 0.28577. Using the smaller of these two roots, we obtain a monotonic solution of the
same form as (4.16) and (4.18), which can be similarly used to construct an approximation
to the slow manifold for Q > Q+

h\prime , as shown in Figure 13(ii). Because of the two positive
characteristic roots, this part of the slow manifold is unstable, as seen in the dynamics where
the periodic orbits of different amplitudes and periods are seen in Figure 12(ii) to peel away
from each other sooner or later depending on their amplitude and period. Thus we have
approximated the attracting and repelling parts of the slow manifold either side of the steady
state Q\ast . A complete analysis of the canard explosion would require the dynamics that join
these segments of the slow manifold, both near to the steady state, and also the fast dynamics
when the solution is far from the slow manifold.

5. Nonperiodic and chaotic dynamics. The period-doubling and torus (Neimark--Sacker)
bifurcations that we found in section 3 suggest that the DDE (1.1) can generate quasi-periodic
and chaotic dynamics. The software package DDEBiftool cannot be used to directly find
such dynamics, but we can use the DDEBiftool bifurcation studies of section 3 to determine
parameter regions where nonperiodic dynamics should arise. Long time numerical simulations
of the DDE can then be performed using the MATLAB dde23 routine [45] with suitable initial
history functions to study the dynamics in these parameter regimes.

5.1. Quasi-periodic dynamics. It is somewhat surprising to find torus bifurcations for the
HSC model (1.1), because as we already noted in section 2, its linearization about a steady
state is (2.9), which does not admit any double-Hopf bifurcations. Double-Hopf or Hopf-Hopf
bifurcations are a standard mechanism for generating tori and curves of torus bifurcations [35]
and arise frequently in systems with coupled oscillators and systems with multiple delays [12].
However, the HSC model (1.1) is scalar, with a single delay, but nevertheless torus bifurcations
do occur, as seen in section 3.2. So here we will investigate the existence of invariant tori
for (1.1).

The two-parameter continuation in (\kappa , \tau ) shown in Figure 9 reveals an isola of torus bifur-
cations for \kappa \in (0.91859, 1.0174) and \tau \in (3.4857, 4.1342). In a one-parameter continuation,
as \kappa is varied with \tau = 3.9 fixed, Figure 15 reveals that the main branch of periodic orbits
loses stability for \kappa \in (0.95004, 0.97309) at a pair of torus or Neimark--Sacker bifurcations,
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Figure 15. (i) Bifurcation diagram for one-parameter continuation in \kappa with \tau = 3.9 and other parameters
taking homeostasis values from Table 1. Hopf bifurcation points \ast , saddle-node bifurcation of limit cycles points
2, period-doubling bifurcation points #, and torus bifurcation points \diamond are indicated and highlighted in insets.
(ii) Period of the limit cycles displayed in (i).

corresponding to the points where the continuation crosses the isola found in the two-
parameter continuation.

The simplest explanation is that there should be a stable torus at \kappa values between the two
Neimark--Sacker bifurcations. Although DDEBiftool [53] cannot be used to find tori directly,
a stable torus can be found by direct numerical simulation if a suitable initial function is
chosen in the basin of attraction of the torus. Some care needs to be taken, because as the
top right inset in Figure 15(i) reveals, folds on the main branch of periodic solutions result
in a stable (as well as two unstable) periodic orbits existing for \kappa \in (0.088007, 1.1556), so if a
stable torus exists it will coexist with a stable periodic orbit.

To confirm the existence of a stable torus we performed a long time integration of the
DDE using the MATLAB dde23 routine [45] with initial history function very close to the
unstable periodic orbit on the main branch of solutions. For \kappa = 0.961 with \tau = 3.9 and all
other parameters taking their values from Table 1 (this parameter combination is indicated by
the black square in the inset within Figure 9) we found a quasi-periodic torus which envelops
the unstable periodic orbit, as illustrated in Figure 16. The existence of the quasi-periodic
torus was confirmed numerically both by plotting the Poincar\'e section and by computing the
Lyapunov exponents.

Recall from section 2 that the DDE (1.1) has the infinite-dimensional phase space
C = C([ - \tau , 0],\BbbR ); consequently a hyperplane defined by a Poincar\'e section is also infinite-
dimensional. For \alpha \in [0, \tau ] and some constant c \in \BbbR we define the Poincar\'e section
\scrP \alpha := \{ ut \in C : ut( - \alpha ) = c, u\prime t( - \alpha ) > 0\} . For \alpha = 0 this is equivalent to looking for
the points \^t along the solution trajectory such that u(\^t) = c and u\prime (\^t) > 0 and taking as the
corresponding element of the Poincar\'e section the function segment u(t) for t \in [\^t  - \tau , \^t], so
that u is equal to c at the right-hand end of the function segment. Other choices of \alpha are also
possible, so, for example, with \alpha = \tau the function u will be equal to c at the left-hand end of
the interval.

