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It is well known that some numerical methods for initial value problems admit
spurious limit sets. Here the existence and behaviour of spurious solutions of
Runge-Kutta, linear multistep and predictor-corrector methods are studied in
the limit as the step-size h—0. In particular, it is shown that for ordinary
differential equations defined by globally Lipschitz vector fields, spurious fixed
points and period 2 solutions cannot exist for h arbitrarily small, whilst for locally
Lipschitz vector fields, spurious solutions may exist for h arbitrarily small, but
must become unbounded as h— 0. The existence of spurious solutions is also
studied for vector fields merely assumed to be continuous, and an example is
given, showing that in this case spurious solutions may remain bounded as h — 0.
It is shown that if spurious fixed points or period 2 solutions of continuous
problems exist for h arbitrarily small, then as h— 0 spurious solutions either
converge to steady solutions of the underlying differential equation or diverge to
infinity. A necessary condition for the bifurcation spurious solutions from A =0 is
derived. To prove the above results for implicit Runge—Kutta methods, an
additional assumption on the iteration scheme used to solve the nonlinear
equations defining the method is needed; an example of a Runge-Kutta method
which generates a bounded spurious solution for a smooth problem with A
arbitrarily small is given, showing that such an assumption is necessary. It is also
shown that an Adams—Bashforth/ Adams—Moulton predictor-corrector method in
PC™ implementation can generate spurious fixed point solutions for any m.

1. Introduction

In this paper we are concerned with the solution of the autonomous initial value
problem: find y € R satisfying
dy

@ f(y) for t=0 and y(0)=y, (1.1)
where f: ®™ — ®™. Continuity conditions on f will be stated where required.

Often (1.1) cannot be solved in closed form and a numerical method is used to
replace the continuous system by a finite dimensional map. It is then essential to
consider: What is the relationship between the flow associated with the differential
equation (1.1) and the flow associated with the map used to model the system
numerically? Often it is the asymptotic behaviour of (1.1) which is of interest, and
so in this paper we will compare the asymptotic behaviour of (1.1) and its
numerical counterpart.

Standard convergence results for numerical methods give error bounds of the
form e"h? for individual trajectories, where h is the step-size, p is the order of
the method, c is a constant (typically positive) and T is the length of the time
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interval over which the integration occurs. Such estimates can be used to show
that, on a compact time interval, the trajectory associated with the map converges
to the corresponding trajectory of the continuous system as h— 0. However if we
wish to compare the asymptotic features of the dynamical system and the
associated map such estimates become useless as T— o (except in rare cases
where ¢ <(0), and methods for initial value problems which are convergent in
finite time do not necessarily yield the same asymptotic behaviour as the
underlying differential equation for small fixed step-size.

The possible asymptotic states are given by the o and w limit sets. Typically
these contain fixed points, periodic orbits, quasi-periodic orbits and strange-
attractors. See [4] for a complete description of these objects. The simplest limit
sets are fixed points (also called steady solutions). If the fixed points of the
continuous and numerical systems are different, then clearly so will be the
dynamics of the two systems, thus for a numerical method to reproduce the
correct asymptotic behaviour it is essential that it has the same set of fixed points
as the underlying continuous problem (1.1) which it is approximating.

Runge—Kutta or linear multistep methods are often used to obtain a numerical
solution of (1.1). Iserles [7] showed that these methods retain all the fixed points
of (1.1), however Runge—Kutta methods (but not linear multistep methods) may
have additional spurious fixed points, not corresponding to fixed points of the
continuous system, and thus may display incorrect dynamics.

It is also possible for some numerical methods to converge to solutions of the
form y,,=wu, ¥,,,, =V, where u#v. This is known as a period 2 solution (or
2-cycle or sawtooth solution). Such periodic motion on the grid scale must be
spurious. If the 2-cycle is stable then it will attract a certain subset of initial
conditions, whilst if it is unstable it has been observed [11] that the unstable
manifold of the spurious solution is often connected to infinity, thus destroying
any global attractor which may exist for (1.1). Thus although period 2 solutions
are easy to recognise as spurious, it is preferable to use methods which do not
produce this behaviour.

The observations above led to the following definitions, which are reproduced
from [8].

DeriniTioN 1.1 A numerical method for (1.1) which does not admit spurious
fixed points is said to be regular of degree 1, denoted R!"!. A method which is not
R s said to be irregular of degree 1, denoted IR!".

DerinimioN 1.2 A numerical method for (1.1) which does not admit period two
solutions is said to be regular of degree 2, denoted R™. A method which is not
R is said to be irregular of degree 2, denoted IR'?.

We will also use the notation R!"?! to denote a method which is R!"! and R!?,
etc. Examples of spurious fixed point and period 2 solutions, and their effect on
the dynamics of the numerical map can be found in {3,7,8, 10, 11, 12]. These
spurious solutions often bifurcate from the linear stability limit, but it should be
noted that they can persist for arbitrarily small values of the step-size A, and thus
incorrect asymptotic behaviour can be observed at step-sizes used in practical
implementations.
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A thorough study of regular Runge—Kutta and linear multistep methods has
been conducted in [5, 7, 8,9, 12]. Iserles [7] presents examples of spurious steady
solutions of Runge—Kutta, linear multistep and predictor-corrector methods
arising from Riccati equations, and also shows that all linear multistep methods
are R!'. Stuart and Peplow [12] classify the R!"? one step linear multistep
methods, and study the period 2 solutions of IR!? methods. That paper was also
the first to consider the existence of spurious solutions of irregular methods in the
limit as h— 0. It was shown that if fe C'(®™, &™), period 2 solutions of /R!?
one step linear multistep methods become unbounded as h — 0, if they exist for h
arbitrarily small. This result, which is a special case of Theorem B(c)(ii) below,
inspires the approach of the current work. Hairer, Iserles and Sanz-Serna [5]
conduct a systematic study of the spurious equilibria of Runge—Kutta methods,
and in particular classify all the R!" Runge-Kutta methods by means of a
recursive test. Iserles, Peplow and Stuart [8] present a unified theory of spurious
solutions based on local bifurcation theory, using the step-size h as the bifurcation
parameter. Amongst many other results they show that the maximum order of a
R!"2I Runge-Kutta method is 2, and that the recursive test of [S] can be used to
classify these methods. Also in that paper all the R'? linear multistep methods are
identified and the regularity properties of a class of predictor-corrector methods
are studied. In [9] Iserles and Stuart consider R!"? linear multistep methods
further, and a modification of the backward differentiation formulae which
generates such methods is proposed.

Other considerations mean that (1.1) is often numerically integrated using a
method which is not R!"2\. For example the highest possible order of a R!!"?!
Runge-Kutta method is 2, and Hairer et al. [5] proved that the Forward Euler
method is the only R!" explicit Runge—Kutta method. If a method which is not
R is used, then spurious solutions may exist, and to ensure good numerical
reproduction of the dynamics of (1.1) it is necessary to study the existence of
spurious solutions in irregular methods. This approach, complimentary to the
study of regular methods per se, will be followed in this paper. )

Throughout we will be concerned with fixed time stepping methods, but will
treat the step-size h as a parameter and consider the existence of spurious fixed
point and period 2 solutions in the limit as #— 0. Simple continuity conditions
will be applied to f in (1.1), which will allow us to derive results on the possible
existence and boundedness of spurious solutions in the limit as h— 0. The main
results are stated below.

