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Abstract. We make a formal study of the differential equation
Upy + %uT + A+ uTE =0, ur(0) =u(l)=0, u>0 IfO<r<i (2)

when posed as avariational problem over afinite-dimensional subset S, of Hg comprising piecewise-linear functions defined
on a mesh of size h. We determine critical points U, € S}, of the variational form of (1). Such functions are perturbations
of w when a solution of (1) exists, but we show that U; can also exist when (1) has no solution and we determine an
asymptotic expression for the solution branch (A, Uy,) when ||Uy, || is large and h||Uy ||, is small. If & = 0, then u exists
if A > 7®/4, and we give a formula expressing U, as a perturbation of . If A\ < 7i/4, then a solution of the differential
equation does not exist, and Uj, grows as h — 0. We show that the rate of growth is proportional to h=Y# if A = n2 /4, and

h~Y/3if X\ = 0. We compare these results with estimates for the solutions of (1) when ¢ — 0. Our results are obtained by
using formal asymptotic methods — particulary the method of matched asymptotic expansions — and are supported by some
numerical calculations.

1. Introduction

In a celebrated paper, Brezis and Nirenberg [7] opened the investigation of positive solutions of
semi-linear eliptic partial differential equations of the form

u>0 ing, (1.1)

{Au+f(u;)\):O, re€NCR", n>3
u=0 onoaf2,

where the parameterised function f(u; ) has the property that
flu; Nu™P — C  asu — oo, (1.2)

0921-7134/98/$8.00 O 1998 — IOS Press. All rights reserved



186 C.J. Budd and A.R. Humphries / Approximations of semi-linear elliptic PDEs

where C' > 0 is a constant and

Pc = n—+2, n =3, (1.3)
n—2
is called the critical Sobolev exponent for R™. Such a function is said to grow at a critical rate. The
most subtle behaviour is observed in the case of three dimensions, so that n = 3 and

Pc = 57 (14)

and it is this case we will study in this paper. Until the study by Brezis and Nirenberg, the greater
majority of the investigations of problem (1.1) were for functions growing at a sub-critical rate, so
that f(u;A\)uP¢ — 0 as u — oo. For this case, a fairly complete picture of the existence and
uniqueness of the solutions of (1.1) has emerged for a wide variety of different domains {2, and
a survey of the results was presented in [22]. However, for functions growing at the critical rate
(or, indeed, for functions growing at a super-critical rate such that f(u; \)u™P° — oo asu — 0),
things are very different. Here the existence, uniqueness and regularity of the solutions can change
in a quite remarkable manner as the function f(u; \) varies with A\. For example, singularities in
the solution may appear at critical values of A. There have been many papers written since [7] (for
example, [1,6,8,10,11,18,21,24,28,32]) which discuss these issues. Most of these papers restrict their
discussions to symmetric solutions in the unit sphere and we extend these in this paper to the case of
finite-dimensional solutions.

Questions about the solutions of (1.1) lie at the heart of many important problems in both pure
and applied mathematics. Problems with critical exponent problems arise very naturally in studies of
the curvature of manifolds and lead to deep links between the theories of differential geometry and
partial differential equations [29]. Chandrasekhar [14] used such models to describe polytropic stars
for which the nonlinearity is related to properties of the gas making up the star. Furthermore, general
nonlinear functions arise in steady-state models of combustion (see the monograph by Bebernes and
Eberly [5]), and frequently the function f(u; \) can grow very rapidly with «. Thus a theory (or,
indeed, a numerical scheme) which restricts itself to sub-critically growing functions is far from
complete.

Problem (1.1) can be cast in avariational form so that the solutions are critical points of the function
I(u) defined by

I(u) = /Q %|Vu|2—F(u;)\) a9, (15)
where
Flu) = /O ") . (16)

Here, the function I(u) considered as a map I: H3(£2) — R is continuous if F(u;)\) grows a a
critical or sub-critical rate as condition (1.2) bounds F(u) in terms of the L8(£2) norm of « which is,
in turn, bounded by the H3(£2) norm. Furthermore, if p < 5 then the imbedding of the space H({2)
into the space LP*1(2) is compact. A direct consequence, when f(u; \)/u” is bounded as u tends
to infinity for some p < 5, is that a solution « of (1.1) may be found as a limit of a sequence of



C.J. Budd and A.R. Humphries / Approximations of semi-linear elliptic PDEs 187

functions w,, tending toward a critical point of (1.5). Such a critical point is a zero of the functional
W H(2) — H (1) defined by

U(u)p = — /QVu Vo + flu; A)pdf2. .7

These compactness conditions are formalised in terms of the Palais—Smale compactness condition and
the existence of solutions proven by the Mountain Pass Lemma; see, for example, the monograph by
Chow and Hale [15].

If, in contrast, the function f(u;\) has critical or super-critical growth, then the Palais-Smale
condition no longer holds and the standard variational existence proofs break down, athough they can
be extended in certain cases[7]. Thisisnot simply atechnicality. In animportant paper, Pohozaev [25]
derived an identity (stated in Section 2) satisfied by the solutions of (1.1). Applying this identity to
the specia case

flu; ) =P, (1.8)

Pohozaev concluded that if {2 was a star-shaped domain (for example, the ball or any convex domain)
then (1.1) has a solution for al p < 5 but no solution if p > 5.
If the nonlinear term is extended to

flus; D) = u?+uP, 1< qg<5 p=5, (1.9)

then the non-existence proof for (1.10), derived by Pohozaev, can be extended to show that there is a
value of \g > 0 such that no solutions of (1.1) exist if A < Ag, but that solutions may exist if A > A\g
[1,7].

Various attempts have been made to understand the above results in more detail by making pertur-
bations to the differential equation problem (1.1), (1.9) such that a solution exists for the perturbed
problem. This solution can then be studied as the perturbation tends to zero.

The perturbations include:

e Perturbing the nonlinear term to
flu; \) = u?+uP, p<5 px5 (1.10)

and studying the limit of the solutions as p — 5.

e Perturbing the lower-order term so that A = Ao + ¢ with 6 small.

e Perturbing the domain so that the perturbed domain is not star-shaped. For example, introducing
a small hole and letting the hole diameter tend towards zero.

For the general problem (1.1), (1.9), we observe that as the perturbation tends to zero then the
perturbed solution converges to the true solution, when such exists, and if not (for example, if A =0
and p — 57) then the solution of the perturbed problem forms a singularity in the limit.

In this paper, we consider a new perturbation to problem (1.1), (1.9). To do this we pose (1.5)
as a function over a finite-dimensional space S, C HZ(2) and find the critical points in Sj, of this
function. Equivaently, we find a zero U, € S}, of the functional ¥(U}) defined in (1.7) and now
considered as a map from Sy, to its dual space, and then study U,, as the dimension (=1/h) of S,
increases.

This perturbation is interesting in its own right and is aso the basis of the finite-element method
for finding numerical solutions of (1.1) [16].
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As S), is finite-dimensional, the imbedding of S, into LP*1(2) is compact for al p > 0. Conse-
quently, we can show that there is a wide class of nonlinear functions f(u; A) (including (1.9)) for
which (1.5) has acritical pointin S;,. Significantly, Pohozaev’s result does not exclude the existence of
such functions. We may thus determine a set of such critical pointsin a sequence of finite-dimensional
spaces of increasing dimension and look at the limit of these solutions. Again, if the underlying prob-
lem has a solution then we see convergence to this solution, and if not then the finite-dimensional
solutions become unbounded in the limit.

The existence of such finite-dimensional solutions when (1.1) does not have a solution is of interest
in the numerical analysis of (1.1), as such solutions may be confused as being approximations of the
true solution and give a misleading picture of the interval of existence. We call such finite-dimensional
solutions spurious. Their detection and elimination (for example, by changing the computational mesh)
isan important part of any numerical investigation of (1.1), and we discuss the numerical consequences
of our results in more detail in the related paper [12].

The purpose of this paper is to study a branch (A, Uj) of these finite-dimensional solutions when (2
is the unit sphere and to obtain estimates on the behaviour of Uy, (including the growth of the spurious
solutions) in terms of the dimension of Sj,. In Section 2 we show that there are close and interesting
symmetries between these estimates and the corresponding ones for solutions of the other perturbed
problems described above.

A difficulty of our approach is that the tight analytic estimates on the solution of (1.1) which follow
from Pohozaev’s result cannot immediately be determined for the finite-dimensional solutions which
do not satisfy this identity. Our approach to the study of Uj,, consequently differs from the rigorous
methods (presented, for example, in [8]), and we use formal methods based upon the method of
matched asymptotic expansions to obtain our estimates. By performing some numerical estimates we
demonstrate that our results are sharp.

