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Abstract. In this paper we establish necessary and sufficient conditions for
the existence of line segments (or flats) in the sphere of the nuclear norm via

the notion of simultaneous polarization and a refined expression for the subd-

ifferential of the nuclear norm. This is then leveraged to provide (point-based)
necessary and sufficient conditions for uniqueness of solutions for minimizing

the nuclear norm over an affine manifold. We further establish an alternative

set of sufficient conditions for uniqueness, based on the interplay of the sub-
differential of the nuclear norm and the range of the problem-defining linear

operator. Finally, using convex duality, we show how to transfer the uniqueness

results for the original problem to a whole class of nuclear norm-regularized
minimization problems with a strictly convex fidelity term.

1. Introduction

One of the most ubiquitous paradigms for linear inverse problems in matrix space
is low rank approximation, often cast in the form

min
XPRnˆp

rankX s.t. ApXq “ b. (1)

Here A : Rnˆp Ñ E is a linear map (into a Euclidean space E) whose action
is often simply a matrix multiplication ApXq “ A ¨ X for some A P Rmˆn or a
selection operator which projects X onto the matrix composed of its entries from
a prescribed index set J Ă t1, . . . , nu ˆ t1, . . . , pu. We direct the interested reader
to Fazel’s thesis [4], the important paper by Candès and Recht [2] as well as the
survey article by Recht et al. [15] for applications, solution methods and pointers
to the abundant literature for the low rank minimization problem (1) and the low
rank minimization paradigm in general.

Due to the combinatorial nature of the rank function, problem (1) is, generally,
NP-hard (as it contains cardinality minimization as a special case, which is NP-
hard [5, 14]), and therefore many continuous relaxations for its numerical solution
have been proposed. The predominant class of convex relaxations uses the nuclear
norm (or trace norm) } ¨ }˚ as a convex approximation of the rank function. The
justification for this stems from the fact that the nuclear norm is the convex envelope
(i.e. the largest convex minorant) of the rank function when restricted to a spectral
norm ball around the point in question, a fact that was first established by Fazel in
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her thesis [4] (see also the approach by Hiriart-Urruty and Len [7]). On the other
hand, the nuclear norm is simply the `1-norm of the vector of singular values, and
the `1-norm is known to promote sparsity [3], hence the nuclear norm promotes
low rank. Various nuclear norm-based approximations of problem (1) have been
proposed, the most obvious one being

min
XPRnˆp

}X}˚ s.t. ApXq “ b. (2)

Existence of solutions for this problem1 is readily established as the objective func-
tion is coercive (and the suitable continuity properties are satisfied). Given a solu-
tion X̄ of (2), the goal of this paper is to establish conditions that guarantee that
X̄ is, in fact, the unique solution. This is inspired by the study by Zhang et al. [25]
which establishes uniqueness results for `1-minimization problems2

We approach this task by combining tools from convex analysis and linear alge-
bra. The natural interplay of these areas is most obvious in the study of unitarily
invariant norms [9] which comes into play here since the nuclear norm (and its dual
norm, the spectral norm) are unitarily invariant. This theory goes back to work
of von Neumann’s [13], expanded on by various authors including Watson [21, 22],
Zietak [23, 24] and de Sá [18, 19], and then vastly generalized beyond norms in
Lewis’ seminal work [10, 11, 12].

Contributions. Our first main contribution, Theorem 3.4, provides a character-
ization of the existence of line segments (flatness) in the boundary of the nuclear
norm ball, based on the notion of simultaneous polarizability (Definition 3.1). In
Corollary 3.6 we give a reformulation of this characterization using the singular
value decomposition of a point in the nuclear norm sphere, and this directly car-
ries over to necessary and sufficient conditions for uniqueness (Corollary 4.1) for
solutions of the nuclear norm minimization problem (2).

We then extend the study by Zhang et al. [25] to the nuclear norm setting, start-
ing from the following observation of Gilbert’s [6] for any (proper) convex function
f (see Proposition 4.2): x̄ is the unique minimizer of f if 0 is in the interior of
the subdifferential of f at x̄. We make these conditions concrete for problem (2)
in Proposition 4.4. We then bridge between these convex-analytic conditions and
the linear-algebraic ones established earlier in Corollary 4.1 explicitly in Proposi-
tion 4.7, thus illuminating their connection. By means of a counterexample (Exam-
ple 4.8) we show that the sufficient conditions (Assumption 4.3) are not necessary
for uniqueness, which is in contrast to the (polyhedral convex) `1-case.

