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Abstract 

We consider the effectiveness of  adaptive finite element methods for finding the finite element solutions of  
the parametrised semi-linear elliptic equation Au + Au + u 5 = 0, ~u > 0, where u ¢ C2(~) ,  for a domain 
~Q C R 3 and ~z = 0 on the boundary of  J'2. This equation is important in analysis and it is known that there is 
a value A0 > 0 such that no solutions exist for A < A0 and a singularity forms as A ---+ A0. Furthermore the 
linear operator L defined by Lc~ A0 + ,~0 + 5u4~ has a singular inverse in this limit. We demonstrate that 
conventional adaptive methods (using both static and dynamic regridding) based on usual error estimates fail to 
give accurate solutions and indeed admit spurious solutions of  the differential equation when A < A0. This is 
directly due to the lack of  invertibility of the operator L. In contrast we show that error estimates which take 
this into account can give answers to any prescribed tolerance. © 1998 Elsevier Science B.V. 

Keywords: Semi-linear elliptic partial differential equation; Adaptive finite element methods; Critical exponent; 
Spurious solutions; Asymptotic error estimates 

1. Introduction 

1.1. Pre l iminar ies  

An interest ing class o f  parametr i sed  semi- l inear  elliptic partial differential equat ions  with solutions 
which  deve lop  isolated singulari t ies as the parameter  varies, is g iven by the sys tem 

{ A z L + A u + u  5 = 0  o n ~ C R  3, 

u > 0 in .C2, (1.1) 
~z = 0 on 3~2, 
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where ~2 is a bounded domain in R 3. This and related problems play an important role in analysis, 
where the nonlinearity ~t 5 is said to grow at a cri t ical  rate [3,4]. It lies on the borderline of problems 
which can be solved by using the calculus of variations and also plays a role in the study of manifolds 
with prescribed curvature [15] and investigations of stellar structure [9]. See also a discussion in 12l 
for its links with topology. 

In general it is known that there is a branch  of solutions (A,u) ~ R × C2(~2) for A0 < A < AI, 
where A1 is the principle eigenvalue for the Laplacian on the domain ~C2. However, for certain domains 
it is known that a singularity develops as A approaches a critical value of A0 > 0 from above. If 
A < A0 then the problem (1.1) has no nontrivial solution. In this case we have that as A ~ A + 

Ilull,  and II'ullH, ~ 3U47r/2. (1.2) 

Here H(Jj (Q) is the usual Sobolev space of functions with square integrable first derivative. Observe 
that the behaviour in the two norms is quite different. An important question of interest to analysts, 
and the underlying motivation of our calculations, is an accurate identification of A0 for a general 
domain. 

If a non-adaptive finite element method with a fixed mesh is used to solve this problem then it is 
known [7,8,12,141 that there is a corresponding (discrete) solution branch (A, U) c R × H(l) (Y2) such 
that U exists for all  values of A < Al and that ]]U]]~ is bounded for all such values. This behaviour 
is in stark contrast to that of the continuous problem and should hopefully be improved by using 
an adaptive procedure. To calculate the value of A0 accurately such a procedure should fulfill the 
following requirements: 

(1) For all A such that a solution exists, it should efficiently calculate u to a prescribed tolerance. 
(2) It should avoid calculating spur ious  solutions. That is, solutions of the numerical method which 

exist (for example, when A < A0) when the underlying problem has no solution. 
A difficulty which arises when using standard adaptive procedures (for example, those described in 

[1,1 1]) to solve this problem, is that not only does u become unbounded in the maximum norm as A 
approaches A0 but it is also known [6] that the linear operator L associated with (1.1) and defined by 

L ~  = A(/) + AO + 5u4©, 0 = 0 on 0o(2 (1.3) 

has an inverse L -  1 which is u n b o u n d e d  in the L ~  operator norm in this limit. Many existing adaptive 
procedures are based upon error estimates which make the implicit assumption that L J has a bounded 
norm. These estimates are unreliable for problem (1.1) and adaptive methods based upon them are not 
accurate and admit spurious solutions and we give some examples of calculations to demonstrate this. 