Thus, suppose we consider the radially symmetric solutions of (1.1), (1.9) in a unit sphere in R3,
with f(u; \) defined by

flu;A) = du+ u®te, (1.12)
S0 that
u(X) = u(|x|) = u(r) withr =|x|.

Such a solution then satisfies the ordinary differential equation

{urr + (2/r)uy + Au+ute =0, (112)

u(r)>0 ifO<r<1, wu(0)=u(l)=0.

Itisshownin [7] that if ¢ > O then (1.12) has a non-trivial solution branch (of monotone decreasing
solutions u(r)) which exists only if A € (), 7?), where \g > 7?/4. Furthermore, if ¢ = O then
o = 1?/4, |lu|so = u(0) — oo as A — m?/4, and the function u(r) forms a singularity at » = 0. In
contrast, if ¢ < O then solutions u.(r) exist for al A < 7%, but if A < 7%/4 these become singular
ar=0ae— 0. Weshow that if ¢ = 0 and U}, is the positive solution of an appropriate
finite-dimensional perturbation of (1.12) then similarly U, exists for al A < 7, and if A\ < 71?/4 then
|Un |0 becomes singular as the dimension (=1/h) of the approximating space increases.
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To construct such a finite-dimensional perturbation we consider the weak formulation of (1.12). To
do this we introduce an inner product defined by

1
(u,v) E/O u(r)v(r)r? dr, (1.13)

and consider the associated Sobolev space H, comprising those functions which vanish at r = 1 with
(finite) norm defined

lulZy = ().
A weak solution of (1.12) is then any function u(r) € H} which satisfies
U(u)p = — (', @) + Mu, ) + (u®F,0) =0, Vo € Hg. (1.14)

Here primes denote differentiation with respect to r.

We define a finite-dimensional subspace S, C H} of dimension N = 1/h to be the space spanned
by continuous piecewise-linear functions, constructed on a uniform mesh of size h (these functions
are defined in Section 3). Now, let Uy (r) be a non-trivial member of .S}, satisfying

—(Up, &) + MU, on) + (UPT,01) =0, Vepp, € Sp. (1.15)

The function Uy}, is generaly called the finite-element approximation to «. In Section 3 we show that,
if the underlying solution « to (1.12) exists and is isolated, then

1Un = ullgg — 0, [Up —ufl.c =0 ash—0.

In [23], global bifurcation theory [27] is applied to show that problem (1.15) has a continuous solution
branch (\, U,), parametrised by A which bifurcates from the trivial solution at A = Ay, > 7%, Positive
solutions exist on this branch iff A < Ay 5, and these satisfy the bound

[Unlloo < K (e)h?/ ), (1.16)

where K depends only upon . (There may also be other solutions of (1.15) which do not lie on this
branch, however, there is no numerical evidence so far for these, and as they are quite unrelated to
the underlying solution we do not consider them in this paper.)

In Fig. 1 we present a sequence of such solution branches for decreasing values of h when ¢ = 0.
In this figure, several important features of the solution branch are visible. In particular, the finite-
dimensional solution exists for al h and is unique even when \ < 7t?/4 = 2.4674011. Furthermore, if
A isfixed then ||Uy ||« increases monotonely as h — 0, or if h isfixed, as A — 0. Finaly, the solution
is large (and, consequently, f(u; A) is very large) for a range of values of X including values greater
than 7i?/4. It is significant that none of the numerical computations shows a singularity developing
a A\ = m?/4 or, indeed, looks anything other than regular at this point.

Our aim in this paper is to obtain a formal asymptotic explanation for these results and to determine
the behaviour of those solutions for which A is small and U, is large. In particular, if we define

Y= Ul = Un(0) and H = hn?, (1.17)
our results apply to those solutions for which
v>1 and H<<1 (1.18)

We now state our formal asymptotic results.
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Fig. 1. Bifurcation diagrams for different meshes with h varying from 1/8 to 1/512.

Formal Proposition 1.1. If conditions (1.17), (1.18) are satisfied and | log?(v)| is small, then

[Ahz > — \W3my 3 - %] <1 +O(H?) + O<712> +0(e Iogz(v)))

_1 2 1
= 7e(A) <1+O(H ) +O<W4)>, (1.19)
where
o(\) = VN cot(v/]A) ifA#£0,  6(0) =1, (1.20)
and
- %%OS(H o(H)). (121)

Formula (1.19) provides a unified asymptotic description of the finite-dimensional solution branch
both for values of A for which Uj, convergesto u as h — 0 and for values at which it is spurious.
In particular, the character of the solutions changes completely when #(\) changes sign at A = 7?/4.
As adirect consequrnce of the above proposition, we have

Formal Proposition 1.2. If ¢ = 0 and (1.17), (1.18) are satisfied, then
(i) if X islarger than and close to 7% /4, then

_ i 2 2
lulloe = Tz (1 + OUT) +0(1/7)), (122)
where u solves (1.12) and

13

¢= 34567:2(

1+ O(H));
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(ii) if \=7?/4, thenas h — O,
v =h"YAC7VB(1 4+ O(hY?)), (1.23)

and the function U;, forms a peak at the origin with width proportional to hY/2;
(iii) if A < 7?/4, then as h — O,

1/6
L= h1/3<@> (1+0(h23)), (1.24)

and the function U;, forms a peak at the origin with width proportional to h%/3.

We note, that for smal h, the singular growth of Uj in (1.23), (1.24) is consistent with bounds
(1.18) for both H and ~.

The estimates above are strongly supported by some numerical experiments, reported in Section 5,
and are much sharper than the bound on U}, given in (1.16).

Our formal results follow from a close study of the singularity in () which arises when £ = 0 and
A — 72 /4. Suppose now that u(0) = ||ullsc = 7. Then, if v islarge and || is small, Au + 1’ ~ u°.
In this case, (1.12) is approximated by the ordinary differential equation

o 2
dr2 7 dr

For all ~, this equation has the strictly positive monotone decreasing solution w.,(r) defined by

+uw®=0, w.(0)=0, w(0)=r. (1.25)

_ 2
w’Y(T) - (1 n 747.2/3)1/2 (126)
such that w-(0) = ~. Close to the origin (where both « and w.,, are large),  is closely approximated
by w, [21]. (The function w, plays an important role in the theory of instantons and in obtaining
imbedding estimates in Sobolev spaces [7].)

In the finite-dimensional problem, we compare Uy (r) (with U (0) = ~), with the piecewise-linear
function W}, - (r) defined by W}, (ih) = w,(ih) for each integer i such that ik € [0,1]. Standard
results in the theory of the interpolation of functions [16] state that the relative L., error e between
w, and W,  is bounded by

e < KhZH(w'y)rrHOO/”w’Y”OO7

where K is a constant independent of w.. Using the functional form of w, we may estimate these
terms to give

e = O(h*y*) = O(H?).

Thus, provided that H is sufficiently small then W7, ., is a close approximation to w,. The formal
estimates then follow from using the method of matched asymptotic expansions to describe U;, as a
perturbation of W, . A somewhat similar approach, using matched asymptotic expansions to derive
numerical error estimates for problems with singularities, has been considered by Ward and Keller [31].

We may deduce many interesting further results from (1.19) when ¢ is non-zero, noting that we
have existence of solutions for al A when ¢ < 0.
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Formal Corollary 1.3. Supposethat e < 0issmall in modulus and U, satisfies (1.15); thenash — 0O,
(i) if A =0, then ~ satisfies

—ey? = %ﬁ’ (1— An*4®) (1+ O(H?) + O(1/7°) + O(clog®(7))); (1.27)
(i) if A = 7i%/4, then
—ev* = 2472 (1 — Ch?4®) (1 + O(H?) + O(1/4?) + O(elog?())). (1.28)

We compare these estimates with the results of Atkinson and Peletier [2] (see also [8]) that, in the
respective cases A = 0 and \ = 7?/4,

323
s

—e|lul), — and —¢|ul[* — 247® ase— 0. (1.29)

Quite different behaviour is observed if ¢ > 0.

Formal Corollary 1.4. If 0 < € <« 1, then for all A such that ~ is large,

1/4 1
:h1/2<L) <1+o H? +o<—>+o log? > ash — 0. 1.30
¥ e (1) +0( 3 ) +Olclog’() (130

We observe that estimate (1.30) is consistent with (1.18) provided that ¢ is small. Furthermore,
(2.30) is directly comparable with the bound given by (1.16) if

Ke) = <32f¢§,> .

If ¢ = 0 then estimate (1.30) for ~y is degenerate, and (1.24) holds with the growth rate in h changing
from h=%2 to h=1/3 if A =0, or to h~Y/* if \ = 72/4. This mirrors the discontinuous change in the
growth rate of the solutions as functions of ¢ given in (1.29).