THEOREM A If a numerical approximation to (1.1) is obtained using either;
(a) an explicit Runge—Kutta method,
(b) an implicit Runge-Kutta method, where (2.1) is solved using the iteration
(2.11),
(c) an Adams—Bashforth/Adams—Moulton predictor-corrector method in
PC™ implementation (see Section 5),
then
(i) if f is globally Lipschitz spurious fixed points cannot exist for 4 arbitrarily
small,
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(ii) if f is locally Lipschitz, and in particular if fe C'(®™, ®™), and spurious
fixed points exist for h arbitrarily small, then these spurious fixed points
tend to infinity, in norm, as h—0,

(iii) if fe C(R™, &™) and a continuous branch y(h) of fixed solutions of the
numerical method exists for h sufficiently small, then as h—0, {|§(h)||— =
or ||f(y(h))||—0. If furthermore the zeros of f are isolated then
HE(F(A))]| = O implies y(h)— ¥, a fixed point of (1.1),

(iv) if a spurious fixed point solution bifurcates from y at & = 0 then either f is
not continuous at y, or, f(§) =0 and f is not Lipschitz at §.

THeoreM B If a numerical approximation to (1.1) is obtained using either;

(a) an explicit Runge—Kutta method,

(b) an implicit Runge—Kutta method, where (2.1) is solved using the iteration
(2.11), .

(c) a zero-stable linear multistep method of the form (4.1), with p(—1)#0,

then
(i) if f is globally Lipschitz period 2 solutions cannot exist for h arbitrarily
small,

(i) if fis locally Lipschitz, and in particular if fe C'(®™, ®™), and a period 2
solution (u(h), v(h)) exists for h arbitrarily small, then u(h), v(h) both
tend to infinity, in norm, as h— 0,

(iii) if fe C(R™, R™) and a continuous branch (u(h), v(h)) of period 2
solutions of the numerical method exists for A arbitrarily small, then as
h—0, |lu(h)|], ||v(h)|l both tend to infinity, or [|[f(u(k))||, ||f(v(h))|} and
[lu(h) —v(h)[|— 0. If furthermore the zeros of f are isolated then
||£(u(h))||— 0 implies u(h), v(h) tend to y, a fixed point of (1.1),

(iv) if a period 2 solution bifurcates from y at A =0 then either f is not
continuous at y, or, f(§) =0 and f is not Lipschitz at y.

THeoreM C Every Adams-Bashforth/Adams—Moulton predictor-corrector
method in PC™ mode is IR""].

The proofs of the above results can be found in the following sections, where
sufficient bounds on the step-size h to prevent spurious solutions in the case
where f is globally Lipschitz are also given, and many other results can also be
found.

In Section 2 we develop the theory for spurious fixed point solutions of
Runge-Kutta methods. In addition to the results above, several corollaries are
given, and we also prove that for an implicit method the Runge—Kutta equations
(2.1-2) are always soluble for sufficiently small step-size if f is continuous on
some neighbourhood of y,. Example 2.8 is given which shows that Theorems A
and B do not apply to arbitrary solutions of implicit Runge—Kutta methods, and
hence that the assumption on the iteration scheme used to solve the implicit
equations is necessary.

The theory is extended to cover period 2 solutions of Runge—Kutta and linear
multistep methods in Sections 3 and 4. The Runge—-Kutta results follow easily
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from those in Section 2, whilst the linear multistep results follow from Lemma 4.3
which shows that for fixed step-size there is at most one 2-cycle of any linear
multistep method passing through any point of #”. In Example 3.6 a continuous
initial value problem that generates bounded spurious solutions for h arbitrarily
small is presented, showing that Theorems A(iii) and B(iii) are relevant.

In Section 5 spurious fixed point solutions of predictor-corrector methods are
studied. We will show that the fixed point solutions of an Adams-
Bashforth/ Adams—Moulton predictor-corrector method in PC™ mode correspond
to the fixed points of an associated explicit Runge—Kutta method, and hence
Theorems A and C apply. We suggest that iterating the corrector to convergence,
will give better reproduction of the long term dynamics of (1.1).

We could conclude from Theorems A and B that when f satisfies a Lipschitz
condition, spurious solutions will not degrade the numerical solution if the
step-size is sufficiently small. This may not be true because an unstable spurious
solution can destroy a global attractor, and even though the spurious solution
becomes unbounded as A— 0 the dynamics of the continuous and numerical
systems will differ significantly for some initial conditions however small the
step-size is. Also initial value problem solvers are often used to draw the phase
portraits of a dynamical system, in which case (1.1) must be solved for all possible
initial conditions, and the existence of any spurious solution, whether stable or
unstable, will degrade the numerical results.

By Theorem A(iv) and B(iv) even for arbitrarily small step-sizes we cannot be
sure that a numerical method will produce the correct behaviour in a neighbour-
hood of a fixed point where f is not Lipschitz. However it should be noted that
the solution of (1.1) itself is not unique in a neighbourhood of such a point.

In seeking to prove general results, no assumption has been made at any stage
on the global structure of the nonlinear function f, and hence our results apply to
all problems of the form (1.1). It should be noted then, that in some cases and
for some methods it can be shown that spurious solutions cannot exist for h
arbitrarily small, although f is not globally Lipschitz, but where some other
structure is imposed on the nonlinear term.

Throughout this paper fixed time-stepping methods are studied, and variable
time-stepping methods, which are often used in practice, have not been
considered. It is hoped that by increasing the understanding of spurious solutions
of fixed time-step methods, the analysis of variable time-stepping methods may be
facilitated, and the approach of this paper may be directly relevant to such a
study.

2. Spurious fixed points of Runge-Kutta methods

In this section the spurious fixed point solutions of explicit and implicit
Runge—-Kutta methods are considered. Often a Lipschitz continuity condition will
be assumed, but a series of £, §-arguments will enable us to prove some results
when Lipschitz conditions do not apply. A general s-stage Runge—Kutta method
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may be written as:

Yi=y.+hZalY) i=1..,

=1

Cn

@.1)

yn+1 = y" + h 2 blf(Yi) (22)
im]

Here y, approximates the exact solution at ¢ = nh, h >0. The method is often
represented using the Butcher Tableau notation

C a a2 " 4y,
c|A C2 az, Az, -~ Qg
bT o= | ¢ Do 2.3)
Cs a:.l as.2 e a:,:
| b, b, --- b,
where ¢;:=Xi_,1a;;, j=1,...,s. We will always assume that the method is
consistent. This implies that Yj., b, = 1. We will also use the notation
i-1 s
I=max D |a;, u=max |a, (2.4)
i jm1 Y
a=Il+u, 2.5)
st =max 2, |ay| = || A\, (2.6)
j=1
and
B=) |b|=1 2.7)
im]
Notice also
d=<a<s2d. (2.8)
The method (2.1-2) is said to be explicit if
a,;=0 Vlsisjs=s

and implicit otherwise. The Forward Euler method (2.9) is the simplest and
unique one-stage explicit Runge-Kutta method.

0]0

N 2.9)

The R! methods were classified in [5] by a recursive test. A simple classification
for explicit methods was found:

THEOREM 2.1 (Hairer, Iserles and Sanz-Serna [5]) A consistent explicit Runge-
Kutta method of the form (2.1-2) is R if and only if it produces the same
solution sequence as the Forward Euler method (2.9).
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The solution to (1.1) is often approximated using a high order explicit
Runge-Kutta method. By Theorem 2.1, such a method is necessarily IR"!, and
we may expect spurious steady solutions, and hence incorrect dynamics. This
motivates our approach of considering the spurious solutions of irregular
methods, rather than simply classifying the regular methods.