In this paper we construct an adaptive procedure (based upon piecewise linear finite elements) which 
uses an estimate for the norm of L I and as a result employs a local error estimate for the discrete 
solution of (1.1) proportional to h2'u s (where h is the local mesh size). We demonstrate that this is 
both accurate and does not admit spurious solutions. 

A series of numerical calculations are presented to corroborate these results. To concentrate upon 
the issue of finding the correct error estimate, these calculations are made for the simplest case of 
finding a radially symmetric solution on the sphere (for which adaption need only be done in one 
dimension). They show that the estimate described above is reliable, and can in principle be used in 
a calculation over a much more general domain. 

An important conclusion from this work is that when using an adaptive procedure to solve a nonlinear 
problem, it is essential to make a good estimate for the inverse of the linearisation of the operator, 
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otherwise the adaptive procedure will not necessarily offer much improvement over a non-adaptive 
method. 

The layout of the remainder of this paper is as follows. In Section 2 we present some preliminary 
estimates for the solution of (1.1), in Section 3 we examine the performance of the static regridding 
locally uniform grid refinement method (LUGR) described in [1,16,17]. We show that standard error 
estimates (based upon curvature) are applied then they fail to give good results but if a revised method 
incorporating estimates of L - I  is used, then good performance is observed. In Section 4 we examine 
the performance of adaptive methods which move the mesh points and show that this is similar to that 
of those static regridding methods which do not allow for the growth in I IL-~ I1~ • Finally, in Section 5 
we draw some conclusions from this work. 

2. Preliminary results 

2.1. The nature of the singularity 

Suppose that we define 

= (2.1) 

so that 7 --~ cxD as A --~ A0. By using formal asymptotic methods [6] it is conjectured that for general 
star-shaped domains, the function u(x)  forms a singularity at the point x0 such that in the limit as 
A ~ A o  

(1 + ~4lx - xo12/3)1/2" (2.2) 

Thus u has a peak of height "y and width of order 1/'y 2. The numerical procedure needs to resolve this 
structure. Observe also that u(x) is approximately radially symmetric close to x0. In Fig. 1 we present 
a cross section of a numerical solution of (1.1) together with a contour plot to give an indication of 
the form of the singularity. Here g? is a cube of side 1 and A = 7.5045 (see [8] where it is conjectured 
that this is the value of A0 for this domain). For this calculation piecewise linear basis functions are 
used on a regular cuboid mesh. 

2.2. The numerical scheme 

A finite element scheme on a uniform mesh for the solution of (1.1), together with an error analysis, 
has been presented in [7] for the case of f? the sphere and in [8] for ~? a cuboid. In this paper we 
mainly look at calculations of radially symmetric solutions on the sphere as this greatly simplifies the 
implementation of the method. However, as the singularity has a high degree of radial symmetry, the 
error estimates and certain other issues related to the computation are very similar to the more general 
case. The restriction to the sphere allows us to compare the performance of different methods without 
encountering the book-keeping and related difficulties associated with the more general method. We 
define two bilinear forms by 

a(u , v )=  and (u,v} = / u v d E 2 .  
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Fig. 1. A calculation of  Ut, in the unit cube with piecewise linear basis functions on a mesh with h = 1 / 100 and ¢\ = 7,5045. 
A cross-section is shown through the plane z -= 0 together with a contour plot, which shows the radial symmetry of  the 

solution in the centre of  the domain. 