Through convex analysis (Proposition 4.9) we are able to transfer our findings
for problem (2) to another class of nuclear norm minimization problems (see Corol-
lary 4.10 ) including nuclear norm-regularized least-squares.

Roadmap. We present in Section 2 the necessary background from linear algebra
and convex analysis, including a novel result on the convex geometry of the subd-
ifferential of the nuclear norm. Section 3 is devoted to characterizing the existence
of line segments in the nuclear norm sphere. We transfer these findings to nuclear
norm minimization problems in Section 4. We close out with some final remarks in
Section 5.

1Of course, we assume throughout that this problem is feasible.
2Nuclear norm minimization contains `1-minimization as a special case since x P Rn can be

identified with a diagonal matrix diagpxq for which }diagpxq}˚ “ }x}1.



UNIQUENESS IN NUCLEAR NORM MINIMIZATION 3

Notation. The vector ei P Rn is the i-th standard unit vector in Rn. For a
vector x P Rn, diagpxq will be a diagonal matrix with x on its diagonal, whose size
will be clear from the context (and which may be rectangular). For X P Rnˆp,
we will generate the vector of its diagonal entries via DIAGpXq. The space of
n ˆ n (real) symmetric matrices is denoted by Sn, Sn` is the positive semidefinite
cone while Sn`` denotes the positive definite matrices in Sn. The set of n ˆ n
orthogonal matrices is denoted by Opnq. For a set C in a real vector space, we
define R`C :“ ttx | t ě 0, x P C u, the smallest cone that contains C. The line
segment between two points x, y in a real vector space is denoted by rx, ys. The set
of all linear maps between two Euclidean spaces V,W is denoted by LpV,W q. For
A P LpV,W q, we write kerA and rgeA for its kernel and range, respectively. Its
adjoint map is denoted by A˚.

2. Preliminaries

In what follows, E will be a Euclidean space, i.e. a finite-dimensional real inner
product space with its ambient inner product denoted by x¨, ¨y. The induced norm

is denoted by } ¨ }, i.e. }x} :“
a

xx, xy for all x P E. For instance, we equip Rnˆp
with the (Frobenius) inner product

xX, Y y :“ tr pXTY q @X,Y P Rnˆp,
which induces the Frobenius norm

}X} :“
a

xX, Xy “

g

f

f

e

n
ÿ

i“1

p
ÿ

j“1

x2
ij @X P Rnˆp.

For X P Rnˆp its nuclear norm is given by

}X}˚ :“ tr p
?
XTXq “ tr p

?
XXT q.

The definition implies the following fact used frequently in our study:

}X}˚ “ tr pXq @X P Sn`. (3)

The dual norm of the nuclear norm is

}X}op :“ max
}Y }˚ď1

xX, Y y “ max
}v}ď1

}Xv},

which is called the operator norm or spectral norm. In what follows, we will define

Bop :“ tX | }X}op ď 1u

to be the operator norm unit ball in a matrix space whose dimension will be clear
from the context. The following simple estimate for the operator norm will be
useful for our study.

Lemma 2.1. For A P Rnˆp. Then the Euclidean norm of every column and
row of A is bounded above by }A}op. In particular, we have aij ď }A}op for all
i “ 1, . . . , n, j “ 1, . . . , p.

Proof. Let aj be the j-th column of A. Then

}aj} “ }Aej} ď sup
}x}“1

}Ax} “ }A}op.

Multiplying standard unit vectors eTj from the left, we get the analogous statement
for rows. �
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The following estimate for the nuclear norm of block matrices is important to our
study.

Lemma 2.2. Let n ą p, X P Rnˆp and Y P Rnˆpn´pq. Then

}X}˚ ď }rX Y s}˚,

where equality holds if and only if Y “ 0.

Proof. Observe that }W }op “ }rW 0s}op. Hence

C :“
 

rW 0s P Rnˆn
ˇ

ˇW P Rnˆp, }W }op ď 1
(

Ă Bop.
Consequently

}rX Y s}˚ “ max
rW ZsPBop

xrX Y s, rW Zsy ě max
rW 0sPC

xrX Y s, rW 0sy “ }X}˚.