If the method (2.1-2) is implicit then it will be assumed throughout that the
implicit equations (2.1) have been solved exactly. We will prove later that the
equations (2.1-2) are always soluble (for sufficiently small step-size) under the
continuity conditions that we will impose on f, but that this solution is not
necessarily unique. Where the implicit equations are not uniquely soluble, we will
need to assume that the equations (2.1) are solved using the iteration (2.11), to
enable us to pick a unique solution of these equations. This assumption will be
explicitly stated where it is made.

Often f satisfies a Lipschitz continuity condition. We begin by defining
Lipschitz continuity.

DerFNiTION 2.2 f: R™— R™ is said to be Lipschitz on X <« &™ if 3L >0 such
that

If(x) — )| <LlIx—yll Vx,yeX.
Here ||-|| is any norm on ®™. L is said to be the Lipschitz constant. f is said to be
globally Lipschitz if £ is Lipschitz on ®™. f is said to be locally Lipschitz if { is

Lipschitz on all bounded subsets of R™. fis Lipschitz at x € ®™ if f is Lipschitz on
some neighbourhood of x.

For an implicit method, it is not immediately apparent whether the equations
(2.1-2) are soluble. Butcher proved that they are uniquely soluble for sufficiently
small step-size if f is globally Lipschitz.

THEOREM 2.3 (Butcher [1]) If f is globally Lipschitz with Lipschitz constant L
and

1

then the equations (2.1-2) are uniquely soluble. Furthermore this solution can be
found by iteration. Set Y) =y, Vi=1,..., s then iterate

i—1 I
YV =y +h Y a YV +h D af(YY) (2-11)
=1 J=i

Then let Y, =lim,_., YV. This limit exists and defines the solution of (2.1). O

The following Lemma provides a bound on the solution, when a Lipschitz
condition is assumed and will enable us to derive directly the nonexistence of
spurious solutions in certain regions.

LeEMMA 2.4 If fis Lipschitz on U with Lipschitz constant L, y, € Uand Y; e U Vi
and
1
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then the numerical solution defined by (2.1-2) satisfies

I6Cy) — €YD < 7= o7 Il Vi=1,...,s (2.13)

L.szlh

Note. The norm in (2.13), and throughout the rest of this paper, can be any
norm, but where a particular Lipschitz constant is used, must be consistent with
the norm used to define that constant.

Proof. Consider the equations (2.1-2). Let

M = max V)
then
197 ~ 81 = [ev) =y, + £ 5 0005, )|
h ,21 a; f(Y;)
<LhdM (2.14)
Hence

IECY )|l =< LhsAM + ||(y,)||
and in particular
M < LhdAM + |[f(y, )|l
(1 - Lsh)M < |If(y.)|l
and the result follows from (2.14). O

We now prove the nonexistence of spurious fixed points for 4 sufficiently small
if f is globally Lipschitz.

THEOREM 2.5 If f is globally Lipschitz, with Lipschitz constant L, and

1

<——La¢(1 T B) (2.195)

then the Runge—Kutta method (2.1-2) admits no spurious fixed points when
applied to (1.1).

Proof. Suppose there exists a solution of (2.1-2) such that y,=y,,, with
f(y,) #0. Since f is globally Lipschitz, Lemma 2.4 applies and (2.13) holds. Now
(2.2) implies

S bA(Y) =0 (2.16)

i=t
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and by consistency

16yl = g']b,r(yn)

3 6103 1%,
< B max [ity,) ~ (V)

LhAB
=s——|If 13) .
Il by (213) @17)
and since (2.15) holds, (2.17) implies ||f(y,)ll <|/f(y.)ll, clearly a contra-
diction. O

CoroLLARY 2.6 If fe C'(R™, #™) with uniformly bounded Jacobian then there
exists H > 0 such that if the consistent Runge—Kutta method (2.1-2) is applied to
(1.1) with step-size h < H, then there are no spurious fixed points. O

There are very few interesting problems of the form (1.1) for which f is globally
Lipschitz, but f is often locally Lipschitz, and we would like to generalize
Theorem 2.5 to this case. The following example modified from an example in
[11] shows that this cannot be done.

ExampLE 2.7 Consider the initial value problem

d
Ey =—y> where y(0)eR (2.18)

Zero is the only fixed point of (2.18). Now suppose a numerical approximation is
obtained using the Forward Euler method (2.9). This yields

Yat1 = Ya — hys, (2.19)

It is simple to check that y, = (—1)"V2/h defines a period 2 solution of (2.19).
Now suppose that the numerical solution is obtained using the method (2.20)

(2.20)

One step of this method with step-size A corresponds to two steps of the Forward
Euler method with step-size /2. Thus for any h >0 y, =V4/h and y, = —V4/h
are both spurious fixed points of the method (2.20) for the problem (2.18).

Notice that the spurious solutions in the example exist for all A, but tend to
infinity as h— 0. We will later prove that if f is locally Lipschitz then 2-cycles of
linear multistep methods which exist for arbitrarily small # tend to infinity as
h—0. We would also like to prove this result for the spurious fixed points of
"Runge-Kutta methods, but the example below shows that it does not hold for
these methods without further assumptions.
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ExampLe 2.8 Consider the initial value problem

d
d_{=fu(y)=y3, where y(0) € &. (2.21)

Zero is the only fixed point of (2.21). Now suppose a numerical approximation is
obtained using the Runge-Kutta method (2.22).

2.22)

Let y, =0, then it is simple to check that (2.23) solves the equations (2.1-2) for
the method (2.22) and any h >0 where f is given by f,.

Yn=Yns1=0
Y, =V2/h (2.23)

Y,=-V2/h

Now consider the modified problem

%=fz(y)=(y +p(y))’, where y(0)e R (2.24)

and p is the test function

0 it |y| =1
exp [1/(y*-1)] if |y|<1l.

Observe that f,(0) = e~ # 0, thus zero is not a fixed point of (2.24), also since p is
a test function, (see [2]), e C°(R, R). Now consider the numerical solution
using the Runge—Kutta method (2.22). For |y|=1, fi(y) =f(y), therefore if
h =<2 and y, =0 then (2.23) also solves the equations (2.1-2) for the modified
problem (2.24). Thus we have a problem of the form (1.1), where f is smooth,
and a Runge—Kutta method which generates a spurious fixed point which exists
for h arbitrarily small and is itself fixed as h — 0.

() =|

All hope is not lost however. It should be noted that in both the problems
considered in Example 2.8 the equations (2.1) admit more than one solution. For
fi the solution y, =y,,, =Y, = Y, =0 is far more ‘natural’ than the solution given
in the example. In practical implementations of implicit Runge—Kutta methods,
the equations (2.1) are often solved using an iteration scheme. We claim that any
‘sensible’ iteration scheme will converge to the ‘natural’ solution of the
equations, and the spurious fixed solution seen in the example will not arise in
practice. Although results similar to those that follow could be proved for any
‘sensible’ iteration scheme, the technicalities of the proofs depend on the specific
scheme used, and we will assume throughout the rest of this chapter that when
the Runge—Kutta equations (2.1) are implicit then they are solved using the
Butcher iteration (2.11).
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We need to prove a number of preliminary results before we can justify our
claim. First we prove the existence of a (not necessarily unique) solution of the
equations (2.1-2) when the condition that f is globally Lipschitz is relaxed.

In the following proposition and many of the subsequent technical results in
this paper we will require Us to be a subset of some set U, such that

inf inf ||x—y||= 6. (2.25)

yeR™U xe U,

This is equivalent to requiring the boundaries of Us and U to be separated by
distance at least 8, (where the distance function is induced by the norm), so that
for any x € Uy, the closed ball of radius & about x, B(x, 8), is contained in U.