The layout of the remainder of this paper is as follows. In Section 2 we give a brief outline of the
existing theory for the solutions of (1.1), (1.11) in symmetric domains and compare the results obtained
with those for the finite-dimensional perturbation. In Section 3 we derive a finite-element method
for the solution of (1.12) and describe some existing results on the convergence and a priori error
estimation of the solutions. In Section 4 we derive the formal results quoted in Propositions 1.1 and
1.2 and the corollaries. In Section 5 we make some numerical computations which show remarkably
strong support for the formal results obtained in Section 4. Furthermore, we look at the behaviour of
the Pohozaev functional for the finite-dimensional solutions. Finally, in Section 6 we briefly discuss
how these results can be extended to more general domains and draw some conclusions from this
work. More details of the latter calculation will be given in the forthcoming paper [12].

2. Results for the continuous problem

We now present some of the known results for the smooth solutions of problems (1.1), (1.12) and
their perturbations which we can compare with the behaviour of the finite-dimensional solutions of
(1.15).
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Firstly, we state Pohozaev’s result. Suppose that the general function u, defined in 2 C RS,
satisfies the conditions that wf(u; A), F(u;\) are integrable over (2, and that |Vu| is defined and
square-integrableon 042. (Here F'(u; \) = [, f(v; A) dv). We define the Pohozaev functional P(u; \)

by

P(u;\) = /Qiuf(u, A) — 3F(u; ) df2 + E/m |Vu)?(r - v)dS, (2.1)

where r is the position vector and v is the outward pointing normal to the surface 0(2. Thus, if {2 is
the unit sphere and v = u(r) is radially symmetric, then

1
P(u;\) = 47[(/0 Euf(u; \) — 3F(u; A)] r2dr + %u2> (2.2)
so that if f(u) = Au + u® then
1
P(u;\) = 47[(— /0 Mur? dr 4 %u2> (2.3)

It is then shown in [25] that if « is a solution of (1.1) then
P(u; \) =0, (2.9

and this result is used to prove most of the results in this section. However, we show in Section 5
that identity (2.4) does not appear to hold for the finite-dimensional weak solution U}, of (1.12).

We now briefly state results on perturbations of both the partial differential equation (1.1) and of
the ordinary differential equation (1.12).

2.1. Perturbations of the nonlinear term

The problem of studying the limit of (1.1), (1.10) in the limit of p — 5wasraisedin[2]. Asymptotic
results were presented by Budd [10] and subsequently proved in [8]. These results were for symmetric
solutions in spheres, and some conjectures were raised for solutions in more general domains. Some
of these conjectures have subsequently been answered in the papers of Rey [28] and Han [21] (see
also [32]). We firstly consider the case of A = 0, for which the following result is known.

Theorem 2.1. Let u. be a solution of
Au. +u2t =0, <0, (2.5)
with u. = 0 on the boundary of {2 a smooth, bounded (star-shaped) domain in R3; then
(i) thereis a constant K (related to the Green’s function of the domain) such that
lim —e|u||%, = K; (2.6)
e—0
(i) thereis a critical point xo such that

lim . (Xo) = oo, limus(x) =0, X # Xo.
e—0 e—0
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For the unit sphere, xg is the origin and

K = % . (2.7
s
The above results are proved by showing that the function «(x) away from Xq is a perturbation of
the Green's function of the domain, and close to X it is a perturbation of the function w.,(r) (with
r = |X — Xo|), given in (1.26). Indeed, the convergence of u(x) to w,(r) as v — oo over compact
subsets in the variable y = (x — Xg)/~? is proven in [21] for quite general domains. Estimates for
|lu|lo then follow from substituting these two representations for « into the Pohozaev identity (2.4).
For the sphere, we also have the inequality

u(r) < wy(r),

which can be used to obtain further estimates.

For large v, the function w. (r) resembles the delta function, having a narrow peak of ‘width’ y2
near » = 0 and vanishing as v — oo for any » # 0. A numerical approximation of this behaviour
forms the basis of our asymptotic calculation in Section 4.

Although u tends to infinity in the L., norm, it is bounded in the H} norm and even tends to zero
in the L, norm as ¢ — 0. Indeed, for quite general domains,

3
lull g2 — E—3\/?)7# and |jul|p, —0 ase — 0. (2.8)

In the unit sphere, the following precise estimates have been obtained by Brezis and Peletier [8] for
the more general problem:

Uy + gur + M+ u* =0, u.(0)=u(l)=0. (2.9)
T

Theorem 2.2. Let . satisfy (2.9) and let A < n?/4; then, as ¢ — 0, a singularity forms at » = 0
such that
2
— 3_\/‘5’9()\
s

L2
ll_rg eu“(0)

where 6(\) is defined in (1.20). If » # 0O then

u(r) — W\/g)McG)\(T),

) (2.10)

B 1
~ Adnr

with g(r) a regular function, is the Green’s function for the operator —A — .

G)\(’I“) + g(?“),

When \ = 7% /4, estimate (2.10) no longer applies as #(n?/4) = 0, and instead we have
Iir%—aug(O) = 2472, (2.11)
e—
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and, if r = 0, then

V3 cos(mtr/2)

u(r) — () . . (2.12)
When )\ > n?/4, the function u(r) tends to a non-singular limit as ¢ — 0.

Thus the growth rate of the solutions changes discontinuously from being of O(s=Y/2) if A < 7?/4
to O(e~Y/4) at \ = 7?/4.

This change mirrors the corresponding change in the growth rate of the finite-dimensional solutions
from O(h~/%) to O(h~Y/3) at precisely the same value of \.

Informally, formula (1.19) gives a unified description of both of these types of behaviour, visible
by respectively substituting » = 0 and calculating ~ in the limit ¢ — 0, or substituting e = 0 and
calculating  in the limit of A — 0.

2.2. Perturbationsto \

If \ = 7?/4+6, ¢ = 0, then the the solution of (2.9) existsif § > 0 and becomes singular as § — O.
The nature of this singularity was investigated formally by Budd [10] and rigorously by Brezis and
Peletier [8]. In particular, we have

Theorem 2.3. If e =0and A = ?/4+ 6, § > 0, then as § — 0 a singularity forms at the origin and

3
lim 6u2(0) = */éT” (2.13)

Again, u(r) is closely approximated by, and bounded above by the function w.,(r). Result (2.13)
can aso be formally extended [10] to the case ¢ > 0, where it was proved in [11] that (1.12) can
have multiple solutions for certain values of A\. Formula (1.19) again allows us to unify this result
with those of the finite-dimensional and small ¢ perturbations by determining ~ for those values of A
for which [0()\)] is small.

2.3. Perturbations to the domain

Finally, we consider perturbations to problem (2.9) where we pose (1.1) on the annulus and take
boundary conditions

u(a) =u(l)=0, a>0, a1l (2.149)

As a — 0 then similar behaviour in « to that of the previous sections is observed. In particular, it is
shown in [3,4,13] that the following theorem is true:
Theorem 2.4. Let A\ = 0; then the solution of problem (2.9) with the boundary conditions (2.14)
satisfies:

(i) if e = 0O, then there exists a constant (&) such that «(¢) — oo ase — 0~ for which

[ufloo = (e) <00 asa—0;
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(ii) if e =0, then
a*||ulloe — 3Y* asa — O;
(i) if € > O, then there exists a constant A () such that A(s) — 0 ase — 0T for which
a? ) ||u)s — A(e) asa — 0.
There are again striking similarities between this and the other perturbations, in particular the
discontinuous change in the growth of the solutions from ¢=%/(4+¢) when ¢ > 0 to a*/4 when ¢ = 0.

We note, also, that in each of the critical cases we observe a growth rate of 1/4 in the solution as the
relevent perturbation tends to zero.

3. A finite-element method and its convergence

In this section we give some preliminary results on the existence of solutions Uy, of (1.15) and of
the convergence of U, to u when v exists.

For the purposes of this paper, we consider those discretisations of (1.12) over the space S}, spanned
by the piecewise-linear functions o;(r) for i =0,...,N —1, N = 1/h defined by

wo(r) =1— r r € [0, h], wo(r) =0, otherwise, (3.2
and

¢i(r) = (r— (i = 1h)/h, r€[(i—1)h,ih]

@i(r) = ((i +Dh —r)/h, r € [ih, (i + 1)h],

with ¢;(r) = 0, otherwise. As these then span Sj,, problem (1.15) has a solution Uy, iff
—(Up, i)+ {f(U), i) =0, i=0,...,N—1. (3.2)

As afirst result, we give a proof of the existence of solutions of (3.2) for arange of functions f(u; A).