Now take $2 to be the unit sphere and define a series of points ~'i -< [0, i1 such that r0 -~ 0, ~'{ < ~'~+1, 
r x  :-= I and r~;+l - r'i = h.z. Finally, define basis functions q)i(x) if 0 < i < N by 

4~(a:) _ lxl - ~'i---1 if r.i-i < la:l < 'c i, (2.3) 
r i  - r i  _ i 

0~(ce) - r ' i + l  --!ael if r~ < /x I < r'~+l, (2.4) 
rT+l  ~ 'f>i 

Oi(x) '= 0 otherwise. If i = 0, then Oo(x) is defined by (2.4) only. Set S C ft~(f?) to be the span 
of these basis functions. The finite element approximation U to ~, is then the nontrivial %nction in S 
satisfying 

-(,,(r;, 0~) + (aw + r_; 5, 0~) = 0 vi.  (2.5) 

If the values of  ri are fixed then it is shown in [14] that the finite element solution so constructed is 
a differentiable function of Jt and exists both for ,~ > )xn when an underlying solution of (1.1) exists 
and for )t <~ ek0 when it does not. gee label these two solutions convergent and spurious, respectively. 
In Fig. 2 we present a comparison of }}~s.}!x and IItTIl,~ as functions of )~ for the case of a uniform 
mesh with hi ~ h = 1/128. 

When J~ > )to then U converges to ~u under mesh refinement. A general theory for the convergence of 
discrete approximations to solutions of  a semi-linear elliptic partial differential equation for a unitbrm 
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Fig. 2. A bifurcation diagram comparing the infinity norm of the true solution of (l .1) in the unit sphere with a discrete 
finite element solution with 128 elements. The value of A0 = rr2/4 is indicated. 

mesh, has been developed by several authors, for example [5,10,13]. In particular, if the mesh has 
size h and the corresponding discrete solution is Uh it is known that as h ---+ 0 then 

II~tt- UI~II~ < Ch21og(1/h)llL-'ll~cllA~ullvc, (2.6) 

where the constant C does not depend upon u and L is the operator defined in (1.3). In fact this 
error estimate applies both for the basis functions described above and also for the case of piecewise 
linear basis functions defined on cubes or trapezia in more general domains. It is significant that in 
this estimate there are two contributions namely II L - I  I1~ and II~X~II~ = I I ;~ + ~511~ ~ I1~11~ which 
both become large as A --~ A0. 

In [7,8] a more precise error estimate has been derived by using formal asymptotic methods which 
are sharp for those values of  A for which ~t is large. In particular we have that as h --~ 0, there are 
constants A and /3  such that 

II L '11  ~ AII~II~ and I I l~ l l~ - I IUh l l~ l  ~ m~211~ll 9 (2.7) 

The constant/3 depends upon the elements used. For the basis functions in (2.3) /3 = 1.907 × 10 -4 
and for tr i l inear functions on cubes /3 = 1.23 × 10 -4. (Similar estimates can also be obtained for 
higher order elements.) The estimate (2.7) is only descriptive for very small values of h. An error 
estimate which applies for a much larger values can also be obtained asymptotically and takes the 
form 

[l~ll~ ~ IIUhll~ 
(1 - 2Bh2HUt~II~)J/2" (2.8) 
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Fig. 3. The value of 11U11. II as a function of h in the cases of II~ll~c 6, 8, 10, 16, oc. 

If A ~< A0 then Uh is spurious and does not converge to a function u under mesh refinement. In 
contrast I]Ut~ll~ grows without bound, whereas IIUhlIH~ remains bounded. If  we define U0 = Uh at 

A = A0 we have 

IlU011~, ~ (2B)  J/Sh-l/4 and IIU011Hl ~ 3U47r/2. (2.9) 

The estimate (2.9) can be obtained from (2.8) by putting [lulls = vc. The rate of  growth of  
IIU011~ as a function of  h is very slow, and it is hard to tell under mesh refinement whether we are 
computing a convergent  or a spurious solution. To emphasise this we present in Fig. 3, a series of  
graphs showing how HUhlI~ behaves as a function of  h. In these graphs we take a series of  values 
of  II~u,H~ = 6, 8, 10, 16 and oo in (2.8) and solve for IIUh, ll~ as h decreases from 0.1 to 0. From this 
graph we can see both the convergent  behaviour  for very small h and also the apparent growth in 
both the convergent  and the spurious solutions as h, decreases through larger values. For h > 0.4 the 
convergent  and spurious solutions are very difficult to distinguish. This shows how difficult it is to 
calculate A0 on a uniform mesh and why an adaptive procedure is required. 