ProrposiTiON 2.9 Suppose f is continuous on a compact set U, and Us < U such
that (2.25) holds, let

M = sup |Ify)I (2.26)
and suppose
o
h<—. 2.27
M (2.27)

Then if y, € Uy there exists a solution of the equations (2.1-2) such that
NY;—yali<é Vi (2.28)

and thus Y, e UVi. Furthermore, if the iteration (2.11) converges, then it
converges to such a solution.

Proof. Consider the iteration (2.11). Denote the cartesian product of s closed
balls B(y,, 8), by B(y,, 6)°. Now suppose

(YY, YS, ..., YY) e B(y., 6)
Then (2.11) and (2.27) imply
(Yl~+l’ Y2N+l) R Y."N+l) e B(yl‘lY 6)’

Furthermore, since f is continuous on U the iteration (2.11) defines a continuous
map from the convex compact set B(y,, 8)* into itself. Thus by Brouwer’s Fixed
Point Theorem [6] there exists a fixed point of the iteration (2.11) within
B(y,, 8). This defines the required solution of (2.1-2). O

Note. We have not proved any of the following:
(i) that there is a unique solution of (2.1-2) satisfying the conditions of
Proposition 2.9,
(ii) that there is not a solution of (2.1-2) such that ||Y, —y,|| > 6 for some (or
all) i,
(iii) that the iteration (2.11) converges.
If we assume that f is Lipschitz on U then we can prove that (i) and (iii) hold.
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ProposiTiON 2.10 If f is Lipschitz on bounded U, with Us = U such that (2.25)
holds and if

6 1
pmin(-2, 1) 229
min M’ La (2.29)
where M is defined by (2.26) and L is the Lipschitz constant, then for any y, € Us
there exists a solution of the equations (2.1-2), such that Y, € U Vi, furthermore
there is a unique solution with this property and the iteration (2.11) converges to
this solution,

Proof. By the proof of Proposition 2.9
IY/-yall<d VN

So Y e UVj, N. Now f is Lipschitz on U and although Theorem 2.3 does not
apply in this case, Butcher’s proof [1] holds, to give the required result. O

In neither of the above cases is it proved that a solution sequence {y,}; ., can
be generated using the iteration (2.11) with fixed step-size, but the aim of this
paper is to study the existence of spurious solutions, so we will assume that a
solution sequence exists, with the equations (2.1-2) being solved exactly, then
Proposition 2.9 and Proposition 2.10 will enable us to derive results on the nature
of the spurious solutions.

All the remaining results in this section will follow from the two lemmas
below.

Lemma 2.11 If fis Lipschitz on bounded U, with Us c U such that (2.25) holds

and
h< 'n(‘S 1 )
S O
M\aM’ L(1+ B)

where M is defined by (2.26) and L is the Lipschitz constant, then the solution of
the equations (2.1-2) satisfies y, =y,., with y, € U, if and only if f(y,) =0;
where we assume that if the method is implicit, then (2.1) is solved using the
iteration (2.11).

Proof. Proposition 2.10 implies that the conditions for Lemma 2.4 hold and
hence (2.13) holds. Now suppose that there exists a solution of (2.1-2) such that
¥n = Yn+1 With £(y,) #0 and y, € Us, and follow the proof of Theorem 2.5 from
(2.16) to obtain the result. O

Lemma 2.12 Suppose f is continuous on a compact set U, and that if the
Runge—-Kutta method is implicit, then (2.1) is solved using the iteration (2.11),
then given any U c U such that (2.25) holds and any £ >0 there exists H(€) >0
such that for h < H(€) any fixed solution ¥ of (2.1-2) such that § € U, satisfies

I <e.
Proof. Since U is compact, f is uniformly continuous on U, so given £, >038, >

0 such that for any x,ye U satisfying ||x —y|| <&, then ||f(x) - f(y)|| <€,. Let
£, =¢€/B, 6,=min (4, 8;) and U,,= {x € R™ : inf, g~y ||x —y|| = 6,}. By Propo-
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sition 2.9 if h <(8,/aM) then for any y, € Us, it follows that ||Y; —y,|| < d,.
Hence if y, is a fixed point solution of (2.1-2) it follows that;

S bif(y.)

i=1

3, biasn) — v

< Bg,

=&

eyl =

and the result follows since Us ¢ Us,. O

Example 2.7 showed that it is possible for spurious solutions to exist for h
arbitrarily small when f is locally Lipschitz, and we can now prove that such
spurious solutions tend to infinity as h — 0.

THEOREM 2.13  Suppose f is locally Lipschitz, and that if the method is implicit,
(2.1) is solved using the iteration (2.11), then if spurious fixed point solutions of
(2.1-2) exist for h arbitrarily small then these tend to infinity in norm as h— 0.
By this we mean that if there exists a sequence (u,, h,) such that h, >0Vp, h,—
0 as p—x and u, is a spurious fixed point of the method with step-size h, then
llu, || =0 as p— <.

Proof. 1t is sufficient to prove that for any bounded set D, for h sufficiently small
no point of D is a spurious fixed point. Since D is bounded, for some r >0,
D < B(0, r), where B(0, r) is the closed ball of radius r centred at the origin. Let
Us=B(0, r) and U= B(0, r + 1). Fix 6 =1, then the result follows from Lemma
211. O

COROLLARY 2.14 Suppose fe C'(R™, ®™), and that, if the method is implicit,
the equations (2.1-2) are solved using the iteration (2.11), then if spurious fixed
point solutions exist for h arbitrarily small then these tend to infinity in norm as
h—0.

An alternative statement of Theorem 2.13 is to say that if a continuous branch
(or bounded sequence) of fixed point solutions exists as A — 0 then 3H > 0 such
that for h <H the corresponding fixed point solution of (2.1-2), m, satisfies
f(u) = 0, that is u is a fixed point solution of (1.1). If we relax the condition that f
is Lipschitz continuous and assume merely that f is continuous on R™ then the
following theorem shows that continuous branches of spurious fixed point
solutions which exist for A arbitrarily small, either tend to steady solutions of the
underlying differential equation, or diverge to infinity as h — 0.

THEOREM 2.15 Suppose f is continuous on R and there exists a continuous
branch of fixed points u(h) of (2.1-2) for h e (0, H], where for an implicit
method (2.1) is solved using the iteration (2.11), then as h — 0 either

(i) lif(u(h))|| =0, or,

(i) llu(h)||— .
If furthermore the zeros of f are isolated then (i) implies that u(h)— §, a steady
solution of (1.1), as h—0.
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Proof. It is sufficient to show that as h — 0, for any compact D, ||f(u(h))||— 0 or
for all sufficiently small A, w(h) is not in D. Let Us=D. Fix d=1. Let
U= {xeR" :inf,.y, |Ix —y|| <5} then apply Lemma 2.12. If the zeros of f are
isolated then the last part follows by the continuity of f. O

Note. Example 3.6 shows that if f is continuous on ®™ it is possible for a
Runge-Kutta method to generate a spurious fixed point solution which remains
bounded and which converges to a steady solution of (1.1) as h— 0.

The following theorem gives a necessary condition for the bifurcation of
spurious fixed solutions from ¥ at h =0, namely either

(a) fis not continuous at y, or,

(b) f(§) =0 and £ is not Lipschitz at y.