Theorem 3.1. Let f(u; \) satisfy

flus A) = u?+ P, p>qg>1;
then, if ¢ = 1 and \ < 7%, or if ¢ > 1, problem (3.2) has a non-zero solution Uy,.
Proof. The proof of this result is very similar to the standard proof of the existence of a solution of
(1.1) when the function f(u; \) grows at a sub-critical rate, and we only sketch it here. The function
Uy, is a critical point of the functional I defined in (1.5) considered as a map from S;, to R. The

Mountain Pass Theorem (for example, [15, Theorem 4.6.1]) then implies that a critical point of 1(Uj)
exists provided that

(i) I(0) = 0 and there exist o, 3 such that
I(u) >0 if 0< |u| <, Iw)y=zp if v =«
(i) there existse € Sy, suchthat e #£ 0, I(e) =0;
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(iii) if u, is aseguencein Sy for which I(u,) > 0 is bounded, and ¥(u,,) — 0 asn — oo (with
v defined in (1.7)), then w,, has a convergent subsequencein Sj,.

The proof of the geometric conditions (i) and (ii) is as given in [15]. Clearly, for our problem,
I1(0) = 0. Now, for small u, we havethat f(u; \)/u < 7 and, as S}, is finite-dimensional, the identity
map from H}(S,,) to L"(Sy,) iscontinuousfor al r. This, together with the Poincaréinequality, implies
that 7(u) satisfies (i).

Now let U be fixed in S;, and consider I(aU). As f(u; A)/u — oo @ u — oo then we have that
I(aU) < 0O for sufficiently large o and hence a function e exists satisfying (ii).

Finally, standard estimates (as in [15]) show that any sequence w,, satisfying the conditionsin (iii)
must have ||un||Hé bounded. As S, is a finite-dimensional subset of 3, any bounded ball in S, is
compact, and hence, the sequence w,, must have a convergent subsequence.

Combining these results proves the theorem. O

More precise information can be obtained when f(u; A) = Au + uP.

If we set
N-1
Un(r) = > Uii(r) (3.3)
i=0
and
U= [UOa SRR UNfl]Ta (34)

then we obtain a system of algebraic equations for the unknowns U; of the form
—AU+ ABU+G(U) =0, (3.5
where the positive definite, symmetric matrices A, B are defined by

Aij = (viw5) and  Bij = (pi,¢)) (3.6)

and
G(U); = (U}, ¢i).

Elementary bifurcation theory (see [23]) implies that this system has a positive solution branch (such
that U; > O for al ) which bifurcates from the trivial solution when A\ equals the smallest joint
eigenvalue Ay j, of the matrix pair (A, B), and that this solution branch is unbounded in the sense that
max([|U;| + |A|] takes arbitrarily large values on the branch.

In [23] it is shown that on such abranch, A < A1, and max(U;) is bounded by inequality (1.16) for
al values of \. Hence the solution branch of the discrete problem must continue up to and beyond
the point A = 0.

In this case, there are some solution pairs (A, U) on the solution branch for which A lies in a range
for which the solution exists and for which Uy, (r) convergesto u(r) as h — 0. Conversely, there will
be other solution pairs (for example, if p = 5 and A = 0), which correspond to spurious solutions,
and for these ||U}, || tends to infinity as h — 0.

The finite-element discretisations of problem (1.1), both for genera domains and for symmetric
solutions in the sphere, have been considered by several authors, see, for example, the studies in [9,
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19,20,23,30]. Furthermore, a review of these works, together with a detailed discussion of the effects
of path following, is presented in the monograph of Crouzeix and Rappaz [17]. We can look at the
convergence in several norms, however, our interest is primarily in the L, norm, as we have seen in
Section 2, that the behaviour of the solutions as a singularity forms can appear to be relatively benign
when measured in the H& or L, norms, and significant errors may arise in the discrete solution which
are not visible in these norms. The following result on the convergence of the finite-element method
in the Lo, norm is well known:

Theorem 3.1. Suppose that the function f(r) is continuous and independent of «, and that the function
u(r) € C?(0, 1) satisfies the linear ordinary differential equation

re 24 1) =0, p(0) = (1) = 0. (37)

Then, if Uy, is a solution of the Galerkin finite-element discretisation of (3.2), there is a constant B,
independent of «, such that as h — 0 we have

[ = Unllpo < Blltre|[p.h?10g(1/h). (3.8)

Different authors give different values for «. Dobrowolski and Rannacher [19] give oo = 7/4,
whereas Tourigny [30] gives a« = 1. This is, however, only a relatively mild change to the rate of
convergence.

(The existence of the log(1/h) term in estimate (3.8) results from estimates associated with a
discrete approximation of the Green’s function for the Laplacian on the space S}.)

We now consider the related semi-linear equation

Uy + 20y + FN) = 0, uy(0) = u(1) =0, (39)
T
and make the assumption that « is an isolated solution of this equation such that the operator L defined
by
2
Lo =or + —or + fulw; Mg, 9r(0) = (1) =0, (3.10)

has no non-trivial null eigenvector satisfying Ly = 0. Provided that the function f(u) is locally

Lipshitz-continuousin a neighbourhood of the solution u, we may apply the implicit function theorem

to obtain convergence estimates for (3.9) based upon alocal linearisation. These estimates extend the

result in (3.8) so that a very similar error estimate applies but for which the constant B depends upon

the solution w. In particular, B will depend upon ||Z~1||. Details of this derivation are given in [17].
For the case of f(u;\) = \u 4 u° and large u, we may make the estimate

|y ||l oo ~ HUSHOO = U(O)S'
Hence we have
lu = Unlloo < B(u)h?l0g(1/h)*u(0)°. (3.11)

It is interesting to compare these results with estimates for convergence in H&. Under the same
assumptions of an isolated solution with a locally Lipshitz nonlinearity, we have the well-known
result [17]

Ju = Unllg < Clwh.
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In[23], it is shown that the discrete solution Uy, isuniquein aball (in H&) centred upon the projection
of u onto the space S}, and of radius R, where

e R=0(1)ife <0,
e R=0(r/?)if e >0.

Thus the region in which Uj,, can be proven to be unique becomes smaller if p > 5and h — 0O,
partly accounting for the existence of the spurious solutions described in this paper.

4. Asymptotic calculations

For practical computations, estimate (3.11) for U, is of limited value. This is for three reasons.
Firstly, the value of B(u) can be very large if u islarge. Secondly, the estimate is only be descriptive
if h is very smal. Indeed, for our problem we will demonstrate that (3.11) is descriptive only if
h||ul/4, is small. We compare this with (1.19) which is descriptive for the much less restrictive range
of H = h~? small. Finally, the analysis of Section 3 gives no information about the behaviour of the
spurious solutions.

In this section we use formal methods to obtain instead a descriptive asymptotic description of
the solution branch (A, Up,) for (1.12) which is descriptive provided that Uy, is large and H is small.
Our mzethods describe both the convergence and divergence of U, in the two cases of A\ > 7?/4 and
A < /4.

In Section 2 we noted that, if € is small and « is large, then close to its maximum (i.e., if r is
small) we may approximate the function «(r) by the function w.,(r) for suitable . We now make the
assumption that such an approximation also holds for the large solutions U}, of the discrete problem,
athough in this case, we replace the function w., (r) by its piecewise-linear interpolant W}, - () defined
in the introduction. We do not aim to prove this assumption, but show that it permits us to make
self-consistent asymptotic estimates of the form of the solution which are consistent with all of our
numerical computations. Our condition for this approximation to be good is precisely that H is small.

Our method of proof will be to take v to be large and to compare U;, with W}, , for an inner region
0 < r < 1using arescaling of the solution and of ». We then calculate a separate descrition of U, on
an outer region which includes » = 1. The two representations are then compared in an intermediate
(matching) region at » = 1/, alowing a determination of -.

For convenience, we will look at the two cases of critical growth (¢ = 0) and near-critical growth
(e < 1) separately.

4.1. Critical growth

The inner region
The discrete solution Uj, € S), satisfies the equation

—(Uh,#h) + MUn, 1) + (Up,on) = 0 (4.)
for all functions ¢;, € S;,. Similarly, for all v and all ¢;, € S}, the function w., satisfies the equation
—(uwl,, ) + (w3, o) = 0. (4.2)

In contrast, the interpolant 1}, ., satisfies the equation

—(Wi &) + (Wi 0n) = Ren, (4.3)
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where R is a non-zero linear residual operator acting on S;,. Setting ), equal to the basis function
w; in (4.3) gives aresidua R; = Reyp;.

