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Resonance Phenomena in a Scalar Delay Differential Equation
with Two State-Dependent Delays∗

R. C. Calleja† , A. R. Humphries‡ , and B. Krauskopf§

Abstract. We study a scalar delay differential equation (DDE) with two delayed feedback terms that depend
linearly on the state. The associated constant-delay DDE, obtained by freezing the state dependence,
is linear and without recurrent dynamics. With state-dependent delay terms, on the other hand,
the DDE shows very complicated dynamics. To investigate this, we perform a bifurcation analysis
of the system and present its bifurcation diagram in the plane of the two feedback strengths. It is
organized by Hopf-Hopf bifurcation points that give rise to curves of torus bifurcation and associ-
ated two-frequency dynamics in the form of invariant tori and resonance tongues. We numerically
determine the type of the Hopf-Hopf bifurcation points by computing the normal form on the center
manifold; this requires the expansion of the functional defining the state-dependent DDE in a power
series whose terms up to order three contain only constant delays. We implemented this expansion
and the computation of the normal form coefficients in Matlab using symbolic differentiation, and
the resulting code HHnfDDEsd is supplied as a supplement to this article. Numerical continuation of
the torus bifurcation curves confirms the correctness of our normal form calculations. Moreover, it
enables us to compute the curves of torus bifurcations more globally and to find associated curves
of saddle-node bifurcations of periodic orbits that bound the resonance tongues. The tori them-
selves are computed and visualized in a three-dimensional projection, as well as the planar trace
of a suitable Poincaré section. In particular, we compute periodic orbits on locked tori and their
associated unstable manifolds (when there is a single unstable Floquet multiplier). This allows us to
study transitions through resonance tongues and the breakup of a 1 :4 locked torus. The work pre-
sented here demonstrates that state dependence alone is capable of generating a wealth of dynamical
phenomena.
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1. Introduction. Time delays arise naturally in numerous areas of application as an un-
avoidable phenomenon, for example, in balancing and control [8, 19, 35, 39, 64, 65, 66, 67],
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machining [36], laser physics [40, 46, 54], agent dynamics [52, 53, 70, 73], neuroscience and
biology [1, 18, 20, 42, 79], and climate modeling [13, 41, 48]. Important sources of delays
are communication times between components of a system, maturation and reaction times,
and the processing time of information received. When they are sufficiently large compared
to the relevant internal time scales of the system under consideration, then the delays must
be incorporated into its mathematical description. This leads to mathematical models in the
form of delay differential equations (DDEs). In many situations the relevant delays can be
considered to be fixed; examples are the travel time of light between components of a laser
system, and machining with rotating tools.

There is a well established theory of DDEs with a finite number of constant delays as
infinite-dimensional dynamical systems; see, for example, [6, 26, 27, 12, 74, 75]. Usually the
phase space of the dynamical system is taken to be C = C

(
[−τ, 0],Rd

)
, the Banach space

of continuous functions mapping [−τ, 0] to Rd, where d is the number of variables and τ is
the largest of the delays. The DDE can then be written as a retarded functional differential
equation,

(1.1) u′(t) = F (ut),

where F : C → Rd and where ut ∈ C for each t > 0 is the function

(1.2) ut(θ) = u(t+ θ), θ ∈ [−τ, 0].

In other words, an initial condition consists of a function over the time interval from the
(maximal) delay τ ago up to time 0, which (under appropriate mild assumptions) determines
the solution for all times t > 0. In fact, solutions of constant-delay DDEs depend smoothly
on their initial conditions, and linearizations at equilibria and periodic solutions have at most
finitely many unstable eigendirections. As a consequence, bifurcation theory for this class of
DDEs is analogous to that for ordinary differential equations (ODEs), and one finds the same
types of bifurcations. In particular, center manifold and normal form methods allow for the
local reduction of the DDE to an ODE describing the dynamics near a bifurcation point of
interest. Moreover, advanced numerical tools for simulation and bifurcation analysis of DDEs
with constant delays have become available in recent years [4, 5, 7, 17, 47, 72, 77]. These
theoretical and numerical tools have been applied very successfully in many application areas,
including those mentioned above.

It is very important to realize that treating the delays that arise as constant is a modeling
assumption that must be justified. This can be argued successfully, for example, in machining
when the tool has nearly infinite stiffness perpendicular to the cutting direction [75], or in
laser dynamics where light travels over a fixed distance [40]. On the other hand, in many
contexts, including in biological systems and in control problems [9, 10, 11, 21, 36, 38, 68, 82],
the delays one encounters are not actually constant. In particular, they may depend on the
state in a significant way, that is, change dynamically during the time-evolution of the system.

DDEs with state-dependent delays have been an active area of research in recent years.
Many parts of the general theory of DDEs with constant delays have been extended to also
cover state-dependent DDEs, where τ is now a global bound on the maximal possible de-
lay; see [29] and the discussion in [34]. However, the mathematical theory is considerably
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more complicated and as yet incomplete. Solutions of state-dependent DDEs do not depend
smoothly on initial conditions or parameters unless extra assumptions are made on the initial
conditions [28], and this dramatically complicates arguments around key concepts, requiring
new theory and proofs for asymptotics, the initial value problem, bifurcations, and invariant
manifolds. Indeed, these important elements of the theory have been addressed only recently
[29, 32, 49, 59, 60, 71, 80, 81]. Similarly, the numerical bifurcation analysis of state-dependent
DDEs is more involved. Recent developments include approaches for the continuation of solu-
tions and bifurcations for state-dependent delay equations [34, 72]. The paper [47] has methods
for finding invariant manifolds for DDEs with constant delays. Issues that remain outstanding
include smoothness of center manifolds and, therefore, also normal form reductions.

In light of the considerable additional difficulty, state-dependent delays are quite often
replaced by constant delays—by considering some sort of average or nominal delays—even in
modeling situations when this cannot be readily justified. The obvious question is whether
and when a state-dependent DDE displays dynamics that is considerably different from that
of the associated constant-delay DDE.

In this paper we address this practical question by studying a prototypical DDE with
state-dependent delays, rather than an equation arising from a specific application. This
example DDE has the important property that it exhibits very complicated dynamics with
state dependence, while it reduces to a linear DDE with only trivial dynamics if the delays
are made constant. Specifically, we consider here the scalar DDE

(1.3) u′(t) = −γu(t)−κ1u(α1(t, u(t)))−κ2u(α2(t, u(t))), where αi(t, u(t)) = t−ai−ciu(t).

The two delay terms, with feedback strengths κ1, κ2 > 0, are given by the linear functions
αi(t, u(t)), where ai and ci are strictly positive. In the absence of the delay terms, that is,
for κ1 = κ2 = 0, (1.3) is a linear scalar equation whose solutions decay exponentially to the
origin with rate γ > 0. For κ1, κ2 6= 0, on the other hand, the delay terms are present and
constitute a feedback. When c1 = c2 = 0 the DDE (1.3) is linear with two fixed delays a1 and
a2, while for c1, c2 6= 0 the delay terms are linearly state-dependent.

A singularly perturbed version of (1.3) is studied in [33, 43, 61]. In [43] solutions are
considered near the singular Hopf bifurcations, while [33] constructs large amplitude singular
solutions and studies the singular limit of the fold bifurcations. Equation (1.3) is a general-
ization of the corresponding single delay DDE which can be obtained from (1.3) by setting
κ2 = 0. The single delay DDE was first introduced in a singularly perturbed form as an
example problem by Mallet-Paret and Nussbaum in [60] and considered extensively in [62] as
part of a series of papers [56, 57, 58, 60, 61, 62] studying singularly perturbed solutions of
state-dependent DDEs.

We consider (1.3) with all parameters nonnegative, and without loss of generality assume
that a2 > a1. We also assume

(1.4) γ > κ2.

It is shown in [34] that if (1.4) holds and

(1.5) φ(t) ∈
(
−a1

c
,
a1

γc
(κ1 + κ2)

)
∀t ∈

[
−a2 −

a1

γ
(κ1 + κ2), 0

]
,



RESONANCE PHENOMENA IN A STATE-DEPENDENT DDE 1477

then (1.3) is well posed and all solutions of the initial value problem composed of solving (1.3)
for t > 0 with the initial function

(1.6) u(t) = φ(t), t 6 0,

satisfy

(1.7) u(t) ∈
(
−a1

c
,
a1

γc
(κ1 + κ2)

)
∀t > 0.

This bound on the solution also implies a bound on the delays, with (1.3) and (1.7) implying
that

(1.8) αi(t, u(t)) ∈
(
t− ai −

a1

γ
(κ1 + κ2), t

)
⊂
(
t− a2 −

a1

γ
(κ1 + κ2), t

)
∀t > 0

and, in particular, the state-dependent delays can never become advanced when γ > κ2. It is
also shown in [34] that there exists ξ ∈ [0, a2 + a1

γ (κ1 + κ2)] such that αi(t, u(t)) is a strictly
monotonic increasing function of t for t > ξ.

Notice that the DDE (1.3) is of the form (1.1) with d = 1 if we let

(1.9) F (φ) = −γφ(0)− κ1φ(−a1 − cφ(0))− κ2φ(−a2 − cφ(0)).

We take τ = a2 + a1
γ (κ1 + κ2), which by (1.8) ensures that αi(t, u(t)) ∈ [t− τ, t] for t > 0 and

the function ut includes all the information necessary to evaluate u′(t). Moreover, provided
the initial function φ is Lipschitz, it follows from standard DDE theory [14] that the initial
value problem has a unique solution satisfying (1.7).

For c1 = c2 = 0 general theory [6, 26, 27] states that, depending on the values of γ, κ1,
and κ2, all trajectories of (1.3) decay to the origin or grow exponentially in time. In other
words, the dynamics of the system without state dependence in the delay terms is indeed
trivial. On the other hand, it was shown in [34] that state dependence of the delay terms
changes the dynamics completely, since the function F in (1.9) is nonlinear. Therefore, the
state dependence of the delays for c1, c2 6= 0 is responsible for nonlinearity in the system.
The two delay terms introduce two oscillatory degrees of freedom into the system, which
may then interact nonlinearly. As a result, the dynamics of the DDE (1.3) is no longer
linear; rather it is, colloquially speaking, potentially at least as complicated as that of two
coupled nonlinear oscillators with dissipation. Indeed, the interest in (1.3) arises from the
fact that it is effectively the simplest example one can consider of a DDE with several state-
dependent delays. In particular, any nontrivial dynamics that one finds must be due to the
state dependence.