THEOREM 2.16 Suppose there exists a sequence (u,, h,) such that A, >0Vp,
h,—0, and w,—§ as p— where, for each p, u, is a spurious fixed point
solution of (2.1-2) with step-size h,, and if the method is implicit (2.1) is solved
using the iteration scheme (2.11), then if f is continuous on a neighbourhood of ¥
it follows that

(i) f(y) =0, that is ¥ is a steady solution of (1.1).

(ii) fis not Lipschitz at §¥.

Proof. (i) By Lemma 2.12 ||f(u,)||— 0 as p — =, and result follows by continuity
of f. (ii) Follows trivially from Lemma 2.11. O

Note. The above theorem also shows that if the numerical method is asymptotic
to § for arbitrarily small & then y is a genuine asymptotic fixed point of (1.1),
(although it does not necessarily follow that the solution of the continuous
problem is asymptotic to ¥ if the same initial value is used as for the numerical
method).

Now consider general f but suppose f is Lipschitz on an open set U. Notice that
by Lemma 2.11 if § € U is a spurious fixed point solution and A < H(J) then y is
within distance & of dU. We can force spurious fixed points to 3U by taking é as
small as we like. By (2.27) as 6 —»0, H(8)— 0. In this way we prove that as h— 0
spurious fixed points either ‘converge’ to the set on which f is not Lipschitz or
‘diverge’ to infinity.

CoroLLARY 2.17 Suppose f is Lipschitz on every bounded subset of some set D,
and if the method is implicit (2.1) is solved using the iteration scheme (2.11), then
given any positive 6, B there exists H(8, B) >0 such that every spurious fixed
point ¥y of (2.1-2) with A < H(, B), satisfies either

(1) infep Iy —x|| <8,
or

(i) Iyl > B

Proof. Take U=B(0, +8)ND and Us={xe U :inf,cqmylIx—y|| =6} and
apply Lemma 2.11. 0O

If the Lipschitz condition is dropped the following result holds.
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CoroLLaRY 2.18 Suppose f is continuous on every bounded subset of some set
D, and if the method is implicit (2.1) is solved using the iterations scheme (2.11),
then given any positive g, f,  there exists H(¢g, B, 6) > 0 such that every spurious
fixed point y of (2.1-2) with h < H(E, B, 8), satisfies either

(1) infep Iy — x|l <9,
or

(ii) 131> .
or

(iii) I <e,
Proof. With U and Uj; defined as in the proof of Corollary 2.17 apply Lemma
2.12. O

3. Spurious period two solutions of Runge-Kutta methods

In this section we will prove results for (spurious) period 2 solutions of
Runge-Kutta methods analogous to those proved in the last section for spurious
fixed points of these methods. Recall that a period 2 solution of (2.1-2) is a
solution sequence of the form y,,=u, y,,,, =v where u#v. We begin by
showing that 2-cycles cannot exist for h arbitrarily small if f is globally Lipschitz.
This result follows as a simple corollary of Theorem 2.5.

THeEOREM 3.1 If f is globally Lipschitz, with Lipschitz constant L, and
1
<
L1+ A)(1+B)

then the Runge—Kutta method (2.1-2) admits no period 2 solutions when applied
to (1.1).

Proof. Following Iserles et al. [8] define the inflated method corresponding to the
Runge—-Kutta scheme (2.1-2) by

h

(3.1)

ielia o0
1+ic|4D 14 (3.2)
" ib”
where A, b” and ¢ are defined by (2.3) and
-
D=| : |
bT

Note that two steps of the original method with step-size h corresponds to one
step of the inflated method with step-size 2h. Thus a period 2 solution of (2.1-2)
with step-size h corresponds to a fixed point of (3.2) with step-size 2h. By
Theorem 2.5 the inflated method admits no spurious fixed points if

h< 2
L1+ )1+ B)
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and therefore if (u, v) is a 2-cycle of (2.1-2) where h satisfies (3.1) then u, v are
both fixed points of (1.1). Trivially then u, v are both fixed points of (2.1-2), but
by Theorem 2.3, the solution of (2.1-2) is unique, hence u = v, therefore no such
2-cycle exists. O

We can apply the other results of the previous section to the inflated method
to derive the equivalent results for the 2-cycles of explicit Runge—Kutta methods,
but we are not able to derive satisfactory results for implicit methods using this
technique. This is because the results in Section 2 are iteration dependent, and
although we can use these results to prove that the inflated method has no
spurious fixed points (and hence the Runge—Kutta method admits no period 2
solutions), the new results will only hold if the iteration scheme used to solve
(2.1-2) is equivalent to solving the inflated method by (2.11). This means we
must solve for two steps of (2.1-2) simultaneously, not a scheme used in practice.
Instead we will prove these results directly in the case where (2.1-2) is solved
using (2.11). First we set up some notation.

Suppose yi, =U, ¥i,.; =V with u#v is a period two solution of the
Runge-Kutta method (2.1-2). Then writing U, for the internal stage values at the
(2n)th step, and YV, for the stage values at the (2n + 1)th step, it follows that:

u=v+h 15;‘,] bA(U,) (3.3)
U =v+h ; a,f(U) (3.4)
v=u+h 1_21 bA(V)) (3.5)
V,=u+h é, a, (V). (3.6)

Adding (3.3) and (3.5) implies

S b{E(U,) +E(V))] = 0 3.7)

The following Lemma provides a bound on the solution, when a Lipschitz
condition is assumed, which is complementary to Lemma 2:4 and together these
two lemmas will enable us to prove directly that 2-cycles cannot exist in certain
regions for h arbitrarily small if f satisfies a Lipschitz condition.

Lemma 3.2 If fis Lipschitz on U with Lipschitz constant L, Y, e Uand Y, e U Vi
and
1

h <m (3-8)

then the numerical solution defined by (2.1-2) satisfies

Lh(# + B)

aes) = OV < T

Myl Vi=1,...,s (3.9
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Proof. With the notation of the proof of Lemma 2.4 observe

10200 = €001 = ey +4 3, 50%) =t + 4 3 %)

ji=1
s

S 6%) - 3 a0

=1 j=1

< Lh(d4 + BM

<Lh

The remainder of the proof is similar to that of Lemma 2.4. O

" Now we prove results equivalent to Proposition 2.9 and Proposition 2.10; and
from which all the remaining results in this section follow.

Prorosimion 3.3 If f is Lipschitz on bounded U, with Us = U such that (2.25)
holds then there exists H(d) > 0 such that no point of Uy is contained in a 2-cycle
of the method (2.1-2) with step-size h < H(d), where (2.1) is solved using the
iteration (2.11), if the method is implicit.

Proof. Let Usp, = {x:inf,.y, ||x —y|| =< 8/2}. By Proposition 2.10 3H(5) > 0 such
that for any y, € Us, the solution of (2.1-2) is such that Y; € Us,. Reducing H(8)
if necessary to ensure h <(6/4BM) where M =sup,.y |If(y)|| then we also have
Y.+1 € Usp. Then similarly at the next step y,., and the associated stage values
are contained in U. Now suppose (u,v) is a 2-cycle with ue Us, then ve Usp.
Again reducing H(S) if necessary so that h <[1/L(sf + B)], where L is the
Lipschitz constant, Lemmas 2.4 and 3.2 apply, so we have;

Lh(s + B) -
||1£(a) — £(U)}| <1——Lh(T+BS N1ECu)|| Vi=1,...,s
I8 — €Vl < T i) Vi=1,. s

Then

LhddB  Lh(d4+ B)B ]

—Lhod 1—Lh(HA + B)

2—hL(B+2)(B+2d)+2n*L*A(sA + B)(1 + B)]
(1 - hLA)(1 — hL(A + B))

S b11U) + (V]| > w25

f=]

~ e |

Again reducing H(6) if necessary we can assume [{f(u)|| > 0 otherwise, u is a fixed
point of (1.1), which must solve (2.1-2), but since w+#v this implies that the
solution of (2.1-2) is not unique in U, contradicting Proposition 2.10. Thus
h <2/L(B +2)(B +24) implies

S btV + V]| >0

im=]

which contradicts (3.7). Therefore no point of U is contained in a 2-cycle. {0
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ProposITION 3.4 Suppose [ is continuous on compact U. Wtih U = U such that
(2.25) holds, then given g, B >0 there exists H(g, §)> 0 such that if ue Us and
(u, v) is a period 2 solution of (2.1-2) with h < H(e, §§) then

(i) max (Jif)]|, [If(v)I) <€

@ii) lla—v[I<p.