To calculate R; we rescale the problem, and this rescaling is central to our subsequent analysis. An
inspection of (1.26) shows that if

v(r) = wa(r) (4.4)
and

s =2r, (45)
then

wy(r) = yu(s) (4.6)
and

Won(r) = yVa(s), (4.7)

where Vy(s) is the piecewise-linear interpolant to v(s) over a uniform mesh of width H = ~?h.
Identities (4.2) and (4.3) can now be rescaled by expressing all inner products and derivativesin terms
of s. This gives

—(, )+ (0 on) =0 and  —(Vi, )+ (VR on) = YRen, (4.8)
where
wr(s) = en(s/7).

Now, the inner productsin (4.8) only depend upon ~ indirectly through the scaled variable H and can
be compared when H is small. If we set

vri(s) = @i(s/7%) (4.9)
to be arescaling of the basis function ¢; then subtracting the identities in (4.8) gives
~(Vin i) + (Vi eim) = (Vi =V, 01 m) + (Vi = 0% i) = Ai + By, (4.10)

As V is the interpolant to v on a mesh of size H, the two terms A; and B; can be evaluated through
an application of standard interpolation theory [16]. This implies that both A4; and B; are of O(H?3)
as H — 0, and consequently, we may deduce that there exists a function F'(s) such that

—(Vir, i) + Vi, i) = HF(s)(1+ O(H?)), (4.12)
where s = iH. Hence, from (4.8),

YR; = H3F(s)(1+ O(H?)),
So that

R; = K3y°F (v%r) (14 O(H?)) (4.12)
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Fig. 2. The function U (r) (solid line) compared with W), ., (r) (dashed line).

when
r=ih and s=ihy?

As both v(s) and Vi (s) are known, the function F'(s) may be determined explicitly, and after some
manipulation we have

V/3(85% + 54s* — 29752 + 54) s 20 F(O)—i
12(3 + 52)9/2 ’ ’ 36

F(s) = (4.13)
The scaling above introduces both a natural variable s for the inner problem and a natural mesh size
H for the rescaled problem. As r approaches 1, then s is large. To match with the outer solution we
seek a description of Uy, for the case of « large, s large and » small.

To do this we pose such a solution to be an approximation of W, ., so that

Up =Wy + e, en K Wh, en(0)=0 forr <1 (4.14)

In Fig. 2 we present the results of a calculation of Uy, (r) for h = 1/128, taking A = 0 (where we find

that for which v = 13.1649) and compare this function with W}, . (r). It is evident from this figure

that the difference between Uj, and W}, , is indeed small if » < 0.5 giving support to our approach.
Substituting expression (4.14) into (4.1) and using (4.3) we then have

7<€§7,> QO%,> + >‘<eha Soh> + 5<Wii'yeh> Qph> = 7)‘<Wh,'y> Qph> - R@h + 0(6}21) (415)

For thefirst stage in the asymptotic calculations, we look at the leading order terms of (4.15), neglecting
the terms of O(e?) to give the linear problem

— (€} Ph) + Men,on) + 5(Wi en, on) = =MWy, 1) — Ren  Veon € Sh, (4.16)
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which we solve for e¢;,. We then estimate the error that neglecting the nonlinear terms introduces to
the solution.

Firstly, we rescale (4.16) as a problem in the variable s and then look for solutions when s is large.
In the rescaled problem we consider those functions which are members of the set T of piecewise-
linear functions on the interval [0,~?], and consistently use the notation o (s) for an element of T}
with rescaled basis functions ¢ ;(s). We now consider all inner products to be integrals with respect
to s. Motivated by (4.12), we rescale the residual operator R to a map () acting on Ty given by

Rop(r) = B3y°Qon (Vo) = H3y *Qen (),

so that
1
Qen(s) = h3—75R%(8/72)'
Hence
Qpi = Qpmi(s) = F(s)(1+O(H?)), wheres=iH. (4.17)

Similarly, we set
Eg(s) =ep (7725)-
Rescaling the inner products in Eq. (4.16) and multiplying through by ~? we obtain
—(Es @) + M N Ew, om) + 5V En, vr) = =M (Vi or) — HAQew
Von € T, (4.18)

where primes now denote differentiation with respect to s.
For large values of s, we have

V3

VH(S) =~ ?, VH(S)4 I~ g
Furthermore, if 7 islarge and s = ¢H, then
2H3 /3 23

H3Qom,(s) ~ 3 3 H2<§?7¥7H7i>

hence, for such values, most of the terms in (4.18) approximate to zero, and if we make a comparison
of the relative sizes of the terms for large s and i, it reduces to the much simpler equation

A A /3
—(Ey, @) + ?<EH,<PH¢> + $<?>S@H,i>

=0 E—f,¢H7i +Of H? is,ngﬂ- . (4.19)
(o)) =05 o0m)

Problem (4.19) above is the restriction to the space Ty of the weak form of the ordinary differential
equation

2 A A V3
g+ 0 + 39+ 5 = Olg/s") + O(H?/5"). (4.20)
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Fig. 3. The error function Ex(s) (solid line) compared with g(s) = a/s + b (dashed line).

which, for large s and small H, has the solution

_b
AL/2~ 25

x (14 0(1/5%)) (4.21)

5(e) = B cos(AY/2y%s) + sin(AY2y72s) — @ (1~ cos(AM2y%s))

for constants a and b. Provided that \1/2~y~2s is small, we may closely approximate g(s) by

g(s) = (ﬁ +b— %?s) (1 + O()\szfy_4) + 0(1/52)). (4.22)

For large s, the function g(s) is smooth and standard results from the theory of finite-element ap-
proximations imply that the function Ex(s) closely approximates it with a (maximum norm) error
proportional to |H?¢"(s)| < H?/s%. As H < 1 and s >> 1, this error is small and we may set

Ep(s) = g(s)(1+O(H?)) (4.23)

with only a small error. In Fig. 3 we present a graph of the function Er(s) again computed when
h = 1/128, A = 0, compared with the function ¢g(s) = a/s + b, where a and b are estimated (by
taking two point values at s = 0.672, s = +?) to be

a=19383, b= -0.14273.

The agreement between Ex(s) and g(s) is very good for s > 5 again lending support to our
approximations.

As an interesting observation we note that 'z (s) takes both signs for small values of s contrasting
with the continuous problem for which the function w- (1) — u(r) is aways positive.
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To estimate b in (4.21) we use integration by parts. To do this we consider the piecewise-linear
function

oWy
Up (1) = —67’7 .

Differentiating both sides of the identity
Ryp; = h®y°F (v%r) (1 + O(H?))
with respect to v we have that in the original unscaled variables
—(h > i) + 5(Wi i) = v*h3[BF + 2sF] (14 O(H?)),
so that on rescaling we have
—(Wh, P ) + Vi, on) = H*Poy, Ven € Ty, (4.24)
where
Ty (s) = (1—s2/3) (1+5%/3) 2 if s = iH, (4.25)

is arescaling of ¥, ,(r) and P is alinear residual operator, with action on the basis functions given
by

P; = Poyi(s) = (5F + 2sF,)(1+ O(H?)).

The motivation behind these calculations is that Eqs (4.18), (4.24) have a very similar form. To
exploit this similarity we define (for I < N) piecewise-linear functions ¥;(s), E;(s) € Ty such that

U (iH) = Wy (iH), E;(iH)=Eg(iH), i<I,  E;(iH)=w;(iH)=0, i>]L

As these functions are both in Ty, we may set oy to either in identities (4.18) and (4.24). Indeed,
setting oy = Fr in (4.24) and o7 = W7 in (4.18) and subtracting gives

— (B, 07) + (¥, E7) + (V4 Ep, W) — 5{V{Er, Up)
= H3*yQ; + %WH,WH + %<EH7WI> — H3PE;. (4.26)

We now examine the two sides of this identity.
On the left-hand side, exploiting the piecewise linearity of the functions in the integrals and the
fact that Ey and E; are identical other than over the interval

J=[(I-1)H,IH],
we have, after some manipulation, that
—(Ey, 1) + (U}, B} = —(Ey, 01 — Uy + ¥y, B} — Ey)
:LDH(IH)<X[,E}I> —E(IH)<XI,W}I>, (4.27)
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where the function x;(s) satisfies
1 . .
x1(s) = e if seJ, and x;(s)=0, otherwise

If we take I large so that s = HI satisfies 1 < s < 4?A~1/2, then from (4.21) and (4.23) the terms
in this expression can be estimated by

Ep(s) = <% +b— Az—f’s> (1+O(H?) +0(As>y %) +0(1/5%)), (4.28)
Ej(s) = — (% —~ Az—;/f’> (1+O(H?) + O(As®>y~%) +0(1/s?)), (4.29)

and from (4.25),
V3

S

V3

Uy (s) = (1+0(1/s%) + O(H?)),  Wp(s) = —5 (1+0O(1/s%) + O(H?)).  (4.30)

Using these approximations we have

U (IH)(x1, Eyr) = <% + 31;[3)‘) <1+ O(%) +O(H?) + o(,\IZHny—‘l))

and

En(IH)(x1,%y) = <% +V/3h - Sf—f?) <1 + o(%) +0(H?) + O()\IZH274)>.