For the Poincar\'e section \scrP 0 to be useful we need to project it into finite dimensions. The
simplest way to do this is to take the value of the solution u(t) at a finite set of points in
[t  - \tau , t]. Since the choice \alpha = 0 fixes u(t) = c, we choose the time points t  - \tau /2 and
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Figure 16. For \tau = 3.9 and \kappa = 0.961. (i) Time series and (ii) projected solution space (Q(t), Q(t  - \tau ))
for a quasi-periodic orbit (red curve) and the three periodic solutions (blue curves) seen in the top right inset of
Figure 15(i) for \kappa = 0.961. (iii) Projected Poincar\'e section of the quasi-periodic orbit (red) and the unstable orbit
(blue) that it envelops onto the plane (Q(t - \tau ), Q(t - \tau /2)) for crossing of the Poincar\'e section Q(t) = c = 0.14
with Q\prime (t) > 0. (iv) Initial convergence of the first three Lyapunov exponents.

t  - \tau and project the Poincar\'e section into \BbbR 2 by plotting u(t  - \tau /2) against u(t  - \tau ) for
values of t such that u(t) = c. This is equivalent to the projection P : \scrP 0 \rightarrow \BbbR 2 defined by
P (ut) = (u(t - \tau ), u(t - \tau /2)). Figure 16(iii) reveals the results of doing this with c = 0.14 for
both the putative torus and the unstable periodic orbit that gave rise to it. This reveals the
expected torus structure with the points representing the function segments in \scrP 0 lying on
a closed curve that encloses the point representing the periodic orbit in the two-dimensional
projection. Since each of the red points represents separate intersections of the same orbit
with the Poincar\'e section, the orbit is either quasi-periodic or of period longer than a human
adult lifespan (the time integration was 30000 days, which is longer than 82 years).

We computed the Lyapunov exponents of the quasi-periodic orbit on the torus using
the method of Breda and Van Vleck [9]. Figure 16(iv) shows the initial convergence of the
numerical estimates for the three largest Lyapunov exponents. After 3 \times 104 days, the six
largest Lyapunov exponents are estimated to be 0.00052,  - 0.00066,  - 0.0093,  - 0.18,  - 0.29,
and  - 0.29. This reveals that up to the numerical accuracy the first two exponents are both
zero, and the rest are negative, as is characteristic for a quasi-periodic two-torus.

As is well known in torus dynamics [10], perturbing parameters in the system will change
the dynamics on the torus, with parameter regions of phase locking, where there is a stable
periodic orbit on the torus, interspersed with parameter sets for which the dynamics are truly
quasi-periodic. So, although we cannot prove that there exists a quasi-periodic torus for
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Figure 17. Time series over one period and the corresponding time-delay embedding (Q(t), Q(t  - \tau )) for
stable periodic orbits on the phase-locked torus with \tau = 3.9 for (i)--(ii) \kappa = 0.965, and (iii)--(iv) \kappa = 0.957,
which intersect the Poincar\'e section \scrP 0 three and seven times, respectively.

exactly the parameters illustrated in Figure 16, there will be for nearby parameter values.
Equally, there will be parameter sets for which phase locking occurs on the torus, leading to
stable periodic orbits of large period. In Figure 17 we show examples with \kappa = 0.957 and
\kappa = 0.965 and all the other parameters at their values for the example of Figure 16 (in the
(\kappa , \tau ) space of Figure 9 both these parameter sets are inside the torus curve close to the black
square). These show stable periodic orbits which close after going around the torus 7 and 3
times, leading to periodic orbits of periods approximately 90.5 and 38.3 days. These orbits
intersect the Poincar\'e section \scrP 0 and its projection into \BbbR 2 seven and three times, respectively.

The phase-locked orbits exist over a parameter region called an Arnold tongue.
DDEBiftool can be used to find the edges of these Arnold tongues (which are bounded by a
fold bifurcation of periodic orbits between the interleaved stable and unstable orbits that lie
on the torus inside the parameter region of the Arnold tongue). These Arnold tongues will
lie in the small parameter region indicated in the inset of Figure 9 where torus bifurcations
occur. We will not pursue the Arnold tongue structure in this work; Arnold tongues have
previously been computed for DDEs, even in the state-dependent delay case [12].

Another curve of torus bifurcations is visible in Figure 9 close to (\kappa , \tau ) = (0.7, 4). The
corresponding torus bifurcation can be seen in Figure 15 at \kappa \approx 0.65046 (with \tau = 3.9), where
the periodic orbit loses stability in a torus bifurcation. In this case there is not a second
corresponding torus bifurcation where the periodic orbit regains stability. Instead there is
a period-doubling bifurcation (which is a resonant torus bifurcation) near \kappa = 0.767, but
the periodic orbit on the principal branch does not regain stability at this point. That this
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period-doubling bifurcation is associated with the neighboring torus bifurcation can be sur-
mised from Figure 9, where we see that the endpoints of the curve of torus bifurcations lie on
the period-doubling bifurcation curve. The torus dynamics are likely to be more complicated
in this case, but we did not explore them.

5.2. Chaotic dynamics. Having found long period and quasi-periodic orbits, it is natural
to also ask whether (1.1) admits chaotic solutions. Kaplan and Yorke [31] defined an attractor
dimension, now known as the Lyapunov dimension, to be

d = k  - 1

\lambda k+1

k\sum 
j=1

\lambda j ,(5.1)

where the Lyapunov exponents are ordered so \lambda 1 \geqslant \lambda 2 \geqslant . . ., and k is the largest integer so that
the sum of the first k exponents is nonnegative, thus necessarily \lambda k+1 < 0, and d \in [k, k + 1).
For the torus seen in the previous section with \lambda 1 = \lambda 2 = 0 > \lambda 3, the dimension given by
(5.1) is d = 2, as expected for a torus.

One generally accepted indication of chaos is the presence of a positive Lyapunov exponent,
in which case the Lyapunov dimension will be larger than two. We will investigate the existence
of chaotic solutions for (1.1) by numerically computing the Lyapunov exponents, again using
the method of Breda and Van Vleck [9].

In Figure 15 we see that for \kappa \in (0.795, 0.929) both steady states and the periodic orbits
on the main branch and on the period doubled branch are all unstable. However, from The-
orem 2.1 we know that the dynamics must remain bounded, and so there must be a global
attractor for these parameters. This parameter interval of unstable solutions for the \kappa con-
tinuation lies between two period doubling bifurcations in Figure 15, which is also inside the
lobe of period-doubling bifurcations depicted in the two-parameter continuation in \kappa and \tau in
Figure 9, and we investigate the dynamics within this region.