Throughout this paper we will take

(1.10) γ = 4.75, a1 = 1.3, a2 = 6, c1 = c2 = 1,

and vary the values of (κ1, κ2) with κ2 ∈ (0, 4.75) to satisfy (1.4). The parameter set (1.10)
was first identified as producing interesting dynamics for (1.3) in [34]. There, one-parameter
bifurcation diagrams for (1.3) were produced for this parameter set with fixed values of κ2. In
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Figure 1. One-parameter bifurcation diagram in κ1 of (1.3), showing the norm ‖u(t)‖ = maxu(t)−minu(t)
of periodic orbits bifurcating from Hopf bifurcations of the trivial solution (a). Stable orbits are shown as solid
blue curves and unstable ones as dashed red curves; indicated are points of Hopf bifurcation (stars), saddle-node
of limit cycle bifurcation (squares), period-doubling bifurcations (circles), and torus bifurcation (diamonds).
Also shown is a grey curve of tori that bifurcate from the principal branch of periodic orbits at κ1 ≈ 3.6557.
Panels (b) and (c) are two enlargements respectively near the stable part of the principal branch and near an
isola of periodic orbits associated with 1:4 phase locking. The black dots correspond to the stable periodic orbits
shown in Figure 2. Here κ2 = 3.0 and, throughout, γ = 4.75, a1 = 1.3, a2 = 6.0, and c1 = c2 = 1.0. Reproduced
with permission from [34]. [Copyright 2012, American Institute of Mathematical Sciences.]

[34], it was also noticed that the bifurcation diagram is topologically very different for other
choices of parameters.

Figure 1 illustrates the results obtained in [34] with κ2 = 3 and the other parameters given
by (1.10), where the dynamics of (1.3) was explored by means of finding the Hopf bifurcations
of the zero solution and continuing the branches of bifurcating periodic orbits. As panel
(a) shows, the zero solution loses stability in a first Hopf bifurcation at κ1 ≈ 3.2061 where a
branch of stable periodic solutions emerges. These lose stability in a torus (or Neimark–Sacker)
bifurcation at κ1 ≈ 3.6557. The branch of (unstable) saddle periodic solutions regains stability
in the interval κ1 ∈ [7.5665, 8.2585] after two saddle-node (or fold) bifurcations and several
further torus bifurcations; see the enlargement in Figure 1(b). A further two saddle-node
bifurcations lead to a hysteresis loop of the branch, and the periodic solution is stable again
for κ1 > 7.82, except for κ1 ∈ [9.0857, 9.3624], where a pair of period-doubling bifurcations
lead to a short interval of stable period-doubled solutions. Also shown in Figure 1(a) are
branches of bifurcating stable tori, which are represented by the maximum of the norm along
a numerically computed trajectory of sufficient length. As is expected from general theory,
one finds locked dynamics on the torus when κ1 passes through resonance tongues. The
associated periodic orbits on the torus can be continued, and Figure 1(c) shows the isola of
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Figure 2. Three stable periodic orbits from the principal branch in Figure 1, shown as a time series over
one period (left column) and in projection into (u(t), u(t − a1), u(t − a2))-space (right column); here κ1 = 3.4
in row (a), κ1 = 8.0 in row (b), and κ1 = 8.5 in row (c).

periodic solutions corresponding to 1 : 4 phase locking. Notice that there are further Hopf
bifurcation points and bifurcating branches of periodic solutions in Figure 1(a), but none of
them are stable.

Figure 2 shows examples of stable periodic solutions from the three main ranges of stability
discussed above, for values of κ1 as indicated by the black dots in Figure 1(a). Shown in
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Figure 3. Curves of Hopf bifurcation in the (κ1, κ2)-plane of (1.3); the upper Hopf bifurcation curve Hu

intersects the Hopf bifurcation curves Hj for j = 1, 2, 3 at Hopf-Hopf bifurcation points HHj.

Figure 2 are the time series of u(t) over one period and the orbit in projection onto (u(t), u(t−
a1)u(t − a2))-space of the respective periodic solution. The periodic solution in row (a) of
Figure 2 is almost perfectly sinusoidal, as is expected immediately after a Hopf bifurcation.
The periodic solution in row (b), on the other hand, features two local maxima and is close
to a saw-tooth shape. Similarly, the periodic solution in Figure 2(c) is very close to a simple
saw-tooth, with a single linear rise and then a sharp drop in u(t). Sawtooth periodic solutions
and some of their bifurcations are considered in [33], where a singularly perturbed version of
(1.3) is studied.

The results from [34], summarized in Figures 1 and 2, clearly show that (1.3) features
highly nontrivial dynamics due to the state dependence. On the other hand, a more detailed
bifurcation analysis of the system has not been performed. The only two-parameter continua-
tion performed in [34] is limited to that of the curves of Hopf bifurcations in the (κ1, κ2)-plane.
It identified Hopf-Hopf (or double Hopf) bifurcations, but neither they nor the curves of torus
bifurcations emerging from them were investigated in that work. Moreover, the bifurcating
tori were not studied in detail in [34]; in particular, stable tori themselves were not computed
when phase locked.

To highlight the full extent of the dynamics generated by the state dependence, in this
work we present a bifurcation study of (1.3) that goes well beyond that in [34]. Our focus is
on two-frequency dynamics and associated resonance phenomena; our main objects of study
are the bifurcation diagram in the (κ1, κ2)-plane and the associated dynamics in phase space.
The starting point of our investigation is the arrangement of the Hopf bifurcation curves of
(1.3) shown in Figure 3.

A Hopf bifurcation occurs when a complex conjugate pair of characteristic values crosses
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the imaginary axis in the linearized system. State-dependent DDEs are linearized around
equilibria by first freezing the state-dependent delays at their steady-state values. This tech-
nique has long been applied heuristically, but more recently has been established rigorously
by Györi and Hartung [24, 25] for a class of problems including (1.3). Hence, we obtain

(1.11) u′(t) = −γu(t)− κ1u(t− a1)− κ2u(t− a2)

as the linearization of (1.3) about the trivial steady state u ≡ 0. The characteristic equation
for (1.11) is given by

(1.12) 0 = λ+ γ + κ1e
−a1λ1 + κ2e

−a2λ2 ,

and so at a Hopf bifurcation we have λ = ±iω with

(1.13) 0 = iω + γ + κ1e
−ia1ω + κ2e

−ia2ω.

The three curves H1, H2, and H3 in Figure 3 emerge from κ2 = 0 and are functions of κ2.
These three Hopf bifurcation curves are intersected by the curve Hu, which exists only above
κ2 ≈ 2.627 and is a function of κ1. The three intersection points HH1, HH2, and HH3 are
codimension-two points of the Hopf-Hopf bifurcation. From (1.13) it follows that there are
in fact infinitely many Hopf bifurcation curves of (1.3) as κ1 → ∞ and, consequently, other
Hopf-Hopf points; however, these are not shown in Figure 3 because we concentrate here on
the κ1-range of [0, 14]. Note that we show the (κ1, κ2)-plane only for κ2 6 γ = 4.75, because
this is the κ2-range for which we know that the state-dependent DDE is well posed.

The numerical computation of Hopf bifurcations in state-dependent DDEs has been imple-
mented in the DDE-BIFTOOL software package [17, 72], and this capability actually predates
their rigorous proof. Eichmann [16] was the first to establish a rigorous Hopf bifurcation the-
orem for state-dependent DDEs, but results have appeared in the published literature only
much more recently [32, 71]. We perform here a calculation of the four-dimensional normal
form ODE on the center manifold of the Hopf-Hopf points HH1, HH2, and HH3. As far as we
are aware, this is the first such calculation to determine the type of Hopf-Hopf bifurcations in
a state-dependent DDE. The Hopf-Hopf normal form ODE with the multitude of cases that
can arise in the unfolding is presented in detail in [51]. In constant-delay equations it has
already been studied—see, for instance, [3]; the normal form procedure is also elaborated in
[23] and has been implemented recently [78] as part of DDE-BIFTOOL [72] for constant delays
only. Our approach is to derive a constant-delay DDE from the state-dependent DDE (1.3)
by expanding the state dependence to sufficient order in (many) constant delays. The Hopf-
Hopf normal form ODE can then be computed from this constant-delay DDE with established
methods, and specifically we implemented the approach from [23]. In this way, we are able
to determine the type of the Hopf-Hopf bifurcation and show that a pair of torus bifurcation
curves emerges from each of the points HH1, HH2, and HH3. The reduction to the constant-
delay DDE and the corresponding resulting normal form coefficients are presented in section
2, where we also compare our results with those obtained from the DDE-BIFTOOL imple-
mentation. Further details of the normal form calculations can be found in M108765 01.pdf
[local/web 322KB]. Our Matlab code HHnfDDEsd, which implements the constant-delay ex-
pansion and computes the normal form coefficients for the Hopf-Hopf bifurcation, is available

http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_01.pdf
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as a supplement to this paper (see M108765 02.zip [local/web 6.79KB] and M108765 03.zip
[local/web 14.5KB]).

The dynamics on the bifurcating tori may be quasi-periodic or locked, and this is organized
by resonance tongues that are bounded by curves of saddle-node (or fold) bifurcations of
periodic orbits. We proceed in section 3 by computing and presenting bifurcating stable
quasi-periodic and phase-locked tori. The Matlab [63] state-dependent DDE solver ddesd is
used to find trajectories on stable invariant tori. In this way, we find quasi-periodic (or high-
period) tori. To obtain locked tori, we find and continue the locked periodic solutions with
the software package DDE-BIFTOOL [17, 72]. The unstable manifolds of the saddle periodic
orbits on the torus are then represented as two-dimensional surfaces obtained by numerical
integration of trajectories in these manifolds.

Since (1.3) is a scalar DDE, but its phase-space is infinite-dimensional, we consider finite-
dimensional projections of the infinite-dimensional phase space. Moreover, we also show the
tori in suitable projections of the Poincaré map defined by u(t) passing through 0. This allows
us to reveal the inherently low-dimensional character of these invariant tori and associated
bifurcations.

We then perform in section 3.1 a bifurcation study of the emergence of tori and associated
resonance phenomena. Specifically, we compute and illustrate in the (κ1, κ2)-plane the curves
of torus bifurcation emerging from the Hopf-Hopf bifurcation point HH1 and the associated
structure of resonance tongues. We also consider in detail the properties and bifurcations
of the invariant tori inside and near the regions of strong 1 : 3 and 1 : 4 resonances. More
specifically, in section 3.2 we show how the 1 : 4 locked torus loses normal hyperbolicity and
then breaks up in a complicated sequence of bifurcations as κ1 is changed. Finally, in section
4 we present the overall bifurcation diagram in the (κ1, κ2)-plane, provide some conclusions,
and point out directions for future research.

2. Normal form at Hopf-Hopf bifurcation. Here we derive the normal form of the Hopf-
Hopf bifurcations of (1.3). For constant-delay DDEs a center manifold reduction [3, 23]
transforms the DDE into an ODE on the center manifold, and the normal form of the Hopf-
Hopf bifurcation for ODEs is well known and can be found in [51]. For state-dependent
DDEs, the existence of a C1 center-unstable manifold has been proved by several authors (for
instance, see [50, 69, 76]), with verifiable regularity conditions that (1.3) satisfies, when the
spectrum of (1.11) has eigenvalues λ satisfying that Re (λ) > 0. However, the existence of a
C3 regular center-unstable manifold, as required for the Hopf-Hopf bifurcation analysis, has
not been rigorously established in the state-dependent case. Nor has the normal form of the
Hopf-Hopf bifurcation for a state-dependent DDE previously been elaborated.