Thus we estimate (4.27) by

[\/ﬁb — Szj A} <1 + o(%) +O(H?) + O(AIZHZ'y“)) (4.31)

and note that, to leading order, the terms in this expression involving the unknown a all cancel.
The remaining terms on the left-hand side of (4.26) give contributions of the form

IH 1
AEn, W) — S(VAE Wy ) = / JEWsds | = O =575
5<VH H, ]> 5<VH I, H> O (I_l)HVh S dS @] HZIZ’}/Z )

which are much smaller than the other expressionsin (4.31).
We now consider the right-hand side of (4.26).
The first contribution to this comes from the residual term

H3~yQu;.

As U; € Ty, we have

-1
Wi(s) =Y Wipni(s),
i=0
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where ¥; = ¥(iH). Hence, using (4.17),

I-1 I-1
HQU=HY %Q;=HY» Wy(iH)F(iH)(1+ O(H?). (4.32)
0 0
Now, both the functions F(s) and ¥ (s) decay rapidly with s with product 2/s%, and hence, we
may approximate this finite sum with an infinite sum with a very small error proportional to 1/s° =

1/(IH)3. This infinite sum may then in turn be approximated with an additional error of O(H) by
an infinite integral which can be evaluated explicitly using expressions (4.13), (4.25). Thus we have

D= Hi@@ = [ —13v3n
0

/0 Wy (5)F () ds} (1+O(H)) = —Zoe " (1+-O()) (4.33)
and
H3yQWr = H*yD(1+ O(H?)).

The next term in the right-hand side is given by the integral \(Vzr, ;) /42 which is precisely
I1H 1— 2
[% / 7( /3 2 ds] (l+ O(Hz))
0

¥ (1+ s2/3)?
3IHN 33\ 27\ 1

We now consider the remaining two unresolved integrals in the right-hand side of (4.26). In the
term (Ey,¥r), we estimate Ey by b to give

A b /IH s2(1— s2/3)
0

2772
— (B, Y1) ~ — ds%—m.
Y Y

(1+52/3)372 2y

(A more detailed calculation (not presented here) shows that, if we take the complete expression for
Ep(s) implied by (4.21) (with the expression bsin(AY2y~2s) /(A\1/2y~25) instead of the constant b),
then expression (4.31) has an additional term which, to leading order, exactly matches the expression

above.)
Finally, estimating E; by b in the expression H3PE; gives

I-1 00
H3PE; ~ H?b ) (5F + 2sF,)H ~ H% / (5F + 2sF,)ds = gﬂzb.
0 0

Combining all of these estimates gives

2 o{ ) o o)

3IHXN 3v3mA 27\

73 43 THA3

x (1 + o(IZ—}{z> +O(H?) + O(AIZH27_4)>. (4.35)
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This expression may be regarded as a function of [ for large values of I. An inspection reveals that
both sides of this identity are fully consistent provided that b takes the value

1 3V/3m\

b=—|H?*yD+ 2=

val 73

To complete the description of E; we make an estimate for the magnitude of the term a. A similar

such estimate was made in [10] for the continuous problem by obtaining an explicit inversion of the

closely related continuous linear operator which corresponds directly to the left-hand side of (4.18).

This calculation showed that both ¢ and b had comparable magnitudes. Having established from our

calculation of b that the related linear operator in (4.18) has a well-defined inverse we are justified in

making a similar estimate for this problem to give

a=0(b) = O(vH?) +O(v3). (4.37)

Combining (4.22), (4.23), (4.36) and (4.37) thus leads to an estimate of the leading-order terms in
Ey.
We now consider the nonlinear terms which were neglected in (4.15) and lead to an error in the
estimation of b. The leading contribution to (4.15) arising from these additional terms takes the form
10(W7 en,0); (4.38)

after rescaling, we can consider this to be an additional ‘forcing’ term to Eq. (4.18) of the form

[1+O(H?) + O(1/I?H?) + O(AI?H?/+%)]. (4.36)

10
7<V§E§’ % (4.39)
which leads to an additional contribution to the right-hand side of (4.36) of magnitude
10
> (VEER, Ur). (4.40)
Estimating the function E'y; by b, this term has an approximate magnitude of
10 [ (1-s?%/3) 30
2 2 2
- S St = b= . 441
b ol A ey ds bay\/én (4.41)
The resulting error relative to b is then
b 5 1
L —o(i?) + o<ﬁ>, (4.42)

which has the same magnitude as the existing errors. The other nonlinear terms in (4.15) give similar
small errors to the calculation of b.

We now combine these results to give a description of Up(r) in the inner region. To do this we
rescale s to r, so that al expressions involving IH = s are replaced by expressions in terms of 72r.
Then, provided that v~2 < r < A~Y/2, we have

£<1+ 3 )1/2 V3

r v 2y

Un(r) = Why(r) +en(r) =

1

n <% n b) (1 +0(M?) + O(H?) + O(W))’ (4.43)
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where

1 3v/3m 1
b= ~H2D + T"] (1 +0(\2) + O(H?) + o<ﬂ>>, (4.44)

¥4
a= O(VHZ) + O(’yf?’)
and

1331
D=-—rs8 (1+O(H)).
The outer region
For the second stage in our estimation of ~, we consider the behaviour of U, in an outer region
which includes » = 1. In this region, the function u(r) satisfies

2
Upp + Jur +Au+u’ =0, u(l) =0;

moreover, w~ (1) = \/:7}/7, which is small if ~ is large. Consequently, we expect that the solution of
both the continuous and discrete problems will be small in a neighbouhood of » = 1. Motivated by
the scaling for w.,, we rescale u(r) so that

1
u(r) = ;v(r%

which gives
2 1
Upp + —Up + AU + —41}5 =0, wv(1)=0.
r y

A set of solutions of this problem may be determined by, first, solving the linear part of the equation,
and then, viewing the nonlinear part as a forcing term. If A > 0, this gives (after some manipulation)

o(r) = B {COS(;/XT) . Sm\%fr)] + o<#> (4.45)

for an arbitrary constant B (with appropriate changes if A < 0). The leading part of this solution

will be a good approximation to the whole provided that 1/(+*r%) < 1/r, i.e, if y~2 <« r. Thus, if

72 <« r < A~Y2, we have (on rescaling)
B[l M , . 1

_ [_ ~ 24 (+0(x?)) +Ofr )} <1+ o<—>> (4.46)

74743

where 6(\) is given in (1.20). We now consider the weak formulation of (4.46) over the space S},.
As the solution of the original differential equation is smooth if v~2 < r, then it follows from the
standard theory of the finite-element method that this weak formulation will have a set of discrete
solutions Uy, such that, if U, and u have the same gradient at » = 1, then the error between them
will be bounded by
W2 ~ "
A3 T 53
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Combining these results we deduce that in the outer region and for al B there is a discrete solution
U}, of the weak equation satisfying

Un(r) = —|= = 5 = 0()(1+O(x?)) + O(r3)] <1+ o(%)) (4.47)

Matching

The two expressions for U, given in (4.43) and (4.47) are both valid in therange vy 2 < r < A\~1/2
and can be compared there. We see immediately that they have precisely the same functional form in
r over this range. Furthermore, they agree quantitatively to leading order provided that

B _\/§+ a
yrooar A
so that

B =V3[1+0(H?) +0O(y4)].
Comparing the constant terms in the expressions we then have

(14 o) + 0y +0( 15 ) +oe?) )

= b<1 +O(H?) + O(Mr?) + 0<74—1Tz> > (4.48)

where an expression for b is as given in (4.44). In the above formulae, we have error terms in b and
B of the form O(Ar?) and O(1/(v*r?)). The first of these increases with , and the second decreases
with 7, such that they are comparable in magnitude and are of order O(1/+?) if we take r = 1/7.
Hence, we match the expressions at this value of r. Dividing both sides of (4.48) by /3 and setting

B 137
 4608./3

we obtain (1.19) in the special case of ¢ = 0.

Result (1.19) alows us to make some asymptotic estimates about the form of the solution — and, in
particular, to calculate the value of ~ for different ranges of \. The form of these changes depending
upon the sign of A(\). If A > 7?/4, then O(\) < 0, v is bounded above as h — 0 and the
corresponding solution U, converges to the true solution. Conversely, if A < 72/4, then §(\) > 0,
and ~y is unbounded as h — 0.