In Figure 18 we present an orbit diagram for (1.1) as \tau is varied across this region with
\kappa = 0.865. Orbit diagrams are usually produced for maps, and we reduce the solution of (1.1)
to a map by considering the crossings of a Poincar\'e section. Previously, we considered Poincar\'e
sections with Q(t) constant, which would not work so well in this case because the value
of Q\ast changes as \tau is varied, and we would need to vary the constant to ensure that the
orbits cross the Poincar\'e section. Instead, we consider the local maxima and minima of Q(t)
along the solution, or equivalently the points where Q\prime (t) = 0 with Q\prime \prime (t) < 0 or Q\prime \prime (t) > 0
(respectively). For each value of \tau using the MATLAB dde23 routine [45] we integrate through
a time interval of 50\tau days, then plot the value of Q at its last local maxima and minima.
Since the dynamics are more interesting for some \tau values than others, we defined a \tau mesh
with 9121 points from 1 to 3.4, 19000 points from 3.4 to 4.4, and 2281 points from 4.4
to 5. These three meshes were combined to form a mesh of 30400 points from 1 to 4 for
increasing \tau . A second mesh with 30399 points interleaved with the previous mesh was used for
decreasing \tau . For each mesh point the last \tau time interval of the solution was used as the initial
function to compute the solution at the next mesh point. The results displayed in Figure 18
clearly reveal the bifurcations already shown in Figure 9 including the Hopf bifurcations at
\tau = 1.1364 and 4.6841, the fold bifurcations near \tau = 2.4379, 2.4451, 4.3281, and 4.4364,
and the period-doubling bifurcations at \tau = 3.1303, 4.3909, 4.4215, and 4.5575. Between
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Figure 18. Orbit diagram showing local maxima and minima of solutions of (1.1) as a function of the
delay \tau , with \kappa = 0.865 and other parameters taking their values from Table 1. The red and green dots denote
respectively the local maxima and minima computed along a mesh with 30400 points for increasing \tau , while the
black and blue dots denote the local maxima and minima computed by decreasing \tau . The bifurcation points of
primary branch are identified using the same symbols as in Figures 3 and 15. The upper side panel shows a
detail from the main panel, while the other two side panels show just the decreasing and increasing parameter
scans, illustrating bistability and hysteresis in the system.

(i) (ii)

Figure 19. A sequence of windows of periodic dynamics with parameter intervals of apparent chaotic
dynamics. Panel (i) shows a zoom of part of the Figure 18, while panel (ii) shows a zoom of part of panel (i).

those period-doubling bifurcations, Figure 18 reveals numerous period-doubling cascades and
several parameter intervals of apparent chaotic dynamics with windows of periodic dynamics.

For some intervals of parameter values the results of sweeping left to right and right to left
are significantly different, revealing the bistability of attracting states and hysteresis between
them. The side panels to Figure 18 illustrate this for \tau \approx 3.85, where increasing \tau sequentially
appears to reveal chaotic dynamics, but decreasing \tau reveals a stable periodic orbit which
appears to undergo a period-doubling cascade leading to a small interval of parameter values
for \tau \approx 3.9 for which there are apparently coexisting chaotic attractors.

Figure 19 shows two successive magnifications from a small region of Figure 18. To reveal
the finer structure, we recomputed the orbit diagram for each of these \tau intervals for 30000
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equally spaced increasing \tau values, and a second interleaved mesh with one fewer point with
decreasing \tau values. Figures 18 and 19(i)--(ii) together suggest a self-similarity of the structure
with sequences of windows of periodic dynamics separated by intervals of apparent chaotic
dynamics, on ever smaller parameter intervals. While it would be interesting to study the
scaling in the period doubling cascades, this is very difficult to do because the mapping is
only implicitly defined and requires that we numerically solve the DDE (1.1) between each
extremum of Q(t). Instead here, we will investigate the nature of the chaotic solutions.

With \kappa = 0.865 and \tau = 3.9 the orbit diagram suggests that the dynamics should be
chaotic, and this case is illustrated in Figure 20. At first glance the time series in panel (i)
resembles a period-doubled solution, but the maxima close to Q(t) = 0.2 actually alternate
in height, so the solution is closer to a period-quadrupled solution. However, the time-delay
embeddings in panels (ii) and (iii) appear to show that the orbit is not periodic but that there
is a very structured low-dimensional attractor. The solutions were computed by taking a
constant initial history function close to Q\ast and integrating with dde23 through the transient
dynamics until the orbit converges to the attractor. The segment of the solution trajectory that
is displayed in Figures 20(ii) and (iii) spans 3000 days. The initial convergence of the first three
Lyapunov exponents is illustrated in Figure 20(iv), but the full computation of the exponents,
using the method of Breda and Van Vleck [9], is over a time interval of 30000 days, or 82 years.
The dynamics are not periodic over this time interval and the leading Lyapunov exponents are
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Figure 20. Chaotic orbit for \tau = 3.9 and \kappa = 0.865. (This parameter set is indicated by the red triangle
in Figure 9 inset.) (i) Orbit segment. (ii) Time-delay embedding (Q(t), Q(t  - \tau )) and (iii) solution space
(Q(t), Q(t  - \tau /2), Q(t  - \tau )) of the solution for t \in [3000, 6000]. The black line and black dots in (i)--(ii)
represent the unstable steady state Q\ast . (iv) Convergence of the first three Lyapunov exponents.
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computed numerically to be 0.0107,  - 0.0002,  - 0.0966, and  - 0.1577. The second Lyapunov
exponent here is 0 to numerical accuracy, and the presence of a positive Lyapunov exponent
indicates chaos. The appearance of the orbit being close to a period-quadrupled orbit is most
likely just due to the provenance of the chaotic orbit being created through a period-doubling
cascade. Had we only looked at the time series we could have been wrongly led to conclude
that the dynamics was not chaotic; the time series of the solution alone is very rarely sufficient
to determine the nature of the dynamics in the interesting cases. For the attractor shown in
Figure 20 the Lyapunov dimension is computed from (5.1) to be d = 2.11.