Noting that linearization of (1.3) reduces it to the constant-delay DDE (1.11), our ap-
proach is instead to obtain a series expansion of the right-hand side of (1.3) in which the
low-order terms only involve constant delays. In particular, the state dependence will only
appear in the higher-order remainder term. The derivation of the terms up to order three
of the normal form DDE with constant delays near the Hopf-Hopf bifurcation is exact. We
then, as is usual in the field, disregard the remainder term and consider only this truncated
expansion. We conjecture that the truncated constant-delay DDE fully describes all of the
dynamics near the Hopf-Hopf bifurcation in the state-dependent DDE. We then proceed by

M108765_02.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_02.zip
M108765_03.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_03.zip
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applying the established center manifold reduction of [3, 23] to obtain an ODE on the center
manifold. The flow restricted to the center manifold satisfies an ODE in four-dimensional
space, which can be reduced to a normal form to determine the type of Hopf-Hopf bifurcation
that occurs. The virtue of this method is that we study a four-dimensional ODE as opposed
to an infinite-dimensional semiflow. Of course, this construction only works close to the point
of the Hopf-Hopf bifurcation in parameter space, where the center manifold persists since the
rest of the eigenvalues are at a positive distance from the imaginary axis; the center manifold
should be a normally hyperbolic invariant manifold in the infinite-dimensional phase space.

Since the state dependence of the delays is the only source of nonlinearity in the DDE (1.3),
the correct treatment of these state-dependent delays is essential to our results. Specifically,
our strategy is as follows. We Taylor expand the state-dependent terms u(t − ai − cu(t)) in
time about their constant-delay reductions u(t−ai). This removes the state dependence from
the equations, but at the cost of introducing derivatives of u(t−ai) in higher-order terms. Not
wanting to deal with neutral DDEs, we remove the derivatives dk

dtk
u(t− ai) by differentiating

(1.3) k− 1 times and evaluating the resulting expression at t− ai. This introduces additional
delays into the DDE and also reintroduces the state dependence of the delays, but only in
the quadratic and higher-order terms. The quadratic state-dependent delays are removed by
the same process of Taylor expansion and substitution. We can repeat this process as many
times as desired to obtain a DDE with only constant delays in the terms up to kth order
for any k. Normal form theory for Hopf-Hopf bifurcation requires the expansion up to order
three, which is why we stop at this order. By using the integral form of the remainder in
Taylor’s theorem, it is possible to obtain an explicit expression for the higher-order terms. In
the current work, we conjecture, but do not prove, that the remainder term can indeed be
disregarded. This allows us to apply the techniques of [3, 23] to the lower-order constant-delay
part of our expanded DDE to determine the normal form equations, as well as the Hopf-Hopf
unfolding bifurcation types.

There is a long and often inglorious history of Taylor expanding in DDEs to alter or
eliminate the delay terms. It is obviously invalid to expand u(t − a) about u(t) when |u(t −
a) − u(t)| is large, which will be the typical case when a is not small. But related to the
phenomenon of delay induced instability, even when u is close to steady state so that |u(t −
a)− u(t)| � 1, expanding u(t− a) about u(t) can change the stability of the steady state; see
[15] for examples. In the current work, we expand terms of the form u(t − a − cu(t)) about
u(t− a) close to steady state. Hence, not only is the difference in the u-values small, that is
|u(t− a− cu(t))− u(t− a)| � 1, but crucially the difference in the time values is also small,
that is, |(t− a− cu(t))− (t− a)| = |cu(t)| � 1.

Having found the normal form of the Hopf-Hopf bifurcation of (2.14), we compare the
resulting bifurcations predicted by the normal form calculation with the numerically deter-
mined bifurcation curves for the full state-dependent DDE (1.3). Close to the Hopf-Hopf
points we find very good agreement, which gives us confidence in the results obtained by
both approaches. In particular, these results constitute strong numerical evidence that the
resulting normal form for the expanded constant-delay DDE (2.14) is indeed that for the
state-dependent DDE (1.3). While proving this conjecture is beyond the scope of this paper,
we remark that such a proof, and indeed the expansions that we perform, require at least
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C3 regularity of (the solutions in) the manifold. To our knowledge, the best regularity result
for the center manifolds in state-dependent DDEs establishes just C1 regularity [50], and Cr

regularity with r > 1 has not yet been established for center manifolds of state-dependent
DDEs. Nevertheless, the expansions we perform here do not seem to present any obstruction
to obtaining the formal expressions for small amplitudes of the function u. In fact, one notices
that knowing the C1-smoothness of the local center-unstable manifold justifies that the solu-
tions can be continued for negative times. Since in our case we are close to the steady state
u(t) = 0, the delays are bounded and the solutions must be Ck smooth in time. Indeed, having
Ck-regular solutions could lead to obtaining Ck-smooth time-1 maps, and these are perhaps
the basis for constructing a Ck-smooth center manifold. This possible route to Ck regularity
is already proposed in [29]. We also mention that results for invariant tori of state-dependent
DDEs have been derived recently in spaces of smooth and analytic functions; see [30, 31].

We elaborate our steps as follows. In section 2.1, we present the details of the expansion
of the state-dependent DDE to obtain a DDE with only constant delays up to order three. In
section 2.2, we describe aspects of the projection onto the center manifold for this constant-
delay DDE and present the derivation of the normal form coefficients. The algebraic details of
these calculations are contained in supplemental file M108765 01.pdf [local/web 322KB]. In
section 2.3 we use the normal form obtained to determine the type of the Hopf-Hopf bifurcation
for the three Hopf-Hopf bifurcations seen in Figure 3.

2.1. Expansion of the nonlinearity. In this section, we perform the expansion of the
state-dependent delay equation (1.3) and obtain a constant-delay equation with many delays
and a remainder term which is small for solutions in the center or unstable manifolds.

To describe the expansion of the nonlinearity in (1.3) it is convenient to define the difference
operator L that generates the linear terms on the right-hand side of (1.11) as

(2.1) Lu(t) ≡ −γu(t)− κ1u(t− a1)− κ2u(t− a2).

The difference operator L can be applied recursively, and it will be useful below to note that

L2u(t− ai) = −γLu(t− ai)−
2∑
j=1

κjLu(t− ai − aj)(2.2)

= γ2u(t− ai) + 2γ
2∑
j=1

κjLu(t− ai − aj) +
2∑

j,m=1

κjκmu(t− ai − aj − am).

Theorem 2.1. For functions u in the center or unstable manifold of the steady state u(t) =
0, the state-dependent delay equation (1.3) can be written as a constant-delay equation up to
fourth order as

u′(t) = Lu(t) +
2∑
i=1

κicu(t)Lu(t− ai) +
2∑

i,j=1

κiκjc
2u(t)u(t− ai)Lu(t− ai − aj)(2.3)

− 1
2

(cu(t))2
2∑
i=1

κiL
2u(t− ai) +R(t),

with R(t) = O(‖u‖45), where ‖u‖5 = supθ∈[−5a2,0] |u(θ)|.

http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_01.pdf
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Proof. Recall from (1.8) that delays are globally bounded by τ = a2 + a1(κ1 + κ2)/γ for
the state-dependent DDE (1.3). Since a2 > a1 for |u| < δ, we obtain the stronger bound that
t− αj(t, u(t)) 6 a2 + cδ. Now consider u in the center or unstable manifold so that solutions
can be extended in the past. Using (2.1), we can rewrite (1.11) as u′(t) = Lu(t), and (1.3) as

(2.4) u′(t) = Lu(t)−
2∑
i=1

κi
[
u(t− ai − cu(t))− u(t− ai)

]
.

As already noted, the only nonlinearities in (1.3) arise from the state dependence of the delays,
and we must handle these terms carefully to obtain a correct expansion for the normal form.
Close to steady state and close to Hopf bifurcation, the state-dependent part of the delay
term, −cu(t), will be close to zero. Therefore, close to the bifurcation the term t− ai − cu(t)
represents a small displacement from the constant delay t − ai. Since we assume ai > 0, the
perturbation will not be singular.

We write Taylor’s theorem as

u(p)(w − τ − cu(w)) = u(p)(w − τ) +
∫ 1

0
u(p+1)(w − τ − cu(w) s1)ds1(−cu(w))

= u(p)(w − τ) + u(p+1)(w − τ)(−cu(w))

+
∫ 1

0

∫ s1

0
u(p+2)(w − τ − cu(w) s1 s2)ds2(−cu(w)s1)ds1(−cu(w))

=
k∑
j=0

1
j!
u(p+j)(w − τ)(−cu(w))j(2.5)

+
(∫ 1

0

∫ s1

0
· · ·
∫ sk−1

0
u(p+j+1)(w − τ − cu(w) s1 s2 · · · sk)

· [s1(s1 s2) · · · (s1 · · · sk)]dsk · · · ds1

)
· (−cu(w))j+1,

where we note that on the unstable and center manifolds solutions are Cp, because they can
be extended backwards in time; the delays are bounded, and solutions become more regular as
we integrate (1.3) forwards in time. Equation (2.5) gives an estimate of the residue of Taylor’s
theorem in terms of (−cu(w))j+1 and u(p+j+1). Now, we use (2.5) with w = t, τ = ai, p = 0,
and k = 2 to obtain

u′(t) = Lu(t)−
2∑
i=1

κi

2∑
j=1

1
j!
u(j)(t− ai)(−cu(t))j(2.6)

+

[
2∑
i=1

κi

∫ 1

0

∫ s1

0

∫ s2

0
u(3)(t− ai − cu(t)s1s2s3)s3

1s
2
2s3 ds3ds2ds1

]
(−cu(t))3.

Note that we choose k = 2 so that the integral remainder term is quartic; more precisely, it is
O([u(t)]3u(3)(t)). But with bounded delays it follows from differentiating (1.3) that for δ > 0
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sufficiently small

|u(3)(t− ai − cδ)| 6 C2 sup
θ∈[−ai−a2−2cδ,0]

|u′′(θ)| 6 C3 sup
θ∈[−3a2−3cδ,0]

|u′(θ)|(2.7)

6 C4 sup
θ∈[−4a2−4cδ,0]

|u(θ)| 6 C4‖u‖5.

One problem with the expansion (2.6) is that the nonlinear terms include delayed derivative
terms in u′, u′′, and u(3). We want to eliminate terms of this form to avoid the possibility
of neutrality in our equations. To this end, we consider first the terms of the form u′(t− ai)
appearing in (2.6). Applying (1.3) gives

u′(t− ai) = −γu(t− ai)−
2∑
j=1

κju(t− ai − aj − cu(t− ai)).

To remove the state dependence from the right-hand side, we apply (2.5) with w = t − ai,
τ = aj , p = 0, and k = 1 to obtain

u′(t− ai) = −γu(t− ai)−
2∑
j=1

κju(t− ai − aj) +
2∑
j=1

κjcu
′(t− ai − aj)u(t− ai)(2.8)

+

 2∑
j=1

κj

∫ 1

0

∫ s1

0
u′′(t− ai − aj − cu(t− ai)s1)s1 ds2ds1

 (−cu(t− ai))2.