Proof. U compact implies f is uniformly continuous on U. Thus given &>
036,>0 such that for any x, ye U satisfying [[x—y|l <8, it follows that
Ifix) —f(y)ll<e. Let 6,=min (6, 8,, B). Define Us, and U,z to be the
maximal sets consistent with (2.25). Let M =sup,., (If(y)ll, and H(e, B)=
min [(6,/2aM), (6,/2BM)]. By Proposition 2.9 for any y, € Us, if h < H(e, B) the
solution of (2.1-2) satisfies ||Y; —y,|l <(8,/2), and furthermore, since h <
(8./2BM);

6
11 = ¥all <5< B, (3.10)

that is Y, € Us,ny and y,., € Ug,yz). Similarly at the next step y,., and the
associated stage values are contained in U.
Now suppose ue Us, and (u,v) is a two-cycle. Then by (3.10) and uniform
continuity
() —£(v)I[ <&
Also

[|£(u) + £(v)|| =

Z bi(E(a) + £(v))

- |2 bt -1vy + 3 sty - o) by 63

=]

<2Be¢

and by the triangle inequality

2B + 1)5. (3.11)

max(uf(u)u,||f(v)u)<( .

Now the result follows on rescaling € from (3.10) and (3.11), since Us c U;,. O

The results below all follow from the propositions above, in a similar way to
that in which the equivalent results were derived in the last Section. The proofs
are omitted.

THeoREM 3.5 Suppose f is locally Lipschitz (in particular if fe C'(R™, ®™)),
and that if the method is implicit, (2.1) is solved using the iteration (2.11), then if
spurious period 2 solutions of (2.1-2) exist for h arbitrarily small then these tend
to infinity in norm as A— 0. By this we mean that if there exists a sequence
(u,, v,, h,) such that h,>0Vp, h,—0 as p—> > and (u,, v,) is a period 2
solution of the method with step-size h, then ||u |, ||v || > > asp—=. O
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If we relax the condition that f is locally Lipschitz continuous and assume
merely that f is continuous on R™ then the following example shows that
bounded spurious solutions can exist for A arbitrarily small.

ExaMpPLE 3.6 Consider the initial value problem

% =f(y), where y(0)e®R (3.12)

where f € C(R™, ®™) is defined by

-yt ify=0

f(”z{(—y)& if y <0.

Zero is the only fixed point of (3.12). Now suppose a numerical approximation is
obtained using the Forward Euler method (2.9). This yields

Yne1= Yn + hf(yn) (313)

It is simple to check that y, = (—1)"h?/4 defines a period 2 solution of (3.13) for
any h > 0. Now suppose that the numerical solution is obtained using the inflated
method (2.20). One step of this method with step-size h corresponds to two steps
of the Forward Euler method with step-size £/2. Thus for any h >0 y, = h*/16
and y, = —h?/16 are both spurious fixed points of the method (2.20) for the
problem (3.12). Notice that all the spurious solutions in this example remain
bounded as #— 0, and furthermore they converge to steady solutions of (3.12).

The following theorem shows that if f is continuous on ®™, then continuous
branches of spurious period 2 solutions which exist for h arbitrarily small, either
tend to steady solutions of the underlying differential equation, or diverge to
infinity as h— 0.

THeoREM 3.7 Suppose f is continuous on ®™ and there exists a continuous
branch of period 2 solutions (u(h), v(h)) of (2.1-2) for h € (0, H], where for an
implicit method (2.1) is solved using the iteration (2.11). Then, as A — 0, either
(1) lIf(a(k))ll, IECv(A)I and |lu(h) — v(R)[|— 0, or,
(i) |lu(h)|l and |[v(h)|| —> <.
If furthermore the zeros of f are isolated then (i) implies that u(h), v(h)— ¥, a
steady solution of (1.1), as A—0. O

The following theorem gives the same necessary condition for the bifurcation of
period 2 solutions from ¥ at & = 0, as was found for spurious fixed points, namely
either

(a) f is not continuous at ¥, or,

(b) £(§) =0 and f is not Lipschitz at y.

THEOREM 3.8 Suppose there exists a sequence (u,,v,, h,) such that h,>
0Vp, h,—0, u,—y as p—» and (u,, v,) is a period 2 solution of (2.1-2) with
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step-size h, for all p, where for an implicit method (2.1) is solved using the
iteration (2.11), and f is continuous on a neighbourhood of §. Then

(i) v,2yasp—>o

(ii) f(y) =0, that is ¥ is a fixed point of (1.1).

(iii) fis not Lipschitz aty. O
CoroLLaRY 3.9 Suppose f is Lipschitz on every bounded subset of some set D,
and if the method is implicit (2.1) is solved using the iteration (2.11), then given
any positive J, f there exists H(5, f) >0 such that every point u contained in a
2-cycle of (2.1-2) with A <H (6, B), satisfies either

(i) infeep |lu—x|[<$,
or

(ii) ful>4. O
CoroLLaRY 3.10 Suppose f is continuous on every bounded subset of some set
D, and if the method is implicit (2.1) is solved using the iteration (2.11), then
given any positive €, 8, & there exists H(g, 8, 6) >0 such that every point u
contained in a 2-cycle of (2.1-2) with A < H(e, B, ) satisfies either

(i) infeep llu—x]| <,
or

(i) [Jufl > B.
or

(iii) ||f(u)l, [If(v)]l <&, and |la—v|| <48, where v is the other point of the
2-cycle. O

4. Spurious period two solutions of linear multistep methods

Consider approximating the solution of (1.1) using a general consistent k-step
linear multistep method

k k

2 oY i=hY BE(Y..) (4.1)

j=0 j=0
with fixed step-size h > 0. Y,, approximates the exact solution of (1.1) at ¢ = nh,
and it is assumed the starting values Y,,...,Y,_,; are given. Define the
polynomials p(z), o(z) by

p(z)= E-% a; 2/, o(z)= % Biz'. (4.2)

Without loss of generality assume a; =1. We will assume throughout that the
method (4.1) is consistent. This implies that

p(1)=0, o(1)=p'(1)=0>. (4.3)
For a zero-stable method b is a nonzero constant. If 8, 0 then the method is

implicit. The dynamics of these methods has been studied extensively. In
particular:

THeOREM 4.1 (Iserles [7]) For a zero-stable linear multistep method (4.1), Y is a
fixed point if and only if f(¥) =0.
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Thus the method is RU'l and hence preserves all fixed asymptotic points of
(1.1), and furthermore introduces no spurious steady solutions. However as with
all previous methods which are R!" it does not necessarily follow that the solution
of the continuous problem is asymptotic to the same point as the numerical
method even when the same initial value is used. No R!" Runge-Kutta methods
are known with order >4 whereas we can obtain linear multistep methods of
arbitrarily high order, hence these methods would seem to be very good for the
long term simulation of systems (1.1) which are convergent to steady solutions as
T — o, The linear multistep methods which do not admit period 2 solutions have
been studied in [8,9, 12]. The following example shows that period 2 solutions
can be constructed trivially if p(—1) =0.