As can be seen from Figure 18 the character of the chaotic dynamics is very sensitive to
changes in the parameter values. Changing \tau from 3.9 to 4.07 while keeping \kappa and all the other
parameters at their values in Figure 20 (see the blue triangle in Figure 9 inset) the dynamics
becomes as shown in Figure 21. Now the time series in Figure 20(i) is visually nonperiodic,
and the time-delay embedding in Figures 20(ii) and (iii) appears to fill more of the phase
space. This is reflected in the Lyapunov dimension. Computing out to 1.8\times 105 days (about
500 years) the leading Lyapunov exponents are estimated to be 0.03027,  - 0.00009,  - 0.11271,
and  - 0.153236. Using (5.1) the Lyapunov dimension is computed to be d = 2.268, larger than
in the previous example.

The Lyapunov exponents could have been obtained with a shorter integration interval;
the reason to integrate out to 500 years was to obtain many crossings of the Poincar\'e section
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Figure 21. Chaotic orbit for (\kappa , \tau ) = (0.865, 4.07). (i) Segment of solution time series on the attractor.
Time-delay embeddings: (ii) (Q(t), Q(t - \tau )), and (iii) (Q(t), Q(t - \tau /2), Q(t - \tau )) for t \in [3000, 6000]. The black
line and black dots in (i)--(iii) represent the unstable steady state. (iv) Projection P (ut) = (ut( - \tau /2), ut( - \tau ))
of function elements ut in the Poincar\'e section \scrP \tau = \{ ut : ut(0) = Q\ast , u\prime 

t(0) < 0\} .
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Q(t) = Q\ast in order to try to reveal the fractal structure of the attractor. This is difficult
to achieve because the mapping between the intersections with the Poincar\'e section is only
implicitly defined by the solution of the DDE (1.1) which has to be solved numerically. Nev-
ertheless Figure 21(iv) shows a projection of the crossing of the Poincar\'e section, with insets
which reveal some of the fractal structure of the attractor.

If we vary all three of \kappa , \gamma , and \tau , while still holding all the other parameters at their
homeostasis values from Table 1, further interesting chaotic solutions can be found. Figure 22
shows an orbit that appears to display transient chaos. We interpret this as coexistence of a
chaotic invariant set which is not asymptotically stable along with a periodic orbit which is
stable. The orbit initially appears to be chaotic with a high-dimensional attractor (see panels
(ii) and (iii)) but after about 2850 days transitions to the stable period-doubled periodic orbit
which has a period of about 87.75 days. This orbit was found by taking parameters close
to a point where two period-doubling bifurcation branches cross each other in a bifurcation
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Figure 22. For \kappa = 0.68, \gamma = 0.0354608, and \tau = 9.88888 an orbit which appears to display transient
chaos. (i) The transition from nonperiodic to periodic motion. (ii)--(iii) Time series Q(t) and delay embedding
(Q(t - \tau ), Q(t)) for the nonperiodic part of the orbit, and (iv)--(v) the periodic orbit.
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diagram on parameter space (\gamma , \tau ) (not shown), similar to the diagram in Figure 11 but with
\kappa not at its homeostasis value.

If the value of \kappa is changed to \kappa = 0.662, but all the other parameters are held at their
values from Figure 22, then the chaos becomes persistent. The attractor (not shown) looks
very similar to Figure 22(iii), but for \kappa = 0.662 the chaos persists through at least 3 \times 104

days. That the attractor is of higher dimension than the previous examples can be inferred by
comparing how disordered the two-dimensional projection seen in Figure 22(ii) looks compared
to the previous examples. The first six Lyapunov exponents are computed numerically to be
+0.02444, +0.008055,  - 0.00004119,  - 0.006071,  - 0.01771, and  - 0.02882. So for this example
there are two positive Lyapunov exponents, the sum of the first five exponents is positive,
and the Lyapunov dimension of the attractor is d = 5.3. This dimension is relatively high
compared to our previous examples and many of the classical examples of chaotic attractors
in ODEs, such as the Lorenz attractor [38], for which the dimension is often between 2 and
3. However, DDEs define infinite-dimensional dynamical systems, and it is well-known that
they can generate high-dimensional chaotic attractors [46].

5.3. Snaking branch. Continuation in \tau with all the other parameters at their values
from Table 1 was illustrated in section 3.1 (see Figures 7--8) and appears to show a canard
explosion, similar to the canard explosion for \gamma continuation, described in section 4. Different
behavior is observed if we vary all three parameters \gamma , \kappa , and \tau .

In Figure 23 we present the results of one-parameter continuation in \tau with \gamma = 0.15,
\kappa = 0.2, and the other parameters at their values from Table 1. The bifurcation diagram in
Figure 23(i) appears to show similar behavior to the earlier \tau continuation, with the steady
state stable except between a pair of Hopf bifurcations. There is again a subcritical Hopf
bifurcation leading to an interval of bistability between the steady state and a stable limit
cycle, and there are again ripples in the amplitude and period of solutions along the branch of
stable periodic orbits. The period of the orbits but not the amplitude increases significantly
to reach 180 days just before the period collapses to 21.2 days at the Hopf bifurcation.