But using (1.3) again and (2.5) with w = t− ai − aj , τ = am, and p = k = 0, we have

u′(t− ai − aj) = −γu(t− ai − aj)−
2∑

m=1

κmu(t− ai − aj − am − cu(t− ai − aj))

= −γu(t− ai − aj)−
2∑

m=1

κmu(t− ai − aj − am)(2.9)

+

[
2∑

m=1

κm

∫ 1

0
u′(t− ai − aj − am − cu(t− ai − aj)s1)ds1

]
(−cu(t− ai − aj)).

Hence, we can rewrite (2.6) as

(2.10) u′(t) = Lu(t) +N2u(t) +N23u(t)− 1
2

2∑
i=1

κiu
′′(t− ai)(cu(t))2 +R24(t),
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where N2u(t) contains the quadratic terms in the expansion of nonlinearity, and N23u(t)
contains the cubic terms arising from the substitution of (2.9) and (2.8) into (2.6), with

N2u(t) =
2∑
i=1

κicu(t)

−γu(t− ai)−
2∑
j=1

κju(t− ai − aj)

 =
2∑
i=1

κicu(t)Lu(t− ai),(2.11)

N23u(t) =
2∑

i,j=1

κiκjc
2u(t)u(t− ai)

[
−γu(t− ai − aj)−

2∑
m=1

κmu(t− ai − aj − am)

]
(2.12)

=
2∑

i,j=1

κiκjc
2u(t)u(t− ai)Lu(t− ai − aj).

The expression R24(t) contains the fourth-order integral remainder term of the Taylor series
stated in (2.6), as well as the additional fourth-order integral terms arising from the substi-
tution of (2.8) and (2.9) into (2.6).

It remains to expand the terms u′′(t−ai) in (2.10). Differentiating (1.3) and then applying
(2.5) with p = 1 and k = 0 gives

u′′(t− ai) = −γu′(t− ai)− (1− cu′(t− ai))
2∑
j=1

κju
′(t− ai − aj − cu(t))

= −γu′(t− ai)− (1− cu′(t− ai))
2∑
j=1

κj

[
u′(t− ai − aj)(2.13)

+
∫ 1

0
u′(t− ai − aj − cu(t− ai)s1)ds1(−cu(t− ai))

]
.

Similar to (2.8) and (2.9), but this time applying (2.5) with p = k = 0, we can remove the
u′(t − ai) and u′(t − ai − aj) terms from (2.13). Just considering the linear terms in (2.13)
and using (2.2) we find that
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−γu′(t− ai)−
2∑
j=1

κju
′(t− ai − aj)

= −γ

−γu(t− ai)−
2∑
j=1

κju(t− ai − aj − cu(t− ai))


−

2∑
j=1

κj

[
−γu(t− ai − aj)−

2∑
m=1

κmu(t− ai − aj − am − cu(t− ai − aj))
]

= −γ

−γu(t− ai)−
2∑
j=1

κj

[
u(t− ai − aj)

+
∫ 1

0
u′(t− ai − aj − cu(t− ai)s1)ds1(−cu(t− ai))

]]

−
2∑
j=1

κj

[
−γu(t− ai − aj)−

2∑
m=1

κm

[
u(t− ai − aj − am)

+
∫ 1

0
u′(t− ai − aj − am − cu(t− ai − aj)s1)ds1(−cu(t− ai − aj))

]]

= L2u(t− ai) +
2∑
j=1

γκj

∫ 1

0
u′(t− ai − aj − cu(t− ai)s1)ds1(−cu(t− ai))

+
2∑

j,m=1

κjκm

∫ 1

0
u′(t− ai − aj − am − cu(t− ai − aj)s1)ds1(−cu(t− ai − aj)).

Hence, from (2.10) we obtain (2.3), where the remainder term R(t) contains all the integral
terms derived above. Equation (2.7) can be used to show that the remainder term in (2.6) is
O(‖u‖45), and all the remaining integral remainder terms are seen to be O(‖u‖45) similarly.

Overall, we have transformed the state-dependent DDE (1.3) into DDE (2.3), whose terms
up to order three contain only constant delays. The price for doing this is the introduction of
additional delay terms. While (1.3) contains two state-dependent delays, and its linearization
contains two constant delays, in (2.3) the second-order terms features five and the third-order
terms nine constant delays. Indeed, it is easy to see that, if we continued the expansion in
(2.6) to higher order, then the term −(−cu(t)j)

∑2
i=1 κiu

(j)(t−ai) leads to a jth-order term of
the form −(−cu(t)j)

∑2
i=1 κiL

ju(t− ai). Thus, when a1 and a2 are not rationally related, we
will obtain j(j + 3)/2 delays at jth order, namely, all the terms of the form u(t−ma1 − na2)
where m,n are nonnegative integers and 1 6 m + n 6 j. Recalling that a2 > a1, the largest
delay appearing at jth order is then u(t− ja2).

If desired, the derivatives of u that appear in R(t) can all be removed by using (1.3)
and derivatives of that equation, just as we removed such derivatives from the lower-order
terms. This would result in state-dependent delays appearing in R(t). Alternatively the state
dependence or distributed delay terms could be moved to higher-order terms by truncating
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the expansions above at higher order. Importantly, the remainder terms are beyond the orders
that we will need for subsequent normal form consideration, and we have the following.

Conjecture 2.2. The local dynamics near the steady state u(t) = 0 of the state-dependent
delay equation (1.3) are determined solely by the constant-delay expansion up to the given
order. In other words, to study steady-state bifurcations of (1.3), standard normal form
calculations for constant-delay DDEs can be applied to the constant-delay expansion truncated
to suitable order.

Specifically for the Hopf-Hopf bifurcations of interest, from now on we consider only the
constant-delay DDE we derived to third order in (2.3). Not using the difference operator L,
it takes the form

u′(t) =− γu(t)− κ1u(t− a1)− κ2u(t− a2)−
2∑
i=1

κicu(t)

γu(t− ai) +
2∑
j=1

κju(t− ai− aj)


(2.14)

−
2∑

i,j=1

κiκjc
2u(t)u(t− ai)

[
γu(t− ai− aj) +

2∑
m=1

κmu(t− ai− aj− am)

]

− 1
2

(cu(t))2
2∑
i=1

κi

γ2u(t− ai) + 2γ
2∑
j=1

κju(t− ai− aj) +
2∑

j,m=1

κjκmu(t− ai− aj− am)

 .
We remark that this way of writing the constant-delay DDE is convenient for the imple-
mentation of the DDE-BIFTOOL normal form computations which require a DDE with con-
stant delays, and in the supplemental material as sys cub rhs (see M108765 04.zip [local/web
4.59KB]) we provide a DDE-BIFTOOL system definition of (2.14). However, our own Hopf-
Hopf normal form code HHnfDDEsd works directly from the state-dependent DDE (1.3) and
computes (2.14) from (1.3) using symbolic differentiation as the first step in deriving the
normal form parameters.

2.2. Center manifold reduction and resulting normal form. The next step is to derive
the normal form for the constant-delay DDE (2.14). For constant-delay DDEs there are well
established techniques for deriving normal forms through center manifold reductions. To
the best of our knowledge, the Hopf-Hopf bifurcation for a constant-delay DDE was first
elaborated in Bélair and Campbell [3], but here we follow the derivation of Guo and Wu [23].
The main idea in this construction is to study the restriction of the semiflow of (2.14) to
the center manifold at the point of the Hopf-Hopf bifurcation. On the center manifold the
flow satisfies an ODE in four-dimensional space. The reduction to normal form for Hopf-Hopf
bifurcations of ODEs is well known, and we follow Kuznetsov [51] to determine the type of
Hopf-Hopf bifurcation that occurs.

The algebraic steps for determining the normal form are detailed in the supplementary
materials (M108765 01.pdf [local/web 322KB]) , and we implemented our own Matlab code
HHnfDDEsd (see M108765 02.zip [local/web 6.79KB]), which uses symbolic differentiation to
compute the expansion of the state-dependent DDE (1.3) described in section 2.1, and then
to evaluate the normal form expressions for the resulting constant-delay DDE (2.14). To

M108765_04.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_04.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_01.pdf
M108765_02.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_02.zip
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determine the location of the codimension-two Hopf-Hopf points under consideration, we start
from an approximate location and solve for (κ1, κ2, ω1, ω2), so that the pair of frequencies
ω1 6= ω2 both solve (1.13) simultaneously for the same pair of parameter values (κ1, κ2).
Our auxiliary routine findHH (see M108765 02.zip [local/web 6.79KB] and M108765 03.zip
[local/web 14.5KB]) uses the Matlab function fminsearch to minimize

f(κ1, ω1, κ2, ω2) =
2∑
j=1

(
γ+κ1 cos(a1ωj)+κ2 cos(a2ωj)

)2
+
(
ωj−κ1 sin(a1ωj)−κ2 sin(a2ωj)

)2
,

since this function contains the real and imaginary parts of two copies of (1.13). In this way,
we are able to find the Hopf-Hopf point essentially to machine precision (we use tolerances
of 10−14). At the Hopf-Hopf point we then evaluate the derivatives and functions needed
to obtain the center manifold coefficients gjlsrk in section A.3 of the supplemental materials,
where we employ symbolic differentiation to avoid numerical errors. Thus, we expect that our
normal form parameter calculations should be accurate essentially to machine precision, and
certainly to eight or more significant figures.

Recently, Wage [78] implemented an extension ddebiftool nmfm for DDE-BIFTOOL
to compute normal form coefficients at local bifurcations of steady states in constant-delay
DDEs. This applies a sun-star calculus–based normalization technique to compute the nor-
mal form and center manifold coefficients together, as elaborated for constant-delay DDEs by
Janssens [37]. The DDE-BIFTOOL implementation applies only to constant-delay DDEs and
so cannot be applied directly to (1.3). However, we can use DDE-BIFTOOL to compute the
normal forms of the Hopf-Hopf points of the expanded constant-delay DDE (2.14). The differ-
ence between the DDE-BIFTOOL implementation (sun-star calculus approach to computing
normal form and center manifold coefficients together) and our approach (center manifold
reduction first, then compute normal form of resulting ODE system) results in intermediate
coefficients being scaled differently, but the final normal form coefficients computed by both
methods should agree. For the DDE-BIFTOOL computations it is suggested that one supply
a user-defined routine to compute higher-order derivatives. However, with nine delays in the
constant-delay DDE (2.14), determining these derivatives would be a formidable task, and so
we use the default DDE-BIFTOOL finite-difference derivative approximations. As an error
control this computes the normal form coefficients twice with finite difference approximations
of different order. However, in our experience this error estimate is often misleading, as the
actual errors are usually much larger than the estimate, as we will see in the next section.

2.3. Hopf-Hopf normal forms. We perform the normal form analysis for the parameter
values given in (1.10), which are the same as used in Figure 3 and throughout this paper. For
these parameter values the locations of the Hopf-Hopf points and the resulting normal form
parameters can be found as described in the previous section.