3. Adaptive strategies using locally uniform grid refinement (LUGR) 

3. I. Derivation of  the method 

As remarked earlier, an effective adaptive strategy should compute the convergent  solutions ac- 
curately when A > A0 and should reject spurious solutions when A < A0. As a first algorithm we 
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consider the static regridding (LUGR) methods proposed by Verwer and his coworkers [1,16,17]. These 
methods were originally developed to find finite difference solutions of  time-dependent problems but 
similar principles apply for finding finite element solutions of  parameter-dependent steady problems. 
The basic approach is as follows. 

l. Start with a solution of (2.5) and a uniform mesh at some value of A. 
2. Reduce A to A - AA and compute a new solution of (2.5) on the mesh used in Step 1. 
3. At each mesh point i compute an estimate M(Ui )  for the relative solution error. 
4. If M > TOL then flag the element. 
5. Define a neighbourhood of Li elements around the flagged element. 
6. Refine (bisect) all the flagged elements and the Li neighbours of these elements. 
7. Recompute the solution on the new mesh. 
8. Repeat from Step 3 until M < TOL on each element. 
9. Choose a suitable zXA and repeat from Step 2 with the most recent mesh. 
Crucial to the success of  this method is the choice of the error monitor M and the number Ii 

of elements neighbouring the flagged element which are refined. If h,i is a measure of the size of 
the element then it is suggested in [1] that in a fully three dimensional calculation each of the 26 
neighbours of  a flagged element should be refined and a curvature monitor of the relative error should 
be used such that 

M(Ui )  = D h  2 lag,~;I I zl' (3.1) 

where D is a user specified constant closely related to the required error tolerence. This is, in fact, an 
estimate of  the relative local truncation error. From (2.6) we see that this is a reasonable estimate of 
the relative global solution error provided that the value of  IlL ~lr~ is bounded as A -~ A0. However, 
this is not the case for our problem leading to difficulties with a direct implementation of this method. 
From (1.1) it follows that, for large [Ui[, we can estimate laU l by IUJI. The function M above then 
approximates M(Ui )  = D h ~ U  4. More generally we can consider the monitor 

A,I(Ui)  2 q = D h  i U'i, (3.2) 

with q = 4 corresponding to (3.1) and q = 0 to using a uniform mesh. We now determine the value 
of q which leads both to the most accurate solution and is also effective in rejecting spurious solutions. 

3.1.1. Accuracy 
To make an estimate of  the error we note that the smallest value of  hi will be given when Ui is 

largest (at the centre of the peak) and make the assumption that the error estimate in (2.7) can be 
applied taking h to be this value of h~. (In [7] it is shown that this is reasonable provided that the 
mesh does not depart too greatly from uniformity close to the peak.) Making this assumption, taking 
M ~ TOL, applying (2.7) and eliminating h we then have that 

/3 Illull~ - I l u I l ~ l  ~ - - T O L  Ilull~ -q.  (3.3) 
lJull~ D 

From this estimate we see that taking q = 4 leads to an error estimate which grows as HuH 4 as 
A --~ A0, preventing an accurate resolution of  the solution. (Note that this rate of growth is proportional 
to IlL - l  I1~.) 
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Fig. 4. Three profiles of computed solutions showing U0 in the two cases of a uniform mesh with 128 elements and an 
adaptive mesh with ~,~I 2 r 4 h . ~  and U for the optimal monitor with A 2.5244. 