As illustrated in Figure 23(ii) there is not a canard this time. Instead the bifurcation
branch snakes about 28 times across \tau = 4.262041 creating a small interval of \tau values for
which there are 57 coexisting periodic orbits. If the periodic orbits had been computed just
by simulating to only find the stable solutions, it would appear that the amplitude and period
both suddenly increase as \tau is decreased through 4.262041, suggesting the possibility of a
canard explosion. But the DDEBiftool computations, which allow us to compute unstable
periodic orbits just as well as stable ones, show this not to be the case.

At the top and bottom of the snake there is a pair of fold bifurcations of periodic orbits
both at \tau \approx 4.262041, with the \tau values of the bifurcations points agreeing to at least seven
significant figures. The large amplitude orbit at the top of the snaking branch is stable
for very small interval of \tau values (\tau \in (4.262037, 4.262041)), before losing stability in a
period-doubling bifurcation at \tau \approx 4.262037. The small amplitude orbit at the bottom of the
snake is stable for \tau \in (4.262037, 4.262054), before also losing stability in a period-doubling
bifurcation at \tau \approx 4.262054. We will come back to the dynamics resulting from these period
doublings at the end of this section. On the snaking branch between the two fold bifurcations
at \tau \approx 4.262041 all the periodic orbits are unstable.
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Figure 23. Parameter continuation in \tau for periodic orbits with \gamma = 0.15, \kappa = 0.2. (i) Bifurcation diagram
showing Hopf bifurcations at \tau = 2.21327 and 4.26817, fold bifurcation of periodic orbits at \tau = 2.19228 and
4.262041, and period-doubling bifurcation of periodic orbits at 4.261983, 4.262037, 4.262054, and 4.262183. The
inset shows the period of the orbits. (ii) Details of the snaking branch region of the bifurcation diagram from
panel (i). (iii) Examples of coexisting periodic orbits for \tau = 4.26203 and \tau = 4.2620395. (iv) Delay embeddings
of coexisting periodic orbits for \tau = 4.26203 and inset showing that the orbits are out of phase. (v) Three
solutions of (1.1) for \tau = 4.2620395 computed using the MATLAB dde23 routine [45] with initial functions
given by DDEBiftool solutions for the corresponding coloured dots shown in panel (iii). All three orbits converge
to the large amplitude stable limit cycle seen in the bifurcation diagram in panel (iii). (vi) Delay embeddings of
the three orbits shown in panel (v) along with the stable limit cycle to which they converge show in blue, also
denoted by the blue square in panel (iii).

Figure 23(iv) shows the delay embeddings for the 57 unstable limit cycles that coexist when
\tau = 4.26203. The positions of these orbits on the snaking branch are indicated in Figure 23(iii),
where we use shades of pink to red to indicate orbits which are on the legs of the snake for
which the amplitude increases as \tau increases and shades of cyan to blue for orbits on the legs
of the branch where the amplitude decreases as \tau increases. Although Figure 23(iv) is very
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reminiscent of Figure 13, there are crucial differences between the dynamics. In particular the
orbits shown in Figure 23(iv) are all unstable and all coexist, whereas those of Figure 13 are
stable and exist over an exponentially small parameter interval, with a unique orbit existing
for each of the parameter value. Nevertheless, there are significant similarities between the
dynamics in the two cases with Figure 23(iv) also appearing to indicate the presence of a slow
manifold which is stable for a certain range of Q values, with the orbits appearing to spiral
onto the slow manifold. The inset in Figure 23(iv) shows that the phase of this convergence
is different on the two legs of the snaking branch.

In Figures 23(v)--(vi) we illustrate the dynamics with \tau = 4.2620395 when the large
amplitude orbit (indicated by the blue dot in Figure 23(iii)) is stable. For three different initial
functions corresponding to unstable periodic orbits on the snaking branch (also indicated by
colored dots in panel (iii)) we take a part of the periodic orbit generated by DDEBiftool as the
initial function, then use the MATLAB dde23 routine [45] to simulate the solution. All three
orbits are seen to converge to the stable large amplitude limit cycle, with period about 180
days, but the nature of that convergence is not simple to explain. All of the periodic orbits
along with their unstable manifolds are squeezed very close together when the orbits follow
the slow manifold before diverging from each other again when the slow manifold becomes
unstable, and probably as a consequence of this the connecting orbits between the limit cycles
do not appear to have a simple structure. In the figure we see that the orbit shown in orange
passes close to the slow manifold many times before approaching the stable limit cycle, around
t = 2000 days, while the other two initial functions lead to solutions which converge to the
stable periodic orbit relatively quickly.

In Figure 24 we show four orbits located at adjacent local extrema of \tau on the snaking
branch, as shown in the inset of panel (i). The profiles in panel (i) and delay embeddings in
panel (ii) illustrate how the periodic orbit changes along the snaking curve of solutions as the
amplitude increases. In Figure 24(i) the phase of the orbits is aligned so that they all have
the global maximum and minimum aligned (close to t = 150). Looking back one period to the
previous occurrence of the global maxima and minima, we see that the position on the snaking
branch of solutions is related to the number of short period oscillations seen as the solution
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Figure 24. Example periodic orbits and their delay embedding from the snaking branch shown in Figure 23.
The delay embedding shows that oscillations in the (Q(t), Q(t - \tau )) projection appear to be in antiphase between
the left and right sides of the snaking branch. The orbit profiles show the same behavior when they are plotted
with final time points and Q values equal.
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converges onto the slow manifold. Crossing each leg of the snaking branch with increasing
amplitude corresponds to adding half a short period oscillation to the whole periodic orbit.
So the points on the snaking branch at minima of \tau display one less/more short oscillation
than seen at the next minima of \tau directly above/below them on the branch, and half a
short period oscillation less/more than seen at the adjacent maxima of \tau with larger/smaller
amplitude. The time-delay embeddings in Figure 24(ii) and its inset reveal that orbits located
in the same extrema of the snaking branch converge to the slow manifold in phase with each
other, and in antiphase to orbits located in opposite extrema. Although we have seen how the
solution changes along the snaking branch, this does not explain why the branch itself snakes;
similar solution behavior but without branch snaking was observed in section 4 for the canard
explosion.