In Table 1 we state the results of five different computations for the first Hopf-Hopf
point HH1. The normal form parameters ϑ and δ define coefficients in the scaled truncated
amplitude equations

ξ′1 = ξ1(µ1 − ξ1 − ϑξ2),
ξ′2 = ξ2(µ2 − ξ2 − δξ1),

(2.15)

M108765_02.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_02.zip
M108765_03.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_03.zip
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Table 1
Values of κi and ωi at the Hopf-Hopf bifurcation HH1, seen in Figure 3, and the parameters ϑ and δ

that define the scaled truncated amplitude equation (2.15). The values in the first column are computed with
our Matlab code HHnfDDEsd applied to (1.3), which implements the procedure described in M108765 01.pdf
[local/web 322KB]. The other columns are produced with the normal form extension of DDE-BIFTOOL,
applied to the constant-delay DDE (2.14) to obtain four different approximations, two on each of the two
intersecting branches of Hopf bifurcations, one from a low-order approximation finite difference approximation
to the derivatives, and one using a higher-order approximation. The Matlab code to generate all output is
supplied in the supplementary materials.

Computed DDE-BIFTOOL
normal form H1 high H1 low Hu high Hu low

κ1 2.080920227069894 2.080905301795540 2.080662320398254
κ2 3.786800923405767 3.786811738802836 3.786929718494380
ω1 2.487102830659818 2.487103286770640 1.582142631415513
ω2 1.582152129599611 1.582151566193548 2.487110459273053
ϑ 5.291049995477200 5.2909997813 5.2909980111 −0.0222756426 −0.0222756534
δ −0.022289571330147 −0.0222816360 −0.0222817195 5.2909133110 5.2909132195

for ξj > 0, which determine the dynamics and bifurcations seen as µj = Re (λj) are varied
close to the Hopf-Hopf point where µ1 = µ2 = 0. The derivation of (2.15) is given in
M108765 01.pdf [local/web 322KB], culminating in (A.46).

The first column of Table 1 gives the values computed with our HHnfDDEsd code de-
scribed in sections 2.1–2.2; for comparison, the other columns give values computed with
DDE-BIFTOOL’s normal form extension. DDE-BIFTOOL finds Hopf-Hopf points by check-
ing along a branch of Hopf bifurcations for where a second pair of characteristic values crosses
the imaginary axis. Thus, with DDE-BIFTOOL, it is possible to obtain two different ap-
proximations to the same Hopf-Hopf point by searching along each of the two intersecting
branches of Hopf points; in Table 1 we give the locations of HH1 found on the Hopf curves
H1 and Hu (see Figure 3). As noted in section 2.2, when computing derivatives via finite
differences, DDE-BIFTOOL provides two different finite difference approximations to give an
indication of the error. The parameters ϑ and δ computed on H1 with the two different finite
difference approximations agree to a relative error of about 10−6, indicating that the finite
difference approximations are both quite accurate, and similarly on the branch Hu. However,
the agreement is not so good when we compare the answers obtained on the two branches.
First, we see that the values of ϑ and δ are swapped on the two branches, which is correct
and natural. DDE-BIFTOOL takes as ω1 the value of ω for the Hopf bifurcation occurring
on the branch one is searching along, and takes as ω2 the value of ω for the second pair of
characteristic values crossing the imaginary axis. Hence, the values of ω1 and ω2 are swapped
when the search is switched from one branch to the other, and this results in the values of
ϑ and δ also being swapped. However, even after swapping, we see that the values of ϑ and
δ calculated by DDE-BIFTOOL agree to only about four significant figures between the two
branches. This also indicates the relative accuracy to which the values of κ1, κ2, ω1, and
ω2 for the Hopf-Hopf point agree on the two branches. So it seems that the accuracy of the
DDE-BIFTOOL computed normal forms is limited by the accuracy to which DDE-BIFTOOL
computes the location of the Hopf-Hopf points, and not by the accuracy to which it computes

http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_01.pdf
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Table 2
The locations and the main normal form and amplitude equation parameters at the three Hopf-Hopf points

HHj shown in Figure 3, computed with our Matlab code HHnfDDEsd.

HH1 HH2 HH3

κ1 2.080920227069894 5.608860749294630 9.284862308872761
κ2 3.786800923405767 2.643352614515402 4.403906490530705
ω1 2.487102830659818 6.608351858283422 10.93073224661102
ω2 1.582152129599611 1.765757669232216 1.952009077103193

g̃1
2100 = 1

2g
1
2100 −0.81417665− 0.00407087i −8.59821703− 10.3402562i 8.25785960− 81.8392092i

g̃1
1011 = g1

1011 −0.72563615 + 0.26699379i −4.14512262− 0.48508142i −20.2850232 + 11.4745454i
g̃2
1110 = g2

1110 −0.45302394− 0.29997922i 1.74982076− 7.92866388i 31.0314747− 74.3567344i
g̃2
0021 = 1

2g
2
0021 −0.13405924− 0.29906145i −1.42981504− 0.22951923i −0.26054578− 0.38071817i

G1
2100(0) −0.69871613− 0.28257330i −7.50609582− 4.15081310i −16.8534773− 28.0243853i

G1
1011(0) −0.51573055− 0.23247968i −5.26325881 + 0.05175630i −21.3834727 + 12.4878724i

G2
1110(0) 0.01557408− 0.46117993i 5.55956094− 2.01536072i 50.3666025− 66.5262024i

G2
0021(0) −0.09747225− 0.22785268i −0.65677277− 0.20185598i −0.20383503 + 0.19032437i
p11 −0.698716133454477 −7.506095827847883 −16.853477387548608
p12 −0.515730558790600 −5.263258815778782 −21.383472731028913
p21 0.015574083096158 5.559560941739119 50.366602528819492
p22 −0.097472252054214 −0.656772770545075 −0.2038350368172633
ϑ 5.291049995477200 8.013820078762780 104.90577608695922
δ −0.022289571330147 −0.740672790388973 −2.9884991311069409

the normal forms themselves.
We can also swap the ωj in the computation of the normal forms in our code HHnfDDEsd.

Because of the symmetry between the parameters, for the index j = 1 or 2 so that 3 − j
indicates the other index, swapping the ω values ωj ↔ ω3−j exchanges ϑ and δ and the other
normal form coefficients (see M108765 01.pdf [local/web 322KB]) as follows:

gjlsrk ↔ g3−j
rkls, g̃jlsrk ↔ g̃3−j

rkls, Gjlsrk ↔ G3−j
rkls, pij ↔ p3−i3−j .

Because we find the Hopf-Hopf point to machine precision and evaluate the derivatives sym-
bolically, when the ωj are exchanged, we find that the respective normal form coefficients
are identical to machine precision. In fact, the idea of swapping the ωj and checking the
normal form coefficients and parameters turned out to be very useful during the checking and
debugging of our code.

Table 2 gives the normal form parameters for the first three Hopf-Hopf points HHj seen
in Figure 3, and also some of the more important intermediate coefficients described in
M108765 01.pdf [local/web 322KB]. Here we report only one set of normal form parame-
ters for each Hopf-Hopf point HHj computed with our Matlab code HHnfDDEsd. We always
take ω1 > ω2, and since the period of the periodic orbit bifurcating from the curve Hu is
always the largest, this corresponds to taking ω1 as the frequency of the Hopf bifurcation
Hj for j = 1, 2, or 3 and ω2 as the frequency of the Hopf bifurcation Hu. Our normal form
calculations give the following overall result.

Proposition 2.3. At each of the three Hopf-Hopf points HH1, HH2, and HH2 the following
hold:

http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_01.pdf
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(i) p11 < 0 and p22 < 0, which means that normal form coefficients ϑ and δ are sufficient
to determine the type of the Hopf-Hopf bifurcation that occurs [51].

(ii) The nondegeneracy conditions (HH.0)–(HH.6) in supplementary file M108765 01.pdf
[local/web 322KB] hold.

(iii) ϑ > 0 > δ, which corresponds to subcase III of the simple case as described in section
8.6.2 of [51]; see also Appendix A.5.

In the normal form parameters plane of (µ1, µ2) = (Re (λ1),Re (λ2)), Hopf bifurcations
occur along the horizontal µ1-axis with the bifurcating periodic orbit existing in the upper half
plane, and along the vertical µ2-axis with the bifurcating periodic orbit existing in the right
half plane. Proposition 2.3 implies that there are two curves of torus bifurcations emerging
from the origin, which is the codimension-two Hopf-Hopf point: one in the first quadrant and
one in the fourth quadrant, with the torus existing in the convex cone between them. On the
upper torus bifurcation curve the torus bifurcates from the periodic orbit that exists in the
upper half plane, and on the lower torus bifurcation curve it bifurcates from the periodic orbit
which exists in the right half plane. The five regions of generic phase portraits are labelled in
panel III of Figure 8.25 in [51] (but notice a typo: 13 should be 12), and the corresponding
generic phase portraits are given in Figure 8.26 of [51].

Figure 4 shows how our normal form calculations manifest themselves near HH1 and HH2.
Panels (a1) and (b1) show the local bifurcation diagrams of the original state-dependent DDE
(1.3) as computed with DDE-BIFTOOL [72], consisting of the Hopf bifurcation curve Hu

intersecting the Hopf bifurcation curves H1 and H2 in HH1 and HH2 (as in Figure 3), as well
as the associated torus bifurcation curves Tu, T1, and T2. Panels (a2) and (a3) and panels
(b2) and (b3) of Figure 4 show the results of our normal form calculations at HH1 and HH2,
respectively. Panels (a3) and (b3) show the positions of the curves of torus bifurcation in the
(µ1, µ2)-plane of the normal form (2.15). As was discussed, Tu lies in the first quadrant, and
the curves T1 and T2 each lie in the fourth quadrant. Moreover, the normal form calculations
also give the slope of the torus curves in the (µ1, µ2)-plane via the actual values of ϑ and δ
and (A.50) and (A.51). In particular, T1 lies very close to Hu near HH1 in panel (a3), while
T2 is well separated from Hu near HH2 in panel (b3). Since the Jacobian matrix defined in
nondegeneracy condition (HH.6) in Appendix A.5 is invertible at each point HHj , we can use
the coordinate transformation (A.52) to map the (µ1, µ2)-plane back to the (κ1, κ2)-plane of
(1.3). The result is shown in panels (a2) and (b2) of Figure 4, where all curves are actually
straight lines that represent the linear approximations, that is, the slopes, of the respective
Hopf and torus bifurcation curves near HH1 and HH2. There is excellent correspondence
between the nature, order, and slopes of the respective bifurcation curves illustrated in panels
(a1) and (a2) and in panels (b1) and (b2), respectively. This fact is clear evidence, over
and above the two independent normal form calculations, that Proposition 2.3 is correct and
indeed represents the Hopf-Hopf normal form of the full state-dependent DDE (1.3).

Clearly, the bifurcation curves in the local bifurcation diagrams in Figure 4(a1) and (b1)
are actually nonlinear, and this explains the visible differences between them and panels (a2)
and (b2) further away from HH1 and HH2, respectively. The curvature of these bifurcation
curves could be captured by computing higher-order terms in the normal forms, but this is very
cumbersome and rarely done. Rather, we will continue these bifurcation curves numerically

http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_01.pdf
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Figure 4. Comparison in the (κ1, κ2)-plane near HH1 and HH2 between numerically computed torus bi-
furcation curves for the state-dependent DDE (1.3) (panels (a1) and (b1)), and their linear approximations
(panels (a2) and (b2)) obtained by evaluating the normal form coefficients at the respective Hopf-Hopf point
and applying the coordinate transformation (A.52). The inset panels (a3) and (b3) show the (µ1, µ2)-plane of
the normal form (2.15) before this transformation.

with DDE-BIFTOOL more globally throughout the (κ1, κ2)-plane. As we will see in the next
section, the full bifurcation diagram is very complicated.