A=-D/3 (1+0(H)),

411 Casel )\ >7?/4, ||julle > 1
When )\ > 7i?/4, the underlying problem (1.12) has a true solution u(r). It is shown formally in
[10] (see also the rigorous results in [8]), that as A\ — 7t?/4, then |jul|o — oo with

o()) = _A\@T%o(' 1 ) (4.49)

[ull% Jullg
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Using this relation for 6, we may rewrite (1.19) as

M3 M3 1
Ah?~® — —) 14+ O(H?) 4+ 0(y7?)) = — <1+ o<—>). (4.50)
( )OO0 = —Je, lE:
Rearranging this gives to leading order (as A — 7°/4)
2 2 -2
l[ulloo = 1 Cnee (1+0O(H?) +O(v™9)), (4.51)
where
4A
C=——.
V3nd

This gives the first result in Formal Proposition 1.2. We may make several deductions from (4.51).
First, we note that ||lu||., becomes infinite when Ch?+® = 1, and we return to this in the next
section.

Secondly, we can use this formula to give a rough estimate for the convergence of Uj, to u for
small h. If hisvery small, such that K278 < 1, then expanding (4.51) we have

C
lulloo = 7 + 5 h27° + O(h*Y). (452)
For the range h?>y® < 1, this asymptotic formula is comparable with the rigorous estimate (3.11)
for the convergence of U, given in Section 3. Combining these two estimates and using the triangle
inequality we have

C (63
[Ilulloc = 1Unlloo| % 57*9° < |Un = ulloo < B(w)|[ull3h?log(1/h)*.

Due to the existence of the log(1/h) term, these two estimates are not strictly comparable as h — 0.
However, if we have hy* ~ 1 then v is close to ||u/|~ and

c_

B> G iogrm

so that B(u) isvery large if v islarge. Estimate (4.52) can be used to give a criterion for the effective
selection of a computational mesh to solve (1.1) and is discussed further in a forthcoming paper.

For values of h,~, such that h2y* < 1, but for which h?~8 is large, after some manipulation (4.50)
simplifies to

v A C71/8h71/4,

which is independent of u. For this range, formula (4.52) is not descriptive. Hence (4.50) gives a
more complete description of the convergence of U, to u over the range h2y* < 1 than the standard
formula (3.11).
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4.1.2. Case 2: A\ = m?/4+ O(hY/?)

The value of \ = 72 /4 marks the transition in the behaviour of the analytic solution, and thus we
expect to see a change in the behaviour of the discrete solution. This is, indeed, the case — and it is
in an O(hY/?) neighbourhood of this value that we see a transition between convergent and spurious
behaviour.

If we set
2
7T

and expand 6(\) as a Taylor seriesin 6, we obtain

3 1 1)
<A75h2 — —‘2;3 ) (1+O(H?) +0(1/7%)) = S ( 57"+ 0(52)> (1+0(H?) +0(v?)).
Now, introduce new variables
(=AnY4 k= 6nTY2

If x and ¢ are of order one, then all the terms in the above expression have the order ~—3, so that
multiplying by +3 we have (after some manipulation)

2
C¢® — 1) (1+ O(hY?)) = ——=—=k(?(14 O(h)). 4.53
(OC ~1)(1+0(W?) = ~ = 3r¢*(1+ O(h) (459
To leading order, (4.53) has a smooth solution path expressing ¢ as a function of x and connects
the region of convergent solutions with x > 0 to spurious ones with x < 0. Thus, in an interval of

O(hY?) centred upon 7t2/4, we see solutions for which ¢ is of order one and, hence, for which ~
grows at the rate O(h~Y4). If § > 0 is fixed and h — 0, then x — oo, ¢ tends to zero and

-2 _, 2 -2 _, 2
‘ <\/§7c3)ﬂ o <\/§n3>6'

In contrast, if Kk — —o0, we have (after some manipulation)

6, 1A

Finaly, if k = 0, we have simply that
1

8 _ —
<= C

This gives the result (1.23) in Formal Proposition 1.2.

(1+0(rY?)) or ~=h"Y4C"Y8(1+0O(nY?)).

4.1.3. Case 3. \ < ?/4
Finaly, if A < 7t®/4, then 6()\) > 0, and (1.19) admits solutions for arbitrarily large values of ~
provided that A is sufficiently small. In particular, as h — 0, we have in this limit

AZ5(1 4+ O(H?) + O(1/7%)) = Z6(N)(L+ O(H?) +0(y72)), (459
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S0 that

1/6
N (@) hY3(14 0(h23)) (4.55)

giving the result quoted in (1.24).
4.2. Near-critical growth

We can extend the results of the previous section to consider the case of near-critical growth where
the exponent p is close to 5. The calculations in this section are necessarily somewhat more formal
than in the last section, but use many of the same ideas, and we do not go into the same detail.

If p=5+¢iscloseto 5, then we may consider the term »°< to be a perturbation of «°. To leading
order, this is given by

WSt = u5 4 eudlog(u) + O(€2u5|ogz(u)).

If we set Uj, = W}, , + ey, as before, then to leading order, the linear equation (4.16) has an additional
term of the form

ey® (1 + ¥>—5/2 log (’y <1 + ¥>_1/2> (1+O(elog?(7))).

Rescaling this equation as a function of s and rearranging gives an additional contribution to the
right-hand side of (4.18) of the form

—ve(l, on) (1+ O(log?(7))).

where

(s) = <l+ S—;>S/Z[Iog(fy) — %Iog<1+ S—;ﬂ

Now we observe that, if s > 1, then | ~ 1/55, which is a negligable contribution to the system, and
hence, for large s, Ej(s) takes the same form asin (4.22), although there is an additional contribution
to the value of b due to the new terms. This contribution can, as before, be estimated by quadrature
to be
[% /0 Wy (s)1(s)s? ds] (1+O(elog?(7))) = —%1(1 +0(elog?(7)))-

We note, with interest, that the contribution to this integral from the termsin [(s) of the form log(~)
vanishes. Combining this result with the existing formula for b extends the leading-order terms in
formula (1.19) to

K719\
a2 L7~ RV,

which on rearrangement, together with the error estimates above, gives (1.19).
We may draw several new conclusions from this formula.
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Firstly, if ¢ is negative, then v cannot be unbounded as h — 0 and tends to a limit. This can be
determined explicitly from the formula giving the result in Formal Corollary 1.3. Conversdly, if € is
positive, then the contribution to the formula from the terms involving A are of lower order if ~ is
large. In this case, we see a balance between the terms involving h and e alone, and the corresponding
solution will depend only weakly upon A. Thisis confirmed by numerical computations. By balancing
these two terms we obtain the estimate for ~, given in Formal Corollary 1.4.

5. Numerical calculations

We now give some numerical evidence to support our conclusions. The algebraic equations (3.6)
describing the branch (A, Uj) can be solved using a path-following algorithm. An initial point on the
branch is obtained by performing a Liapunov—Schmidt reduction close to the bifurcation point where
the solution is small and using the solution of this problem as a starting point for a solution of the
discrete equations. Taking ¢ fixed, the value of A is then reduced in small steps until A = 0. At
the points A = 0,7°/4, we also consider continuation in the parameter . The resulting nonlinear
eguations in the system are solved using the Powell hybrid solver SNSQE [26] which performed
efficiently and did not use an explicit functional form for the Jacobian of the system.

For all the computations, we consider a system with a uniform mesh of sizes

h=1/8,1/16,1/32,1/64,1/128,1/256,1/512.

Firstly, we give some numerical evidence for the results presented in Formal Proposition 1.2, secondly,
we look at the case of ¢ # 0.

5.1. Thecasee =0

InFig. 1, we presented a combined series of curves showing the bifurcation diagram of the numerical
solution for the meshes given above. From these curves, it is evident from the increase of the gradient
that interesting behaviour is occuring close to A = 7?/4. Furthermore, it appears from these graphs
that ||U} || increases monotonically as h decreases. For comparison, in Fig. 4, we plot a graph of the
leading-order solution ~ of Eq. (1.19) with h = 1/128 and compare it with the graph of the function
|Un || as afunction of A. The agreement between these two graphs is good both qualitatively and
guantitatively, especially considering the approximations made in the asymptotic formulae.

The Pohozaev functional P(Uy,), as defined in (2.4), can be determined for any function Uj, € Sj,.
In Fig. 5, we show the values of the scaled function P(U})/h, expressed as a function of A for the
values of h above. This graph has several interesting features. Firstly, P(Uj) is non-zero for al A, h.
Secondly, it is positive for these values and we make the conjecture that, for the solutions of (1.15),
we have

P(Uy) > 0.

Thirdly, we note that for A > \o, P(Up)/h decreases monotonically in 4 and appears to tend to a
limit, implying that, to leading order, P(Uy) is proportional to k. In contrast, for A < Ao, P(Up)/h
grows as h is reduced. Indeed, P(U},)/h appears to have alocal minimum close to A = Ao.