As noted near the beginning of the section, at either side of the fold points at \tau = 4.262041
there are period-doubling bifurcations. These bifurcations actually come in pairs, resulting in
two separate intervals, one each side of the snaking part of the branch, for which the periodic
solutions on the principal branch are unstable. For large amplitude solutions this occurs
for \tau \in (4.261983, 4.262037) with a period-doubling bifurcation at each end of this interval.
For small amplitude solutions, the unstable part of the branch between the period-doubling
bifurcations is for \tau \in (4.262054, 4.262183). To explore the dynamics as \tau is varied over these
parameter intervals in Figure 25 we present an orbit diagram showing the local maxima and
minima of Q(t) along the solutions of (1.1) as \tau is varied across this region with \gamma = 0.15,
\kappa = 0.2. This is computed similarly to Figure 18, but this time integrating through a transient

Figure 25. Orbit diagram showing local maxima and minima of solutions segments (1.1) as function of the
delay \tau , with \gamma = 0.15, \kappa = 0.2 and other parameters taking their values from Table 1. Black and blue dots
represent respectively the local maxima and minima for a decreasing sequence of \tau values. The bifurcation points
of primary branch are identified using the same symbols as in Figures 3 and 15. The inset shows the same
interval of \tau values as the main figure but for a restricted range of Q values revealing details of the bifurcations.
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of 1530\tau days, then plotting all the maxima and minima that occur over the next 170\tau days.
A mesh of 2000 equally spaced points for \tau \in [4.26197, 4.26219] was used for decreasing \tau . In
this case we did not observe any noticeable hysteresis effects. For each mesh the solution over
the last \tau days was used as the initial history to start the transient computation for the next
adjacent \tau value.

The results displayed in Figure 25 clearly reveal the bifurcations already shown in Fig-
ure 23(ii) including the fold bifurcation near \tau = 4.262041 and the period doubling bifurcations
at \tau = 4.261984, 4.262038, 4.262054, and 4.262184. Between the pairs of period doublings,
much richer dynamics are displayed than we had expected. Several period-doubling cascades
are clearly visible (in the inset to the figure), leading to several intervals of apparently stable
chaotic dynamics. There are also windows of stable periodic dynamics, including a period-3
window, which suggests the possibility of unstable chaotic dynamics (period-3 implies chaos
only for one-dimensional maps).

6. Dynamical diseases. In dynamic hematological diseases oscillations are observed in
the circulating concentrations of one or more of the cell lines [23]. Mathematical interest has
often focused on what have been termed periodic hematological disorders, including cyclic
neutropenia (CN), cyclic thrombocytopenia (CT), and periodic chronic myelogenous leukemia
(PCML).

CN is one of the most studied of these periodic diseases, with the concentration of cir-
culating neutrophils varying from very low to normal or high levels with a period of about
19 to 21 days [5, 16]. Patients experience a bout of neutropenia (abnormally low neutrophil
concentrations) each period, during which time the immune system is impaired and they are
more susceptible to infection [20]. For patients with CT, oscillations in platelet counts from
normal to very low values are observed with periods between 20 to 40 days [27]. For pa-
tients with PCML, cycling in white blood cells from normal to high levels with periods from
approximately 30 to 100 days [27] and 40 to 80 days [49] is reported.

Many mathematical models of hematopoiesis have been developed in an effort to under-
stand these diseases and the origins of the oscillatory dynamics [5, 50, 56]. Efforts have often
focused on deriving mathematical models and associated parameter sets for which the model
has a stable limit cycle with a period commensurate with a particular disease under consider-
ation [15, 16, 37]. Clinical efforts focus in entirely different directions, typically concentrating
on alleviating the cytopenia (dangerously low blood cell concentrations) either by raising the
concentration nadir or by decreasing the time interval that concentrations are below the recog-
nised cytopenia threshold. Periodic oscillations in the strict mathematical sense are of limited
clinical interest, and in the clinical literature the terms periodic and cyclic are often used
as synonyms for episodic, and it is not implied that the time intervals between episodes are
fixed. Consequently, there are many other hematological disorders which at least for some
subjects display dynamics with a periodic signature, but for which there are only scattered
case reports of the periodicity. Examples include cyclic 100-day pancytopenia [7], cyclic (ap-
proximately 60-day) bicytopenia with Shapiro syndrome [52], and polycythemia vera [48] with
approximately 28-day cycling.

CT typically involves oscillations of just the platelets [23], though one case of multi-
lineage CT has recently been reported [36], while for CN and PCML oscillations of all of
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the major blood cell groups are observed [23]. This suggests that for CN and PCML the
cycling in all cell lineages may be due to a dynamic destabilization at the stem cell level [23].
This destabilization occurs through different mechanisms in these two diseases with leukemic
HSCs typically presenting a chromosome abnormality in PCML [49]. In CN a mutation in the
ELANE gene leads to increased apoptosis in the neutrophil progenitor cells during mitosis [19],
and the destabilization of the HSCs appears to be caused by a feedback mechanism from the
neutrophil lineage.

Considerable variation in the oscillatory periods is observed within and between these
disorders. A Lomb periodogram [37] is typically used to extract a periodic signature from
the data, but the data itself is never truly periodic. There can be many reasons for this
including data sampling, measurement error, intrinsic stochasticity of cell proliferation and
differentiation, environmental variation, adaptation of the model parameters, or simply that
the actual dynamics are not periodic.