In contrast, if we take q = 8 and set D = /3 then the error estimated above is bounded by TOL 
throughout the computation which is the first requirement for the adaptive method to be effective. 

3.1.2. Rejection of spuriosio' 
Suppose now that A -- A0. We examine the spurious solution, which we again label as U0. If we use 

a uniform mesh then from (2.9) ]lUoHo~ = (2/3) 1/8h-1/4. As before, we assume that we can still use 
this estimate taking h to be the smallest value of hi (see [7]). For such a value of hi the application 
of the adaptive procedure implies that h~HU0[[~c ~ TOL. Eliminating hi we have 

IIUoll~ = (2BD qTOL) -1/(g q) (3.4) 

I f  q = 4 ,  this result predicts that a spurious solution will exist with a finite norm given by 

IIGII  = (2 /3D-4TOL)  - ' / 4 .  (3.5) 

When applying the adaptive routine with this value of q the grid is refined as )~ is reduced but at A0 
a solution is still calculated and in fact a solution is determined for smaller values of ~ as well. The 
implications of this result are rather worrying. The additional complexity of the adaptive algorithm has 
not prevented a false solution being computed. A profile of the corresponding solution for TOL = 0.1 
is presented in Fig. 4, and it is evident that this solution looks very believable. This makes a detection 
of its spurious nature even harder. Observe however, that as TOL becomes smaller, the value of IlU0l[~ 
increases. 
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If q is increased from 0, the value of IIU0]l~ increases and becomes infinite when q -- 8. We deduce 
that no spurious solution exists when q = 8. 

The optimal monitor of the relative error, both for accuracy and for rejecting spuriosity therefore 
appears to be 

"~ 8 M = 2Bh, T U,~. (3.6) 

(A larger value of q will also be effective, but leads to more mesh refinement than is necessary.) 

3.1.3. Choice of  L 
Before applying this method we need to make an estimate for the value Ii of the number of 

neighbours of the ith element that should be refined. Preliminary estimates using the monitor in (3.6) 
give poor values when only the immediate neighbours of the flagged elements are refined, in certain 
cases giving unstable solutions. Now, the major error will occur at the centre of the peak--and in 
the adaptive algorithm, the element at the centre is the first to be flagged. However, for an accurate 
solution all of the elements within the peak need to be refined. From (2.2) the width W of the peak 
is of order W 1/]]ztll ~ .  Suppose that we assume, as before, that h~ll~ll q~ ~ 2/3 TOL at the centre 
of the peak. We then have that 

W/h~ is of order II',II~-4)/2TOL -1/2. (3.7) 

This gives an estimate for the number of elements that need to be refined. If q ---- 4 then approximately 
the same number of points are always placed within the peak independent of the maximum value 
of u. However, for the optimal value of q -- 8 this estimate is unbounded as A ---+ A0 which implies 
that we will not achieve a consistent accuracy with a f ixed number of mesh points (unless we use 
p-refinement). As this number grows the implication is that [~ should also increase with II zll. , In 
practice, when using the radially symmetric elements then taking the fixed, but large value of L -- 64 
proved sufficient. (For the case of cuboid elements the additional geometrical complexity implies that 
the corresponding value of fi will be much higher.) 

3.2. Results 

Although the algorithm can in principle be applied to calculations in a general domain, we restrict 
our attention to the sphere and the basis functions described above. In this case, refinement need only 
be applied to calculate the values of r~ which is a much simpler computational task than refining a 
cuboid or tetrahedral mesh. Furthermore, in this case the value of A0 is known a-priori as A0 : 7r2/4 - 
2.4674011 and an 'exact' radially symmetric solution 'u(x) ~ r~z(]xl) can be constructed by using a 
shooting method. Knowing the exact solution we can compute an actual error ERR defined by 