3. Structure of bifurcating tori. The existence of Hopf-Hopf bifurcation points that give
rise to torus bifurcation curves clearly indicates that (1.3) should feature multifrequency dy-
namics and, in particular, quasi-periodic and locked dynamics on invariant tori.

Figure 5 shows two examples of dynamics on an invariant torus, which were obtained
by numerical integration of (1.3) and after transients have been allowed to die down. The
respective dynamics on the torus are illustrated in the left column in projection onto the
(u(t), u(t − a1), u(t − a2))-space. The right column shows points in the (u(t − a1), u(t −
a2))-plane whenever u(t) = 0; in other words, it shows a two-dimensional projection of the
function segments of the Poincaré return map defined by u(t) = 0. This representation in the
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Figure 5. Quasi-periodic torus for κ1 = 4.44 in row (a) and 3 : 7 phase-locked periodic orbit for κ1 =
4.409556 in row (b), where κ2 = 3.0. Panels (a1) and (b1) show projections onto (u(t), u(t − a1), u(t − a2))-
space, and panels (a2) and (b2) the trace in the (u(t− a1), u(t− a2))-plane of the Poincaré return map defined
by u(t) = 0.

(u(t− a1), u(t− a2))-plane has been chosen to give a good impression of the low-dimensional
character of the tori we encounter, and we refer to it as the Poincaré trace for short; see below
for more details on how to construct a Poincaré map of a DDE. In Figure 5(a) the dynamics
are quasi-periodic (or of very high period), so that the shown single trajectory covers the torus
densely; in the Poincaré trace this corresponds to an invariant closed curve, which is filled out
more and more densely as a longer trajectory is computed. An example of locked dynamics
on the torus is given in row (b) of Figure 5. More specifically, shown is the attracting periodic
orbit on the torus (not shown) in projection onto (u(t), u(t − a1), u(t − a2))-space in panel
(b1), and the associated Poincaré trace in the (u(t− a1), u(t− a2))-plane in panel (b2). They
show that the locked periodic orbit forms a 3:7 torus knot.

Overall, Figure 5 illustrates that two-dimensional invariant tori of (1.3) can be represented
conveniently in projection onto the three-dimensional (u(t), u(t− a1), u(t− a2))-space and by
their Poincaré trace in the (u(t− a1), u(t− a2))-plane. We now discuss the choice of Poincaré
map for the state-dependent scalar DDE (1.3) in somewhat more detail. It is easy to see that
u ≡ 0 is the unique steady state of (1.3). Equation (1.8) and the positivity of the parameters
implies that any orbit that does not cross u = 0 will be eventually monotonic, and also that
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u(t) and u′(t) cannot have the same sign on a time interval longer than τ . Hence, since all
periodic and quasi-periodic orbits cross u = 0, it is natural to use this condition for defining
the Poincaré map. More specifically, we define the Poincaré section

(3.1) Σ = {φ ∈ C : φ(0) = 0},

which is a codimension-one subspace of the infinite-dimensional phase space C of (1.3). Hence,
Σ is infinite-dimensional itself, and the local Poincaré map PΣ on Σ is defined as the map
that takes a downward transversal crossing of zero (φ(0) = 0 with φ′(0) < 0) to the next
such crossing. The infinite dimensionality of Σ obscures the structure of the low-dimensional
invariant sets (namely, periodic orbits and tori) that we wish to visualize, which is why one
considers projections of C and, hence, Σ.

We consider the projection P : C → R3 via

(3.2) Put = (ut(0), ut(−a1), ut(−a2)) = (u(t), u(t− a1), u(t− a2)) ∈ R3,

with corresponding projection

(3.3) PΣ = {(0, u(t− a1), u(t− a2))} ∼= {u(t− a1), u(t− a2)} = R2.

This generalizes an idea of Mackey and Glass [55], who were the first to project solutions of
DDEs into finite dimensions by plotting values of u(t−τ) against u(t) for a single delay DDE.

For simplicity, we refer to the projected Poincaré section also as Σ, and, throughout, we
consider the invariant objects of the local Poincaré map PΣ defined for points with u(t) = 0 and
u′(t) < 0 (to ensure that there is a unique intersection set for periodic orbits and tori). As was
already mentioned, we refer to the respective intersection set in the (u(t−a1), u(t−a2))-plane
as the Poincaré trace of the invariant object.

We remark that, when the DDE has a sufficient number d of independent variables (at
least three), a convenient alternative projection from C to Rd is obtained by projecting the
function segment ut ∈ C onto its head-point ut(0) = u(t) ∈ Rd. See [22, 47] for an example
of this construction for a laser system with d = 3. However, this approach is not useful for
visualizing the dynamics of (1.3) because ut is scalar.

Figure 6 illustrates the different projections and representations for the example of the
quasi-periodic torus from Figure 5(a). Figure 6(a) shows a different view of the torus in
(u(t), u(t− a1), u(t− a2))-space together with the Poincaré trace in the local section Σ. This
image is very similar to illustrations one finds in the literature of quasi-periodic tori of three-
dimensional vector fields; in particular, the torus appears to be smooth, and the intersection
curve with Σ is a smooth simple closed curve. That we are in fact dealing with a scalar state-
dependent DDE with an infinite-dimensional phase space is illustrated in panels (b) and (c).
Figure 6(b) shows the function segments ut(θ) corresponding to all the points of the Poincaré
trace on Σ in the u(t−a1), u(t−a2))-plane of panel (a), that is, the function segments for the
points on the torus with u(t) = 0 (or equivalently ut(0) = 0) and u′(t) < 0. Note that, because
the section Σ is defined by the condition u(t) = 0, all these function segments are defined over
the same fixed time interval [−a2, 0] = [−6, 0], and all end up at the same point u(0) = 0.
Figure 6(c) shows a different representation of the function segments associated with the
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Figure 6. Illustration of Poincaré section and trace for the quasi-periodic torus for κ1 = 4.44 and κ2 = 3.0
from Figure 5(a). Panel (a) shows the projection onto (u(t), u(t − a1), u(t − a2))-space of a single solution
of (1.3) on the torus (light blue), together with the trace (blue dots) on the (projected) section Σ (green); the
corresponding function segments are shown in panel (b) as functions ut, and in panel (c) as function segments
(ut−a1(θ), ut−a2(θ)), over the delay interval θ ∈ [−6, 0]. In panel (c) the Poincaré trace is seen in the plane for
θ = 0, which corresponds to Σ.

points of the Poincaré trace, with the function segments (ut−a1(θ), ut−a2(θ)) illustrating the
“history tails” over the time interval [−6, 0] associated with the trace in (the two-dimensional
projection of) Σ. Notice that in this representation the invariant torus appears as a cylinder
that is swept out by the function segments in the corresponding orbit under the local Poincaré
map PΣ, with the Poincaré trace seen in the plane for θ = 0 in Figure 6(c).

Figure 7 shows an example of a smooth invariant torus with 1 : 4 phase-locked dynamics
on it. In panels (a)–(c) the torus is represented in the same manner as the quasi-periodic
torus in Figure 6. However, in contrast to Figure 5(b), which shows only the locked stable
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Figure 7. Illustration of Poincaré section and trace for the 1 : 4 phase-locked torus for κ1 = 5.405 and
κ2 = 2.45. Panel (a1) shows the projection onto (u(t), u(t − a1), u(t − a2))-space of the relevant invariant
objects, namely, of the stable periodic orbit (blue), the saddle periodic orbit (red), its unstable manifold (grey
curve), together with the trace on the (projected) section Σ (green). Panel (a2) shows only the trace of these
objects in Σ. The corresponding function segments are shown in panel (b) as functions ut, and in panel (c) as
function segments (ut−a1(θ), ut−a2(θ)), over the delay interval θ ∈ [−6, 0].

periodic orbit on the torus, Figure 7 also shows the unstable locked periodic orbit and its
two-dimensional unstable manifold, which together form the locked invariant torus itself.
Figure 7(a1) shows the torus rendered as a surface in (u(t), u(t−a1), u(t−a2))-space with the
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stable and unstable locked periodic orbits lying on it. Also shown is the section Σ and the
Poincaré trace; for clarity, the trace is shown on its own in the (u(t− a1), u(t− a2))-plane in
panel (a2). Associated segments ut are shown as functions of θ in Figure 7(b), and in terms
of (ut−a1(θ), ut−a2(θ)) in Figure 7(c).

The torus in Figure 7 gives rise to a single smooth curve as the trace in the (u(t −
a1), u(t−a2))-plane, on which lie four points of a stable period-four orbit and four points of an
unstable period-four orbit; see Figure 7(a2). The stable periodic orbit was found by numerical
simulation. It was then used to start a continuation of the periodic orbit in the parameter
κ1, which yielded, after a fold or saddle-node bifurcation of periodic orbits, the unstable
periodic orbit. This calculation also confirmed that, as theory predicts, the unstable periodic
orbit has exactly one unstable Floquet multiplier. We extracted the unstable eigenfunction
associated with the unstable periodic orbit on the torus and used it to define two initial
functions in the local unstable manifold of the periodic orbit (one on each side of the orbit).
Then numerical integration near the periodic point and along the unstable eigenfunction was
used to compute trajectories that lie on the unstable manifold; associated orbit segments are
shown in Figure 7(b) and (c). Careful selection and ordering of orbit segments on the unstable
manifolds (between intersections with the Poincaré section) allowed us to render the torus as
a surface in (u(t), u(t − a1), u(t − a2))-space in Figure 7(a1), and to draw the corresponding
one-dimensional curve in the (u(t− a1), u(t− a2))-plane in Figure 7(a2).

Again, the representation of locked dynamics on the torus in Figure 7 is very reminiscent
of what one would expect to find in a three-dimensional vector field. Notice, however, that—in
contrast to the quasi-periodic torus in Figure 6—the invariant curve in the (u(t−a1), u(t−a2))-
plane has a point of self-intersection. The torus in (u(t), u(t − a1), u(t − a2))-space also has
a curve of self-intersection; see Figure 7(c). This is due to projection from the infinite-
dimensional phase space and a reminder that we are dealing with a DDE and not a low-
dimensional dynamical system. While self-intersections may occur, we believe that the chosen
Poincaré section Σ defined by u(t) = 0 is the most convenient and natural choice for the study
of multifrequency dynamics in (1.3).