In Table 1 we gave specific values of the model parameters from which we start our
bifurcation analysis. Other authors use somewhat different values, or more correctly report
ranges for the parameter values [5, 15]. Through interindividual variability we should expect
that a single parameter set will not be suitable for all subjects. However, as seen in section 3
there are no bifurcations near to the stated homeostasis parameters. Hence, using other
similar parameter values in the model will also lead to an asymptotically stable steady state.

To provoke a qualitative change in the dynamics of (1.1) requires a large change in the
parameters. This situation was already envisioned by Glass and Mackey [25], who coined the
term dynamical disease to describe physiological systems where the control system itself is
intact, but operating in a parameter range leading to abnormal dynamics. With significant
changes to one or more parameters we do observe nontrivial dynamics. These dynamics only
become of physiological, rather than mathematical, interest when they produce oscillations
with characteristics similar to the reported diseases, and we do observe behavior reminiscent
of CN, PCML, and CT.

An increased apoptosis rate \gamma during the cell cycle, as illustrated in Figures 5 and 6,
results in stable oscillations in the HSCs of period between about 75 and 100 days for \gamma \in 
[0.2278, 0.24]. The shortest period orbit illustrated in Figure 6(i) is of interest. This has a
maximal value of Q(t) greater than 70\% of Qh, and hence maximum differentiation rate \kappa Q(t)
to peripheral blood cell precursors above 70\% of the homeostatic rate, while the interval of
severely reduced HSC numbers is relatively short (below 4 weeks). Such cycling in the HSCs
would naturally result in pancytopenia in a full model of the hematopoietic system. If the
apoptosis rate \gamma is increased slightly above 0.24 longer periodic orbits result, but as seen from
Figure 6(ii) these have severely reduced HSC numbers for intervals of hundreds of days, which
is much longer than the lifespan of circulating erythrocytes and which would induce a fatal
anemia. Still higher values of \gamma result in complete depletion of the HSCs with Q = 0 becoming
the globally attracting stable steady state.

In Figures 3 and 4 we illustrate periodic dynamics of the HSCs for increased values of the
differentiation rate \kappa . The stable periodic orbits in Figure 3 exist when the rate constant \kappa is
6 or more times its homeostatic value, meaning that in this scenario the rate \kappa Q(t) at which
HSCs differentiate to precursors of circulating hematopoietic cells can be elevated compared to
the homeostasis value, even when the number of HSCs Q(t) is less than Qh. While the periods
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observed in Figure 3 are too short for PCML, longer periods of 30 to 100 days consistent with
PCML can be obtained by also increasing the cell cycle time \tau as seen in Figure 15(i) and the
inset in Figure 23(i).

The largest periods seen in Figure 3(ii), corresponding to the largest amplitude orbits on
the main branch and also the period-doubled orbits have period about 17 days, which is close to
but a little shorter than typical periods for CN. Varying three parameters in (1.1) it is possible
to find periodic orbits with periods typical of CN, for example, (\kappa , \gamma , \tau ) \approx (0.09, 0.28, 3) results
in stable limit cycles with period between 19 and 21 days. Stable large amplitude limit cycles
are observed in Figure 15 with periods in the 20- to 40-day range typical of CT.

We observed numerous instances of bistability, which allows for the possibility that a
therapeutic intervention or some other outside affect on the hematopoietic system could cause
it to flip between different stable states. This has been observed in practice, where, for
example, G-CSF can induce neutrophil oscillations with a period of about 7 to 15 days for
neutropenic individuals [27].

In section 4 we explored a canard explosion. The very long period orbits that we found
are likely not physiologically relevant, as they include long time intervals during which the
HSCs are severely depleted. During these intervals the production of peripheral blood cells
would be so severely compromised that a fatal cytopenia would likely result. Although we
do not rule out the possibility that a canard explosion with other parameters might lead to
physiologically feasible long period orbits, the singular parameter \varepsilon suggests this is unlikely.
We see from (4.1) and (4.2) that \kappa Q\ast \sim \varepsilon , so in the parameter regime 0 < \varepsilon \ll 1 where we
might expect the canard to exist the differentiation of HSCs toward mature blood cell lines
will be severely compromised.

The quasi-periodic and chaotic solutions observed in section 5 may be of more physiolog-
ical relevance for two reasons. First, although these solutions all have significantly reduced
HSC concentrations compared to homeostasis, they are found in parameter regions where the
differentiation rate \kappa is significantly increased, so that the differentiation \kappa Q(t) out of the HSC
compartment is at or above the homeostatic rate when Q(t) is close to a local maxima. These
HSC dynamics would likely lead to episodic pancytopenia in a full model of the hematopoietic
system, which could be an interesting topic for follow-up study. A second reason why these
dynamics are of physiological relevance is that they show the system generating nonconstant
nonperiodic dynamics which is more akin to what is seen in real data than the purely periodic
solutions that we investigated earlier.

In this section we highlighted some of the solutions that we observed with periods in ranges
characteristic of dynamical diseases. The two-parameter continuations of section 3.2 could be
used as a starting point for an extended study to find additional parameter regions with
periodic solutions commensurate with dynamical diseases. Although it would be tractable to
do that for the HSC model (1.1), such a study would be more interesting in a model of the
hematopoietic system that incorporates multiple mature cell lines. We have clearly shown that
our HSC model can demonstrate the oscillatory dynamics characteristic of dynamical diseases,
without the need for any feedback loops from more mature cell lines. However, many of the
solutions with interesting dynamics are associated with an increased differentiation rate \kappa . It
remains an open question in particular dynamical diseases whether the differentiation rate is
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actually raised, and if so whether this is intrinsic to the disease-state HSC dynamics or caused
by feedback from the peripheral blood cell dynamics.