We now make a more quantitative comparison between the numerical results and the asymptotic
formulae given in Formal Proposition 1.2.
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Fig. 5. The scaled Pohozaev functional P(U},)/h computed for b = 1/8,...,1/512.

5.1.1. Case 1. Convergence for \ > 7?/4

For this calculation, we take three values of \ > 7:2/4 and compare the solution at each. We
have in each case calculated an ‘exact’ solution by solving (1.12) as an ordinary differential equation
using a Runge—Kutta—Mersen method with a very small error tolerence. For these values of )\, such
a shooting approach rapidly gave an accurate solution. Table 1 gives the calculated values of ||u||oo
and v = ||Up||o for h =1/512,1/256,1/128,1/64,1/32.
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Table 1
N Exact 1/512 1/256 1/128 1/64 1/32
26 140362 11.201 9871 8.607 7.453 6.388
2.8 8.7897 8593 8233 7.626 6.880 6.064
30 69016 6879 6.816 6.627 6.254 5711

Table 2
N 1/512 1/256 1/128 1/64 1/
26 0.202 0.297 0.386 0469 0.544
28 0.116 0.063 0132 0.217 0.310
3.0 00033 0012 0.040 0094 0.172

Table 3
N Exact 1/512 1/256 1/128 1/64 1/32
26 140362 11.209 9834 8499 7.277 6.193
2.8 8.7897 8597 8233 7586 6.764 5.903
30 69016 6.87 6.808 6.604 6.180 5.575

Table 4
N Exaot 1/512 1/256 1/128 1/64 1/32
26 14.0362 14.09 1428 1567 24.37 NaN
2.8 8.7897 8.79 8.79 8.89 9.41 10.69
3.0 6.9016 6.90 6.91 6.93 709 757

From Table 1, we may extract the values for the relative error e;g defined by

erd = ([[ulloo —7)/llulloo

to give Table 2. From this table, it is evident that an asymptotic description of e;q ~ Bh?log(1/h)®
is not very descriptive if A = 2.6,2.8, although it is reasonable for the finer meshes when \ = 3.
Rather better understanding of the convergence is given by formula (1.22). We can either use this
formula to calculate v as a function of A (given ||u|/) Or to estimate ||u|/~ given .
For the first case, we solve

_ 2
oo = ——s
v/ 1—Ch?y
as a function in ~, for each given value of |lu|l« and h, using the numerical estimate of C' =
3.811 x 10~4. This resulting estimates for v are given in Table 3. These estimates show good

agreement with Table 1 lending support to the asymptotic formula for ~ in this range.
As the second test for the asymptotic formula, we calculate the quantity U given by

Up=—— 2t
JI_CiZy®
From the asymptotic formula we expect that U;* will be a better estimate to ||u||« than . The values
of U; are tabulated in Table 4. The agreement between U and the exact values of ||u||, for even
coarse values of the mesh is impressive.

In Figs 6 and 7, we repeat this calculation to determine a set of extrapolated values U*(\), with h
fixedat h = 1/128 and \ > 2.6, plotting, respectively, U* and (U*)~2, and comparing the extrapolated
vaueswith v, ||uls andy~2, |lu|Z2. In Fig. 6, we seethat ||u/|«, v and U* are dl closeif A > 3.5,
but that for smaller values of A\, U* is a much better approximation to ||u|l... The results presented
in Fig. 7 make this clear and demonstrate that (U*)~? — 0 (linearly) as \ approaches \o.
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Fig. 7. A comparison of ||u| 52, v and (U*)~2.

5.1.2. Case 2. Divergence for \ = n?/4

We now consider the growth rate of the spurious solutions by first looking at the transitional case.
In Table 5, we plot both v and h1/4~. Evaluating the numerical value of the constant C' /8, the
asymptotic formula presented in Proposition 1.2 predicts that

W4 U = 2.6757(1 + O(hY/?)).
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Table 5

h ~ h/l/A"Y
1/8 4998 2.972
1/16 5704 2.852
1/32 6.587 2.769
1/64 7786 2753
1/128 9172 2727
1/256 10.804 2.701
1/512 12771 2.684

Table 6

h ~ hl/A’V h1/3,y hl/z,y
1/8 574 341 2.87 2.03
1/16 738 3.69 2.92 1.85
1/32 9.08 381 2.86 161
1/64 1074 3.80 2.69 1.34
1/128 1316 391 261 1.16
1/256 16.38 4.10 2.58 1.02
1/512 2040 4.28 255 0.90

The numbers in Table 5 give convincing evidence that this is correct to leading order, and, indeed,
that the error term may be an over estimate.

5.1.3. Case 3. Divergence A =0
In this case, we predict that v will diverge to infinity at a rate proportional to »~1/3. Evaluating

the numerical value for the constants in the asymptotic formula presented in Formal Proposition 1.2,
we now predict that

Y3y = 2.4089(1 + O(h?/3)).

The values in Table 6 are consistent with this, with fairly good convergence to the predicted constant.
In contrast, the values scaled by h1/4 appeear to diverge and those scaled by 1/2 to tend to zero.

5.2. Varying ¢

We now consider the results presented in Corollaries 1.3, 1.4 giving the asymptotic behaviour of
the solutions for the exponent values 5+ ¢ when A = 0 and A = ), taking ¢ to be both positive and
negative. To obtain numerical estimates for this problem we solve the system with

fu;\) = u+ut, e=—-1,

starting the solution branch as before with A ~ 7> and « ~ 0. The solution branch is then continued
back to A = 7?/4 and A\ = 0, and at these two (fixed) values of \ we vary the value of ¢ increasing
ittoe =2

521 Casel: A=0
Let us consider Table 7. Here « is a numerical estimate for the exponent in the relation

v=Kh*,
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Table 7
h e=-1 -0.2 0.0 0.2 1 2
1/32 6.153 8.151 9.08 9.392 7.605 5.586
1/64 6.108 9.192 10.74 12.31 9.947 7.344
1/128 6.086 9.895 13.16 14.54 13.06 9.23
1/256 6.078 10.18 16.385 18.85 17.19 11.61

o 0 0 0316 0374 03% 0331
Table 8
h e=-1 -02 0.0 0.2 1 2

1/32 4.42 4.56 6.58 8.01 7.47 5.80
1/64 4427  5.680 7.78 1047 9.85 712
1/128 4418 5704 9172 14229 13003  8.938
1/256 4418 5704 10.804 19.657 17.156 11.601

o 0 0 0236 0466  0.399 0.33

which is derived from the last two values in the table. The asymptotic predictions for these values
are

a=0 ife<0, a=1/3 ife=0, and a=2/(4+¢) ife>0.

From Table 7, we see that, if ¢ = 1,2, then « is close to the predicted values of 0.4 and 0.333.
However, the agreement between the asymptotic theory and the results is less good when ¢ = 0.2.

522. Case2: \ =m?/4

In Table 8, the agreement between the asymptotic theory and the numerical results is good. It is
evident, for example, that the exponent o changes from being close to 0.5 when ¢ is small, to 0.25
when e = 0.

A second conclusion from the asymptotic calculations is that, if ¢ > 0, then the computed solution
for A < 7?/4 should depend only weakly upon \. This prediction is confirmed by the computations
— even for values of ¢ significantly greater than 0. For example, we see that, if ¢ = 2 and h = 1/256,
then the values of v at A = 0 and 7 /4 are 11.61 and 11.601, respectively.

6. Conclusions

The calculations presented in this paper show both that the behaviour of the finite-dimensional
solutions of the elliptic equations close to the critical case is very subtle, and that the asymptotic
theory is remarkably accurate in explaining their behaviour. Indeed, it gives very sharp estimates of
the growth rate of the spurious solutions and of the convergence properties of the true solutions.

These results are important for more general domains. The estimates presented in [21] and [28]
indicate that the singularities, which form in more general domains than the sphere, are locally
radially symmetric and close in form to the function w.. Hence the finite-element approximation of
w- and, hence, of these singularities will have similar errors to the calculations presented in this paper.
Furthermore, we would expect that the approximation of the solutions away from the singularity will
continue to be accurate and goverened by the usual convergence theory described in Section 3, and
that this should be descriptive in this case. Thus, it is predicted that similar convergence estimates
will be obtained for general domains to the ones in this paper. Some preliminary indications of this
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for the cube are given in [12]. It remains to be seen whether similar behaviour is obtained in non-
convex domains for which the domain shape can also be regarded as a bifurcation parameter. For such
domains, there are likely to be ‘critical geometries where solutions cease to exist, and we conjecture
that for such geometries we will again see spurious solutions growing as h—%/4.
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