ERR = I I~[[~-  IIUll~ 
II~ll~ 

For the first computation we take 2~I as defined in (3.6), Ii = 64, TOL = 0.1 and start the 
computation at A = 3.4 with an initial uniform mesh of 32 elements. In this calculation we set 
AA = 0.2 if /[~ll~ < 5, and 25/ll llL otherwise. Here N is the number of elements used in the 
computation and 1/ho is the inverse of the size of the smallest element. Table 1 shows clearly that the 
method is very effective in keeping the error in U within the required tolerance, and that re-meshing 
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Table 1 

;~ llull~, I1~11~ ERR ~/h,, N 

3.4000 4.9625 5.1743 0.0409 32 32 

3.1954 5.6586 5.8769 0.0371 64 64 

3.0575 6.0743 6.5474 0.0722 64 64 

2.9459 6.8870 7.2920 0.0555 128 128 

2.8694 7.2706 7 .9751  0.0883 128 128 

2.8043 8 . 1 9 9 1  8.7315 0.0610 256 193 

2.7590 8.5722 9.4035 0.0884 256 193 

2.7193 9.5830 10.1355 0.0545 512 258 

2.6909 9.9640 10.7755 0.0753 512 258 

2.6656 10.3104 11.4572 0.1001 512 258 

2.6428 11.4877 12.1951 0.0580 1024 324 

2.6263 11.8566 12.8250 0.0755 1024 324 

2.6113 12.1977 13.4895 0.0958 1024 324 

2.5975 13.4909 14.1984 0.0498 2048 390 

2.5873 13.8664 14.7991 0.0630 2048 390 

2.5780 14.2190 15.4241 0 .0781 2048 390 

2.5693 14.5494 16.0791 0 .0951 2048 390 

2.5612 16.0368 16.7710 0.0438 4096 457 

2.5551 16.4111 17.3491 0 .0541 4096 457 

2.5494 16.7666 17.9452 0.0657 4096 457 

2.5441 17.1035 18.5630 0.0786 4096 457 

2.5391 17.4224 19.2066 0.0929 4096 457 

2.5344 19.1918 19.8805 0.0346 8192 525 

2.5309 19.5658 20.4330 0.0424 8192 525 

2.5275 19,9237 20.9985 0.0512 8192 525 

2.5244 20,2657 21.5792 0.0609 8192 525 

occurs  very c lose  to the po in t  for which  E R R  = 0,1 showing  that the es t imated  and actual  errors are 

very close.  The  ef fec t iveness  of  the me thod  for this p r o b l e m  gives  us conf idence  in app ly ing  it to 

p rob l ems  for which  A0 is u n k n o w n  a l though we see that the me thod  has used  a rather  large n u m b e r  

of  mesh  points  to ach ieve  this result.  

For  the second  c o m p u t a t i o n  we take M 2 4 = h i U  I (i.e., q = 4 in (3.2)) and  compu te  IIU0tl  at A0 for 

a range  of  va lues  of  TOL.  This  g ives  Table  2. 
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Table 2 

TOL IIU011oo 1/ho X TOL'/411O),II~ 
0.4 10.8110 256 130 8.597 

0.2 12.7747 512 258 8.543 

0.1 15.1501 512 325 8.519 

0.05 18.0118 1024 391 8.517 

0.025 21.4737 2048 460 8.539 

0.0125 24.6468 4096 535 8.241 
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Fig. 5. A comparison of the true bifurcation diagram with the computed diagram using the three methods described in Fig. 4. 
The value of A0 is also indicated. 

From this table, it is fairly clear that I]U0]]~ is indeed scaling at close to the predicted rate of  
TOL-I/4. 

In Fig. 4 we present the profile of  the computed solutions U0 determined above when TOL = 0.1 
and compare it with the profile of  U0 obtained with a uniform mesh with h = 1/128 and also a 
solution computed using the optimal monitor (3.6) taking A = 2.5244 > A0. In this figure we present 
the computed solution as a function of Ix] over the restricted range of 0 ~< Ix] < 0.2. This range is 
chosen so that the profile of  the peak can be seen clearly. Again, it is clear from this figure that all 
the profiles look quite plausible--even though two correspond to spurious solutions. 