7. Discussion and conclusions. We set out to show that the HSC model (1.1) could
generate limit cycles of periods typical in dynamical diseases, simply by changing some of the
parameter values in the model. Long period orbits had previously been observed by varying
s [40, 49, 50]. We varied the parameters \gamma , \kappa , and \tau and found periodic orbits of periods
from about 1 week up to 9 years, encompassing the 19 to 21 days typical of CN, 20 to 40
days of CT, and the 30 to 100 days of PCML. Whereas the model (1.1) treats the HSCs as
a single homogeneous population, more recent mathematical models couple multiple copies
of (1.1) together [2, 51] to represent the different maturity levels of HSCs and should be able
to generate similar dynamics.

We also observed a plethora of more exotic dynamics including mixed mode oscillations,
period-doubling cascades, and chaotic solutions. In section 5.1 we showed that the DDE (1.1)
admits stable torus solutions. Elsewhere, in section 4 we studied a putative canard explosion,
identified the singular variable, and constructed an approximation to the slow manifold and
nearby dynamics. We showed that the local stability of the slow manifold changes very close
to the point where the stability of the critical manifold changes. Our analysis of the canard
explosion is incomplete. Established analysis and constructions rely on separating the slow and
fast variables [55]. In contrast, (1.1) is scalar and does not have a simple natural separation
into fast and slow subsystems. We believe this to be the first demonstration of canard-like
behavior in a scalar system, and a full analysis will require an extension to current theory. In
the current work we present a detailed numerical investigation of the phenomenon, with the
hope that it will intrigue the theoreticians to complete the analysis.

Equation (1.1) clearly displays mixed mode oscillations (see the time plots in Figures 6, 8,
and 12). Such dynamics are usually associated with slow-fast systems and coupled oscillators,
and it is rather curious to see these phenomena in the scalar DDE (1.1). It is well-known
that such dynamics are possible when there are multiple delays, and in the case of two state-
dependent delays no other nonlinearity is required other than the state-dependency of the
delays [12]. In that case it seems that essentially the two delay terms interact as if they
are coupled oscillators. However, (1.1) is scalar with only one delay and has no Hopf-Hopf
bifurcations. Equation (1.1) is in the general class of problems

\.u(t) =  - u(t) - \alpha h(u(t)) +Ah(u(t - \tau ),

where h(u) is a unimodal function. Problems of this form have been studied in the case \alpha = 0,
but we are not aware of systemic theoretical studies of the more general case with \alpha \not = 0. It
seems likely to us that the dynamics reminiscent of coupled oscillators are generated by an
interaction between the two instances of the nonlinearity evaluated at the current time t and
the delayed time t - \tau .

We found many examples of bistability in (1.1). These include bistability between pairs of
periodic orbits (Figures 3 and 15), a periodic orbit and a stable steady state (Figures 3, 5, 7,
and 15), a periodic orbit and a torus (Figures 15 and 16), as well as bistability between chaotic
and nonchaotic solutions (Figure 18). Bistability of periodic orbits is caused by pairs of fold
bifurcations of limit cycle which originate in cusp bifurcations (seen in Figures 9 and 10).
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We found both subcritical and supercritical Hopf bifurcations and bistability between
a stable limit cycle and a steady state is associated with the Bautin or generalized Hopf
bifurcation (denoted in Figures 9 and 11) where the criticality of the Hopf bifurcation changes.
A curve of fold bifurcations of limit cycles emerges from this point, which results in the interval
of bistability seen in the one-parameter continuations between the fold and the subcritical Hopf
bifurcation. Few previous studies have been sufficiently detailed to detect the criticality of the
Hopf bifurcations, but those that were only found supercritical Hopf bifurcations [5, 6, 47],
though Bernard, B\'elair, and Mackey [5] did find Hopf bifurcations which were close to a
criticality change.

Mathematical studies of differential equations that model hematopoiesis frequently focus
on existence and stability of a nontrivial solution. Once a Hopf bifurcation is found, the steady
state becomes unstable, and secondary bifurcations to more complex dynamical structures are
often not pursued. On the other hand, peripheral blood samples are often only taken for a
few days at a time during a hospital stay and are otherwise not taken, or are taken at widely
and irregular spaced intervals. The data, even when well sampled, frequently appears noisy,
and it is unheard of to see solutions that are exactly periodic. Often, a periodic signature
is only revealed by a frequency test, such as the Lomb periodogram. In this context, the
bistable, long period, quasi-periodic, and transient and persistent chaotic dynamics that we
find are very interesting. The same individual can present very different looking dynamics
during different sampling intervals. It might be that the dynamics are actually periodic, but
the period is so long that different parts of the periodic solution are revealed by different
sampling intervals. Another possibility is that the dynamics are actually chaotic (but not
random), and different parts of the chaotic attractor are revealed at different times. As we
saw in Figure 20 a time series of chaotic dynamics can appear to be surprisingly regular, while
in Figure 18 where the time series of the dynamics was clearly not regular, the system actually
spends significant time near the attractor of the first example. In a period-doubling cascade
to chaos the initial seed orbit and its low order period doublings continue to exist after they
become unstable and can be expected to have some organizing influence on the structure of the
dynamics. Thus it is natural to expect there to be some periodic signal contained in the time
series, even of a chaotic solution, and it is very unlikely that sufficient blood measurements
would be taken from a single subject to discern genuinely chaotic dynamics. A widely used
strategy for determining perturbed parameters associated with dynamical diseases is to try
to find parameters which generate a periodic solution which is closest to the data [37]. Given
the difficulty in distinguishing between chaotic and periodic dynamics, and the ability of the
mathematical models to generate both, this strategy may not be optimal, and we should
consider that the disease dynamics may not generate a simple periodic orbit but that there
may be multiple bifurcations between the homeostasis and diseased states, leading to more
complex dynamics.
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