ExampLE 4.2 (Iserles, Peplow and Stuart [8]) If p(—1) =0 then take any f which
has at least two fixed points. If f(§) = f(§) =0 with §# ¥ then it is easy to check
that

is a period 2 solution which satisfies (4.1), for any A > 0.

The above example prevents us from extending the results of the previous section
to cover all zero-stable linear multistep methods, since the 2-cycles of Example
4.2 exist independently of the step-size h. However if we exclude the case
p(—1) =0 we may proceed to prove similar results for period 2 solutions of linear
multistep methods as we prove for Runge—Kutta methods. The following lemma,
which shows that if the step-size is fixed then there is at most one 2-cycle passing
through any point of the space, provides the key to this approach.

LemMA 4.3 Suppose the linear multistep method (4.1) is zero-stable with
p(—1) #0, then a 2-cycle (u, v) of the method with step-size h satisfies f(u) #0,
f(v)#0,

f(u) +£(v)=0 (4.5)
and
_2ho(=Df(v) '
=== (4.6)

Proof. In Section 2 of [9] it is shown that a 2-cycle of a linear multistep method
satisfies

ho(1)[f(u) + £(v)]=0 4.7
and
ho(=1)[f(v) — f(@)] = p(~1)[v — u}. (4.8)
Since the method is zero-stable (4.5) follows from (4.7). Hence (4.8) simplifies to
p(=D[v - u] = 2ho(~ D(v),
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and rearranging gives (4.6). Finally if f(u) =0 or f(v) = 0 then (4.5-6) imply that
u = v, a contradiction since (u, v) form a 2-cycle. O

Lemma 4.3 allows us to classify explicitly the linear multistep methods which
do not admit period 2 solutions.

THEOREM 4.4
(i) The linear multistep method (4.1) is not R if p(=1) =0.
(ii) If p(—1) #0 and the method (4.1) is zero-stable then it is R™?! if and only if
o(—1)=0.

Note. Theorem 4.4 is a slight generalization of a result of Iserles et al. [8], who
proved the classification in (ii) for irreducible methods. The result of Iserles et al.
was itself a generalization of an earlier result of Stuart and Peplow [12].

Proof. (i) See Exampie 4.2.

(ii) The ‘if part follows from (4.6), since if o(—1)=0 then w=v which
contradicts that (w,v) form a 2-cycle. To prove the ‘only if part, take any
fe C(R, ®) such that £(0)=-1 and f(ho(-1)/p(—1))=1. Let v=0 and
u = (2ho(—1))/p(—1), then it is simple to check that (u, v) form a 2cycle. O

Thus the class of zero-stable linear multistep methods which satisfy p(—1)#0
and o(—-1)=0 is R!"? and by considering this class of methods we can
generate methods of arbitrarily high order which are R!!2,

Lemma 4.3 also allows us to prove the following two propositions for linear
multistep methods equivalent to Propositions 3.3 and 3.4 for Runge-Kutta
methods. Note that whilst the Runge—Kutta results only hold if the equations
(2.1-2) are solved exactly via the iteration (2.11) the following results hold
whenever (4.1) is solved exactly, independently of the method which is used to
find this solution. Thus in this section we do not need to make any assumption
about the scheme used to solve (4.1).

ProrosrmioN 4.5 If f is Lipschitz on bounded U, with Us = U such that (2.25)
holds then there exists H(8) > 0 such that no point of Uy is contained in a 2cycle
of the zero-stable method (4.1) with p(—1) #0 and step-size h < H(4).

Proof. Let

M= sup HENII 4.9)

Suppose u € U, is contained in a 2-cycle, then by Theorem 4.4 o(—1) # 0. Hence
if

<L lp(—l)
2M |o(-1)

then (4.6) implies v € U. The parallelogram law states that
IE(v) — £Q)I1* + 1I(¥) + £Ca) (1> = 2(/I8V) 11 + (I£Ca)))?). (4.10)
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Lipschitz continuity and (4.6) imply that
1) -t < 242 | 2= o,

This together with (4.5) implies that (4.10) becomes

P+ it <2(n Z0) i
which, together with f(v) # 0, leads to a contradiction when
p(=1)

T'a( ni

ProrosiTiON 4.6 Suppose f is continuous on compact U. With Us = U such that
(2.25) holds, then given g, 8 > 0 there exists H(&, ) >0 such that if ue U, and u
is contained in a 2-cycle of the zero-stable method (4.1) with p(—1)#0 with
h < H(g, B) then

(1) @), IfVIl <&

(i) lu—vi|<p

where v is the other point of the two-cycle.

Proof. Since U is compact f is uniformly continuous on U. Thus given € > 0 there
exists 6, > 0 such that Vx,y e U with ||x —y|| < §, it follows that ||f(x) — f(y)|| <
e. Let 8, =min (9§, é,, B).

Suppose that u € U; is contained in a 2-cycle, then by Theorem 4.4 o(—1) #0.
Now with M defined by (4.9) suppose

2,

h< p(-1)
M

o(-1)

then (4.6) implies |[u—v|| <&, and hence ||f(u) —f(v)|| <e&. The result now
follows from (4.5) and the triangle inequality. O

The following result follows easily from Proposition 4.5.

THeorRem 4.7 If [ is globally Lipschitz with Lipschitz constant L, the method
(4.1) is zero-stable with p(—1)# 0 and

p(-1)

1

then the method admits no period 2 solutions. O

Remark 4.8 This result ties in well with the existing theory, since if p(—1) =0 by
Example 4.2 trivial bounded spurious solutions exist for all A and the allowed
step-size in Theorem 4.7 tends to zero as p(—1)—0, on the other hand, if
o(—1) = 0 spurious solutions cannot exist and as o(—1)— 0 the allowed step-size
in Theorem 4.7 becomes unbounded.
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Now Theorems 3.5, 3.7, 3.8 and Corollarys 3.9 and 3.10 all hold for linear
multistep methods (4.1) which are zero-stable with p(—1) # 0. The proofs follow
from Proppsitions 4.5 and 4.6 in the same way as the Runge—Kutta results
followed from Propositions 3.3 and 3.4. Example 3.6 is also relevant, and shows
that bounded period 2 solutions can exist for h arbitrarily small when f is
continuous on R™.

Note that for implicit methods we have made no assumption on the scheme
used to solve (4.1). This points out a fundamental difference between implicit
linear multistep methods, for which the above results are a consequence of the
method (4.1), and implicit Runge-Kutta methods, for which the equivalent
results are a consequence of the iteration scheme used to implement the method,
and which by Example 2.8 are not true for arbitrary solutions of the
Runge-Kutta equations (2.1-2).