3.1. Resonance tongues and locked tori. Continuation of the two torus bifurcation
curves that are known to emerge from the Hopf-Hopf point HH1 in the (κ1, κ2)-plane shows
that the two local curves Tu and T1 are actually part of a single curve; it is shown in Figure 8.
Along the two local branches one finds many points of p :q resonance where the Floquet mul-
tiplier is a rational multiple of 2π. They can be detected during the continuation of the torus
bifurcation curve, and Figure 8(a) shows such resonances for q 6 13. Emerging from each
point of p : q resonance are two curves of fold or saddle-node of periodic orbit bifurcations,
which bound a resonance tongue or region where the dynamics on the torus is p :q locked. In
Figure 8(a) we find that the pair of saddle-node of periodic orbit bifurcation curves emerging
from each p :q resonance point on the upper branch Tu can be continued to a p : (p+ q) reso-
nance point on the lower branch T1. The enlargement in panel (b) shows this for the specific
example of the 2:7 resonance on Tu and the 2:9 resonance on T1; the further enlargement in
Figure 8(c) shows the narrow tip of the resonance tongue near the 2:7 resonance point.

Such “connected resonance tongues” near a Hopf-Hopf bifurcation point are a curious
phenomenon that has not been reported elsewhere to the best of our knowledge. Note that
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Figure 8. (a) The torus bifurcation curves Tu and T1 emerging from the Hopf-Hopf bifurcation point HH1

and associated resonance tongues in the (κ1, κ2)-plane. Panels (b) and (c) are successive enlargements of the
resonance tongue that connects a 2:7 resonance on Tu with a 2:9 resonance on T1.

general theory (for ODEs and DDEs with fixed delays) states that the existence of smooth
(normally hyperbolic) invariant tori—with locked dynamics in resonance tongues and quasi-
periodic dynamics along curves in the (κ1, κ2)-plane—is guaranteed only locally near the
curves Tu and T1. Since, a p : q torus knot is topologically different from a p : (p + q) torus
knot, the respective locked solutions near Tu and T1 cannot lie on one and the same smooth
invariant torus. Nevertheless, a locked solution on a torus is simply a periodic orbit, and it
may continue to exist even when the underlying torus disappears. When no longer constrained
to lie on an invariant torus, a p :q periodic orbit can be transformed smoothly into a p : (p+ q)
periodic orbit, which explains why the saddle-node of periodic orbit bifurcation curves may
connect the respective points on Tu and T1. It is important to realize, however, that the
regions that the pair of curves bound cannot contain smooth invariant tori throughout; some
examples of nonsmooth tori will be presented in section 3.2. The questions of how the smooth
tori near Tu and T1 break up and how the overall phenomenon is organized by the Hopf-Hopf
bifurcation certainly merit further study, ideally in the setting of a four-dimensional ODE.

Near the points of resonances on Tu and T1 the respective locked dynamics must be
expected to take place on a smooth invariant torus; indeed, Figure 7 is an example of such
a smooth torus with locked dynamics. Figure 9(a) shows an enlargement of the resonance
tongue that connects a 1 : 3 resonance on Tu with a 1 : 4 resonance on T1, and panel (b)
shows the continuation of the corresponding locked periodic orbits for κ2 = 3. There are
three branches of stable and three branches of unstable periodic solutions in Figure 9(b),
which meet at saddle-node bifurcations marking the left and right boundaries of this region
of locking. Tori beyond the resonance region in panel (b) feature dynamics that is quasi-
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Figure 9. The resonance tongue that connects a 1 :3 resonance on Tu with a 1 :4 resonance on T1. Panel
(a) shows this resonance tongue in the (κ1, κ2)-plane. Panel (b) is a one-parameter bifurcation diagram in
κ1 for fixed κ2 = 3.0, showing the values of u(t − a1) of the Poincaré trace of the stable periodic orbit (blue)
and of the saddle periodic orbit (red) inside the resonance tongue, and of other solutions on tori outside the
resonance tongue. Panel (c) shows the 1 : 3 phase-locked torus (grey) for κ1 = 5.79 with the stable and saddle
periodic orbits in projection onto (u(t), u(t − a1), u(t − a2))-space, and panel (d) is its Poincaré trace in the
(u(t − a1), u(t − a2))-plane. The accompanying animation (M108765 06.avi [local/web 3.45MB]) shows the
corresponding evolution of the Poincaré trace over the κ1-range in panel (b).

periodic or of very high period; these tori were found by parameter sweeping with numerical
integration. Figure 9(c) shows the invariant torus for κ1 = 5.79 (near the right boundary
of the locking region) as a surface in (u(t), u(t − a1), u(t − a2))-space, and panel (d) is its
trace for the Poincaré map defined by u(t) = 0. The torus was again found by computing
the one-dimensional unstable manifolds of the saddle periodic orbits. As Figure 9(c) and (d)
indicate clearly, this invariant torus is 1 :3 locked and smooth. The animation M108765 06.avi
[local/web 3.45MB] shows the evolution of the Poincaré trace as the parameter κ1 is swept
over the range shown in Figure 9(b).

On the other hand, the saddle-node of periodic orbit bifurcation curves in Figure 8(a)
connect a p : q resonance point on Tu to a p : (p + q) resonance point on T1. Hence, the
torus inside the respective resonance tongue cannot be smooth throughout, because the knot

M108765_06.avi
http://epubs.siam.org/doi/suppl/10.1137/16M1087655/suppl_file/M108765_06.avi
M108765_06.avi
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Figure 10. The resonance tongue that connects a 1:4 resonance on Tu with a 1:5 resonance on T1. Panel
(a) shows this resonance tongue in the (κ1, κ2)-plane. Panel (b) is a one-parameter bifurcation diagram in
κ1 for fixed κ2 = 3.0, showing the values of u(t − a1) of the Poincaré trace of the stable periodic orbit (blue)
and of the saddle periodic orbit (red) inside the resonance tongue, and of other solutions on tori outside the
resonance tongue. Panel (c) shows the 1 : 4 phase-locked torus-like object (grey) for κ1 = 6.93 with the stable
and saddle periodic orbits in projection onto (u(t), u(t−a1), u(t−a2))-space, and panel (d) is its Poincaré trace
in the (u(t− a1), u(t− a2))-plane. The accompanying animation (M108765 07.avi [local/web 4.19MB]) shows
the corresponding evolution of the Poincaré trace over the κ1-range in panel (b).

type on a smooth invariant two-torus is an invariant. While a p : q periodic orbit can change
smoothly into a p : (p+ q) periodic orbit—as Figure 8 shows—this cannot happen on one and
the same smooth two-torus.

Figure 10(a) shows an enlargement of the resonance tongue that connects a 1:4 resonance
on Tu with a 1 : 5 resonance on T1. The one-parameter bifurcation diagram for κ2 = 3.0 in
Figure 10(b) shows that one is dealing with 1 : 4 locking: there are four branches each of
stable and unstable periodic orbits, which meet in saddle-node bifurcations at the boundary
of the resonance tongue; the dynamics beyond the tongue is again quasi-periodic or of very
high period. The situation looks exactly as that near the 1:3 resonance point in Figure 9(b).
However, as Figure 10(c) and (d) show, there is no longer a smooth invariant torus. Rather,
the one-dimensional unstable manifold of the saddle periodic orbit spirals around the stable
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periodic orbit; see panel (d). This means that the stable periodic orbit has developed a pair
of complex conjugate leading Floquet multipliers, which is one mechanism for the loss of
normal hyperbolicity of an invariant torus that is known from ODE theory [2]. Note that
the loss of normal hyperbolicity is found numerically by two independent computations. The
manifold seen to spiral in panel (d) was computed by using the initial value problem solver
ddesd and its event detection to compute a trajectory in the unstable manifold of the periodic
orbit and its intersections with the Poincaré section, revealing the spiralling dynamics. But
we also used DDE-BIFTOOL to directly compute the Floquet multipliers of the unstable
periodic orbit, confirming that the two dominant multipliers are complex conjugate. The
loss of normal hyperbolicity is very clearly seen in the animation M108765 07.avi [local/web
4.19MB], which shows the evolution of the Poincaré trace in a one-parameter κ1-sweep across
the resonance tongue. Namely, stable periodic points on the Poincaré trace are denoted by
stars in the animation when their dominant Floquet multipliers are complex conjugate; this
happens across much of this traverse of the resonance tongue, and the unstable manifold of
the saddle periodic orbit is then seen to spiral into the stable periodic points on the Poincaré
trace.

3.2. Break-up of a 1 : 4 locked torus. In the previous section we discussed the local
transition for fixed κ2 = 3 through a 1 : 4 resonance as κ1 changes near κ1 = 6.93. Notice
in Figure 10(a) that the associated resonance tongue in the (κ1, κ2)-plane has the shape of
a horseshoe with maxima of the two bounding saddle-node curves at κ1 ≈ 7. Both of the
two maxima occur for κ2 > 3. Hence, for κ2 = 3 there is a range of κ1-values outside this
resonance tongue before it is entered again at κ1 ≈ 7.617 when κ1 is increased further beyond
the range shown in Figure 10(b). As we will show now, the transition through this second
part of the 1 : 4 resonance tongue results in the break-up and disappearance of the torus via
a complicated scenario of bifurcations that involves nearby periodic orbits.

The sequence of bifurcations for fixed κ2 = 3 and the associated dynamics are illustrated
by two companion figures. Figure 11 shows two one-parameter bifurcation diagrams in κ1, and
Figure 12 shows the associated sequence of Poincaré traces in the u(t− a1), u(t− a2))-plane;
see also the accompanying animation, which animates the evolution of the Poincaré traces for
κ1 ∈ [7.530, 7.702].

Starting at κ1 = 7.5, there is an invariant torus with quasi-periodic or high-period solutions
on it; see Figure 11(a). As κ1 is increased, the first bifurcation of interest is the creation of two
saddle periodic orbits at a saddle-node bifurcation of periodic orbits at κ1 ≈ 7.5363. We refer
to these as the principal periodic orbits because their branch can actually be traced back to
first Hopf bifurcation H1; see Figure 1. As is shown in Figure 11(b), at κ1 ≈ 7.5664 one of the
two saddle periodic orbits gains stability in a torus bifurcation when the branch of periodic
orbits crosses the torus curve Tu. This torus bifurcation is close to 1 : 4 resonance, with
numerically computed Floquet multipliers ρ ≈ −0.019 ± 1.000073i very close to ±i. There
is then an interval of κ1-values for which the stable periodic orbit on the principal branch
and the stable quasi-periodic torus co-exist; see Figure 11(a). The associated invariant closed
curve in the u(t− a1), u(t− a2))-plane is shown in Figure 12(a), together with the two points
that represent the stable and saddle principal periodic orbits in the Poincaré trace.