Finally, in Fig. 5 we present three bifurcation diagrams of the computed graph of (A, ]]UH~ ) for 
a uniform mesh with 128 elements and the two adaptive meshes described above. Note that all three 
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graphs are close to the exact bifurcation diagram if A > 3 but that they diverge markedly for smaller 
values. It is clear from this figure that whereas the bifurcation diagram for the uniform mesh is smooth, 
the curves obtained in the adaptive cases are not and show discontinuous changes in gradient as the 
mesh is adapted. 

4. Dynamic re-meshing methods 

In the previous section we have shown that static regridding methods are effective in computing 
the solution, but they are somewhat inefficient and require a rather large number of mesh points to be 
effective. It is reasonable to ask whether comparable accuracy can be obtained with a smaller number 
(indeed a fixed number) of mesh points if they are suitably placed. This is the philosophy behind 
methods which attempt to retain an error within a prescribed accuracy by optimally placing a fixed 
number of points. A review of these is given in [11]. An immediate indication that this approach is 
unlikely to succeed for (1.1) is given by the previous calculation of the number of points required 
to resolve the peak. If IlL - j  ]]~ were bounded then it would be appropriate to take q = 4 in our 
calculations and (3.7) would predict that the peak could then be resolved with a fixed number of 
points. However, the unboundedness of ]]L J]]~ forces us to take q = 8 leading to a need for an 
unbounded number of mesh points to achieve a consistent level of accuracy. 

Now suppose that we consider a more general dynamic refinement method. Such methods are often 
based upon the idea of equidistributing a monitor M of the solution (such as the arc-length) which is 
large when the solution is changing rapidly. For the method described in Section 3 this implies that 

r ' i + l  1 / ' /  i'~I dr = ~ i l I  dr. 

r i 0 

This equation for the mesh is then solved simultaneously with the underlying equation. 
We consider first the commonly used arc-length monitor ; i  x/1 + t~2. Using the approximation 

(2.2) for ~ we see that ux dominates 1 within the peak and thus 

r i + l  

./'--__ ~'~/d'," ~ ~*(r,:+l) ~'.(ri). 

Fz 

Using {2.2) we then have (after some manipulation) 

'ri ~ 1 - i / N  3 ,  

which then gives 

hi ---- 7 " i + 1  - -  r i  '~ 2(i + 1)N ' h0 ~ ~ 2N " 

The value of h0 thus scales in a very similar manner to the value obtained for the static regridding 
method when q = 4. The dynamic re-meshing method will therefore behave similarly, and in particular 
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will admit spurious solutions when A = A0. Calculations with other monitor functions such as M = 
a + b~L p again give similar meshes to the above, with closely related errors. Essentially, this is because 
the singularity in (2.2) has a natural length scale of 1/ l lul l~ and the dynamic meshing methods tend to 
place mesh points equally with respect to this. Unfortunately as we have shown, the mesh points need 
to be placed more closely as Ilutl~ increases in order to obtain accurate results. Numerical calculations 
(not presented here) all corroborate the above results. 

5. Conclusions 

We have shown that the special features of problem ( l . l )  require careful error estimates which take 
into account the growth in the norm of IlL l ll~. If this growth is not taken into account then the 
adaptive procedure will not necessarily give an accurate solution and will also admit spurious solutions. 
The error estimate derived using the bound for IlL -1110~ leads to a method which is effective for the 
calculations on the reduced problem in the sphere. The next stage in the continuation of this work is 
to apply this estimate to a static regridding method for the full three dimensional problem. In principle 
the error estimate should be just as effective, but computational difficulties are likely to arise owing to 
the large number of elements that are likely to be necessary for the computation. Similar techniques 
are likely to be necessary for computations on the large number of critical problems related to (1.1). 
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