5. Spurious solutions of predictor-corrector methods

Predictor-corrector methods are a popular means of solving the nonlinear
equations that occur in the application of implicit ordinary differential equation
solvers. A simple predictor-corrector method in PC™ implementation which has
been studied in [7, 8] is the following method consisting of a single step of
Forward Euler predictor followed by m steps of trapezoidal rule corrector.

y2+| =Ya +hf(yn)
h
,,I}=y,,+§(f(y,,)+f(ﬁ+,)) k=0,...,m—-1 (5.1)

Yns1 = Yo

It is easy to see that (5.1) retains all steady solutions of (1.1). Iserles [7]
considered the existence of spurious fixed points of (5.1) when applied to the
logistic equation, considered as a function from €— €. Spurious equilibria were
seen to exist for all values of m, but Iserles observed that if attention was
restricted to the real logistic equation then real spurious equilibria occur for m
odd but not for m even.

Iserles et al. [8] applied bifurcation analysis to (5.1) to prove that the PC™
method (5.1) is IR") for m odd and IR for m even. An example was presented,
with f(y) = —1/y showing that for this function the method exhibits a spurious
fixed point for m =2 and a 2-cycle for m =1. This shows that the necessary
conditions for (5.1) to be R!'! (namely m even) or R'?! (m odd) are not sufficient.
We will now prove that the method (5.1) is IR!" for all m, by showing that this
method is equivalent to an explicit Runge-Kutta method.

Lemma 5.1 The predictor corrector method (5.1) is equivalent to the m +1
stage explicit Runge—Kutta method defined by

Yl =Yn
Y2=yn +hf(Yl)
h .
Y,-+,=y,,+§(f(Y.)+f(Y,)), i=2,...,m 5.2)

Yoot = Yo + 5 () + (¥, 1),
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Proof. Observe that Y,,,=y/,, forj=0,...,m-1. 0O
ThHeorem 5.2 The predictor corrector method (5.1) is IR!"! for all m = 1.

Proof. The Runge-Kutta method (5.2) is not equivalent to the Forward Euler
method for m=1. (Since b,,,,#0 and a,,_, #0 for all i the method does not
produce the same solution sequence as any Runge—Kutta method with less than
m + 1 stages.) Hence by Theorem 2.1 it is [R!".. O

Since the Forward Euler method is R!"! if we take m =0 in (5.1) we do obtain
an R!"! method. Thus in some senses the corrector could be said to be badly
-named, since it destroys the property of being R!"!. The dependence on the parity
of m for the method to be R!" or R observed in (7] resulted from consideration
of the logistic equation, but as was observed in [5] this approach is not sufficient
to determine regularity. The above result confirms this.

The bifurcation analysis used in [8] could be used to study the regularity or
otherwise of general Adams—Bashforth/Adams-Moulton predictor-corrector
methods in PC™ mode. At first sight it would appear that the ‘trick’ of Lemma 5.1
could not be applied to more general methods. In fact we can use this technique
to show that other PC™ methods allow the existence of spurious equilibria.

Consider the two-step Adams—Bashforth/ Adams—Moulton predictor-corrector
method (5.3) in PC™ implementation.

h
y2+1 =Ya +§(3f(yn) - f(yn—l))

" h (5.3)
n+l = yn +E(5f(y:+l) + 8f(yn) - f(yn—l)); k = Oy BT ( (e 1

Y+t = Yns

Suppose that ¥ is a steady solution of (5.3). Then identifying y, and y,_, in (5.3)
it follows that ¥ is also a steady solution of (5.4).

y2+l = yn + h«yn)
h
,,I}=y,,+1—2-(5f(ﬁ+l)+7f(y,,)), k=0,...,m—-1 (5-4)

Yns1 = Ynt1

But (5.4) is equivalent to the explicit Runge—Kutta method (5.5), (proof as
Lemma 5.1).

YI =yn
Y=y, +hf(Y,)

h
Y. =Y, +1—2(7f(Y1)+5f(Y,-)), j=2,...,m (5.5)

h
Yos1 = Yn + E (7f(Yl) + Sf(Ym+l))
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The explicit Runge—Kutta method (5.5) is not equivalent to the Forward Euler
method and thus by Theorem 2.1 is IR!". Hence for some f (5.5) admits a
solution with y,,, =y, =§ but f(§)#0. y,., =y, =¥ will also be a solution of
(5.4), since (5.5) and (5.4) are equivalent, and hence § is a spurious steady
solution of (5.3). Therefore the PC™ method (5.3) is IR!").

The same technique (identifying y,, . . ., Y,_x+ and showing equivalence to an
explicit Runge—Kutta method) can be applied to any predictor-corrector method
which is based on linear multistep methods, and in PC™ implementation, to show
the existence of spurious steady solutions, unless the method is equivalent to the
Forward Euler method. Thus we have the order barrier. The highest possible
order of a R""Y PC™ method based on linear multistep methods is 1. In fact it is
easy to see that the Runge—Kutta method ‘corresponding’ to any PC™ method
will have b,,,;#0 and a,,;_, #0 for all i and that hence it cannot be equivalent to
any explicit Runge-Kutta method with fewer stages. In particular it is not
equivalent to the Forward Euler method and by appealing to Theorem 2.1 again
we have

THEOREM 5.3 Every predictor-corrector method in PC™ mode, which consists of
one step of an explicit linear multistep predictor and m steps of an implicit linear
multistep corrector (and in particular every Adams—Bashforth/ Adams—Moulton
PC™ method) is IR!". O

Although we have shown that all these methods admit spurious fixed solutions,
because of the equivalence between these solutions and the spurious fixed
solutions of the ‘equivalent’ explicit Runge—Kutta methods the results of Section
3 all apply to spurious fixed solutions of predictor-corrector methods. In
particular if f is globally Lipschitz spurious solutions cannot exist for 4 arbitrarily
small, and if f is locally Lipschitz and spurious solutions exist for A arbitrarily
small then they become unbounded in norm as A — 0.

We have not shown whether general PC™ methods are R!?! or IR?!, nor are we
able to apply the results of Section 4 to the spurious period 2 solutions (if they
exist) of these methods except for the specific method (5.1), which by Lemma
5.1, is an explicit Runge—Kutta method.

Suppose now that we apply a predictor-corrector method in PC* mode, that is
we iterate the corrector to convergence. For example consider the scheme

)’2+| =Ya +hf(Yn)
h
T _ _ —
Yar1=¥a+ > (E(y,) +f(yssr)) k=0,1,... (5.6)
Ya+1 =li"lyz+l

Allowing k— o in (5.6) we obtain y,,, =y, + (h/2)(y,) + £(¥y.+1))- Thus in
this case the iteration solves the implicit trapezoidal rule and the PC” method
inherits the regularity characteristics of that method. The trapezoidal rule is
known to be R!"? (see [12]), thus so is the scheme (5.6). If we now consider
more general Adams—Bashforth/Adams—Moulton methods in PC” mode, we see
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that all these methods are equivalent to the linear multistep method which
defines the corrector. Thus these methods are all R!"! and Theorem 4.4 identifies
the methods which are R'?. For /R") methods the results of the previous section
apply.

In practice to solve (5.6) in finite time the iteration must be terminated after
some number of steps, and thus our study of (5.1) might lead us to expect
spurious steady solutions after all. Careful application should however prevent
this, since although we know that for any & we may have y%,, =y, with f(y,) #0
since the implicit trapezoidal rule is R!"'! in this case we will have yXt!#y*,, and
so convergence will not have occurred. However rigorous analysis of the

" existence of spurious solutions when the equations defining the method are solved
approximately are beyond the scope of this paper.

The above discussion suggests that iterating the corrector to convergence, and
thus retaining the regularity characteristics of the corrector, may be a good means
of solving implicit methods, with good reproduction of the long term dynamics
provided that the corrector is regular. However if PC™ methods are used to solve
for long time behaviour of a system (1.1) we may expect spurious dynamics to
occur.
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