At κ1 ≈ 7.5796 another saddle-node bifurcation of periodic orbits creates a pair of period-
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Figure 11. One-parameter bifurcation diagrams relevant for the transition through the 1 : 4 resonance.
Panel (a) shows the values of u(t− a1) of the Poincaré trace of solutions on tori outside the resonance tongue
and of period-four periodic orbits that are stable (blue), have one unstable Floquet multiplier (red), or have
two unstable Floquet multipliers (black). Panel (b) shows the simultaneously existing pair of principal periodic
orbits that are born in a saddle-node bifurcation, and one of which is stable (blue) past the torus bifurcation
(diamond).

four orbits, one of which has exactly one and the other two unstable Floquet multipliers; see
Figure 11(a). In the Poincaré trace in Figure 12(b), for κ1 = 7.58, these are represented
by two sets of period-four points. Also shown is the one-dimensional trace of the unstable
manifold of the saddle periodic orbit with one unstable Floquet multiplier; note that both its
branches (on either side of the respective periodic point) converge to the attracting invariant
curve. Almost immediately afterwards, for 7.58 < κ1 < 7.581, there is a bifurcation that
changes the nature of the unstable manifold of the saddle period-four orbit. As Figure 12(c)
shows, one branch now goes to the attracting principle periodic orbit (blue star), while the
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Figure 12. Sequence of Poincaré traces in the (u(t−a1), u(t−a2))-plane showing the break-up of a torus with
1 : 4 phase locking. Shown are invariant curves (bold blue dots), stable periodic points (blue stars) and saddle
periodic points with two unstable Floquet multipliers (red stars) or with a single unstable Floquet multiplier (red
dots); also shown are the traces of the unstable manifolds (grey curves) of the latter saddle points. Here κ2 = 3,
and in panels (a)–(f) κ1 takes the values 7.567, 7.58, 7.581, 7.618, 7.629, and 7.666, respectively. See also the
accompanying animation (M108765 08.avi [local/web 2.97MB]).
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other branch still goes to the attracting invariant curve. This means that, on the level of the
Poincaré trace, we are dealing with a global bifurcation that is described in the approximating
normal form of a 1:4 resonance as a saddle connection of square type [44, 45].

At κ1 ≈ 7.617 the 1:4 resonance tongue is re-entered, and we find two locked period-four
orbits on the torus, one of which is attracting and the other of which has a single unstable
Floquet multiplier. In the trace in Figure 12(d) they are shown as a further two sets of period-
four points. Also shown is the trace of the unstable manifold of the saddle four-periodic orbit
on the torus, both branches of which end up at neighboring period-four attracting points to
form a smooth invariant curve. Hence, the torus is still normally hyperbolic (that is, smooth),
as is expected near the boundary of a resonance tongue. Notice that the respective branch of
the unstable manifold of each saddle period-four point off the invariant curve now also goes
to the attracting periodic orbit on the torus.

As κ1 is increased further, the torus loses normal hyperbolicity. More specifically, the
branches of all unstable manifolds shown in Figure 12(e) approach the attracting period-four
orbit along the same side of its weak stable eigendirection, so that a cusp is formed along
the attracting period-four orbit. Moreover, the period-four orbit with two unstable Floquet
multipliers, created at κ1 ≈ 7.5796 and not mentioned since, now enters the action. As κ1
increases, this saddle periodic orbit approaches the saddle periodic orbit on the torus, which
has a single unstable Floquet multiplier. At κ1 ≈ 7.6295, the two period-four orbits annihilate
each other in a further saddle-node bifurcation; see Figure 11(a). The periodic points and the
associated unstable manifold disappear at this value of κ1. Hence, as Figure 12(f) illustrates,
we are left with the two remaining period-four orbits: the attracting one and a saddle periodic
orbit. Notice that the unstable manifold of the latter does not change in this process, meaning
that one branch of each period-four point in the trace still ends up at the principal periodic
orbit, and the other at the respective attracting period-four point. As κ1 is increased even
further, the two period-four orbits approach each other and finally disappear in the last saddle-
node bifurcation at κ1 ≈ 7.6818 in Figure 11(a). Hence, we are left with only the stable and
saddle principal periodic orbits; see Figure 11(b).

Overall, the torus loses normal hyperbolicity and then breaks up and disappears com-
pletely. In particular, unlike for the cases studied in section 3.1, the torus does not re-emerge
on the other side of the 1:4 resonance tongue.

4. Overall bifurcation diagram and conclusions. Our study of the scalar state-dependent
DDE (1.3) concentrated on the dynamics associated with the presence of codimension-two
Hopf-Hopf bifurcation points. We presented a normal form procedure for state-dependent
DDEs that, by eliminating the state dependence up to order three, allowed us to determine the
type of Hopf-Hopf bifurcation from the resulting DDE with nine constant delays. In this way,
we showed that a pair of torus bifurcation curves emerges locally from each of the three Hopf-
Hopf bifurcation points in the region of interest of the (κ1, κ2)-plane of (1.3). Our normal form
computations have been confirmed by finding and continuing these torus bifurcation curves
numerically with the package DDE-BIFTOOL. What is more, numerical continuation allowed
us to follow the torus bifurcation curves beyond the local neighborhoods of the Hopf-Hopf
bifurcation points, and to identify the structure of resonance tongues emerging from them.
We computed locked periodic orbits on the tori and determined the boundaries of resonance



RESONANCE PHENOMENA IN A STATE-DEPENDENT DDE 1507

6 8 10
0

1

2

3

4

8 10
2

3

0 2 4 6 8 10 12 14
0

1

2

3

4

κ1

κ2

HH1

✛ HH3Hu

H1 H2 H3

T2

Tu

��✒
T1

1:3

1:4

PD

SL

κ1

κ2

SL

Hu

T1

❍❍❨
HH2

SL

Hu

H1 H2

H3

κ1

κ2

(a)

(b)

(c)

Figure 13. (a) Overall bifurcation diagram of (1.3) in the (κ1, κ2)-plane, showing curves of Hopf bifurca-
tion (blue) of torus bifurcation (red), of saddle-node of limit cycle bifurcation (brown), and of period-doubling
bifurcation (green). Panel (b) is an enlargement near HH2, and panel (c) shows details of the saddle-node of
limit cycle bifurcation curve SL that is not connected to a resonance point on a torus.

tongues by continuing their saddle-node bifurcations. The tori and the dynamics on them were
investigated and visualized by suitable projections into three-dimensional space, as well as by
their two-dimensional Poincaré traces. In particular, we computed the unstable manifolds of
saddle-periodic orbits with a single unstable Floquet multiplier, which allowed us to study
in considerable detail how invariant tori break up and disappear, for example near a 1 : 4
resonance.

The starting point of our investigation was the one-parameter bifurcation diagram of
Figure 1 from [34]. Specifically, we used it to start continuations of periodic solutions and of
bifurcation curves in the (κ1, κ2)-plane, namely, the curves of Hopf bifurcation in Figure 3,
as well as the curves of torus bifurcation and saddle-node bifurcation that bound certain
resonance tongues in Figure 8(a). Returning to Figure 1, one can identify two additional
bifurcations that we have not considered yet in our study of resonance phenomena: a period-
doubling bifurcation and an additional saddle-node bifurcation of limit cycles. Figure 13 shows
the overall two-parameter bifurcation diagram of (1.3) in the (κ1, κ2)-plane with all the above
bifurcation curves. Panel (a) shows the relevant region where 0 6 κ1 6 14 and 0 6 κ1 6 4.75.
In particular, shown are the three pairs of torus bifurcation curves emerging from the Hopf-
Hopf bifurcation points HH1 to HH3. Notice that the two torus bifurcation curves emerging
from HH3 stay very close to the Hopf bifurcation curve Hu; similarly, the torus bifurcation
curve Tu emerging from HH2 stays close to Hu, while the other curve T2 exits the top of the
(κ1, κ2)-plane. Prominent in panel (a) is the curve PD of period-doubling bifurcation, which
has a minimum near (κ1, κ2) ≈ (10, 3). As Figure 1(a) shows, the periodic orbit undergoing
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the period-doubling bifurcation has a large amplitude.
The other new curve in Figure 13 is the saddle-node of limit cycle bifurcation curve labelled

SL. It enters and exits the top of the (κ1, κ2)-plane near and in the direction of the Hopf
bifurcation curve Hu. As panel (b) shows, the curve SL is very complicated and features eight
cusps (two pairs of which are actually very close to swallowtail bifurcations), resulting in quite
a number of regions with different numbers of bifurcating periodic orbits. From section 3.2 it
is clear that some periodic orbits emerging from saddle-node bifurcations play an important
role in the torus break-up mechanism. At the same time, the overall bifurcation diagram in
Figure 13 shows with the example of SL that there are other saddle-node bifurcations that may
not immediately be related to the torus bifurcations emerging from HH1 to HH3. However,
SL comes very close to several torus bifurcation curves; see Figure 13(c). Moreover, it closely
follows the horseshoe-shaped resonance region (discussed in section 3.2) that connects the 1:4
resonance on Tu with the 1 : 5 resonance in T1. We remark that the curve SL traverses the
(κ1, κ2)-plane several times close to the line κ1 + κ2 = γ(a2/a1− 2) ≈ 12.4 where the singular
fold bifurcation L00 occurs in the ε→ 0 singular limit of (1.3); see [33]. Moreover, SL extends
to very low values of κ2; in fact, in one-parameter bifurcation diagrams in κ1 for fixed κ2, it
generates the first observed folds in the branch of periodic orbits that bifurcate from the Hopf
bifurcation H1 as κ2 is increased; see [34].

Figure 13 can be seen as a summary and overview of the level of complexity of the dy-
namics one can find in (1.3). In a sense, the overall bifurcation diagram in the (κ1, κ2)-plane
of the two feedback strengths would not be particularly unusual for a nonlinear DDE. Its sur-
prising aspect is, however, that all the phenomena it represents are entirely due to the state
dependence. As the state-dependent parameters c1 and c2 of the delays are decreased to zero,
the bifurcation structure in Figure 13, including the Hopf-Hopf bifurcation points and induced
dynamics on tori, will disappear. Indeed, (1.3) for c1 = c2 = 0 is entirely linear and, hence,
does not have any nontrivial dynamics. Hence, if one were to replace the state dependence
by constant delays, none of the dynamics we reported would be found. Admittedly, (1.3) has
been constructed as an extreme case in this regard. Nevertheless, the study presented here
should be seen as a warning: replacing state dependence by a constant-delay approximation
may result in the disappearance of the very dynamics one intends to study. This may be the
case even when the approximating constant-delay DDE is actually nonlinear itself.

State-dependent DDEs have been suggested as suitable models in a number of applications
[10, 36, 38, 68, 82]. We hope that the study presented here may serve as a demonstration of
what can be achieved by a combination of analytical and numerical tools when it comes to the
bifurcation analysis of a given state-dependent DDE. It is now possible to study models from
this class effectively in their own right, and to determine the role the state dependence plays
in the observed dynamics. In fact, normal form calculations and numerical continuation tools
are able to produce consistent results, such as the type of codimension-two bifurcation or the
existence and organization of resonances on tori, for which, as yet, the respective theory has
not been developed for state-dependent DDEs. We believe that case studies of specific systems
are also a useful way of guiding the further development of theory for state-dependent DDEs.
At the same time, numerical methods also continue to be developed further. For example,
the curves shown in Figure 13 were computed with recently implemented routines of DDE-
BIFTOOL [72] that allow the continuation in two parameters of codimension-one bifurcation
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of periodic orbits to determine curves of saddle-node, period-doubling, and torus bifurcations.
Previously, such curves could only be constructed by detecting the respective bifurcation in
one-parameter continuations, which is certainly not a suitable method for finding complicated
bifurcation curves such as SL in Figure 13(b). In a nutshell, practically all advanced tools for
the bifurcation analysis of DDEs are now also available when state dependence is present.
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