Clearly, the inequality is strict if Y ‰ 0 (use, e.g., Z “ Y ) and an equality otherwise.
�

We point out that the above result allows one to always embed problem (2) (defined
by A P LpRnˆp,Eq and b P E) in (potentially rectangular) matrix space Rnˆp
(w.l.o.g. n ě p) into the (square) matrix space Rnˆn. To this end, identify every

element X̃ P Rnˆn with the block matrix X̃ “ rX Y s for X P Rnˆp, Y P Rnˆpn´pq,
define the linear operator Ã : X̃ Ñ ApXq and the right-hand side b̃ :“ b. If we now
consider the ‘padded’ problem

min
rX Y sPRnˆn

}rX Y s}˚ s.t. ÃprX Y sq “ b̃ (4)

it is an immediate consequence of Lemma 2.2 that X̄ is a solution of (2) if and only
if rX̄ 0s is a solution of (4).

Singular value decomposition. For the facts and concepts presented in this
paragraph we refer the uninitiated reader to Horn and Johnson [9] for details.
Throughout (w.l.o.g.) we assume that n ě p. For X P Rnˆp, with rankX “ r,
there exist orthogonal matrices U P Opnq and V P Oppq (with columns u1, . . . , un
and v1, . . . , vp, respectively) and unique real numbers

σ1pXq ě σ2pXq ě σrpXq ą 0 “ σr`1 “ ¨ ¨ ¨ “ σnpXq

such that

X “ UdiagpσpXqqV T “
r
ÿ

i“1

σipXquiv
T
i .

This is called a singular value decomposition (SVD) of X. Note that the positive
singular values of X are exactly the square roots of the nonzero eigenvalues of XXT

(or XTX). We say that two matrices X,Y P Rnˆp have a simultaneous singular
value decomposition if there exist pŪ , V̄ q P Opnq ˆOppq such that

X “ ŪdiagpσpXqqV̄ T and Y “ ŪdiagpσpY qqV̄ T .

The next result, see e.g. [10, Theorem 2.1], due to von Neumann, characterizes
simultaneous singular value decompositions.

Theorem 2.3 (von Neumann). For X,Y P Rnˆp we have

xX, Y y ď xσpXq, σpY qy .

Equality holds if and only if X and Y have simultaneous singular value decomposi-
tions.
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Through the singular value decomposition, we generate the map

σ : X P Rnˆp Ñ σpXq P Rp.
Using this, the nuclear and operator norm of X, respectively, can be expressed as
the `1- and `8-norm, respectively, of the vector of singular values of X, i.e.

}X}˚ “
r
ÿ

i“1

σipXq and }X}op “ σ1pXq.

Moreover, we find that the nuclear and the operator norm are orthogonally invari-
ant, i.e. for all X P Rnˆp, we have

}UXV }˚ “ }X}˚ and }UXV }op “ }V XU}op @pU, V q P Opnq ˆOppq. (5)

There is an important extension of the above equation in the rectangular case. To
formulate it, we recall the Stiefel manifold [20].

Definition 2.4 (Stiefel manifold). The Stiefel manifold Vn,p is the collection of
matrices in Rnˆp with orthonormal columns, i.e.

Vn,p :“
 

U P Rnˆp
ˇ

ˇ UTU “ Ip
(

.

The nuclear norm also has invariance on one side by multiplication by elements of
the Stiefel manifold.

Lemma 2.5. Let X P Rnˆp and U P Vn,p. Then }XUT }˚ “ }X}˚.

Proof. As U has orthonormal columns, we may extend it to an orthogonal matrix
rU W s P Opnq. Then

}XUT }˚ “

›

›

›

›

rX 0s ¨

„

UT

WT


›

›

›

›

˚

“ }rX 0s}˚ “ }X}˚,

where the second identity uses the orthogonal invariance from (5) and the third is
due to Lemma 2.2. �

Tools from convex analysis. For the facts and concepts presented in this para-
graph we refer the uninitiated reader to the textbooks by Rockafellar [16], Hiriart-
Urruty and Lemaréchal [8], Borwein and Lewis [1] or Rockafellar and Wets [17,
Chapter 11].

A function f : EÑ RYt`8u is called proper if dom f :“ tx | fpxq ă `8u ‰ H.
We say that f is convex if its epigraph epi f :“ tpx, αq P Eˆ R | fpxq ď αu is
convex, and we say that it is closed if epi f is closed. Its (Fenchel) conjugate f˚ :
E Ñ R Y t`8u is f˚pyq :“ supxPdom ftxy, xy ´ fpxqu. Its (convex) subdifferential
at x̄ P dom f is given by

Bfpx̄q :“ ty P E | fpx̄q ` xy, x´ x̄y ď fpxq @x P dom f u .

An important (proper, convex) extended real-valued function is the indicator func-
tion of a (nonempty, convex) set C Ă E which is

δC : EÑ RY t`8u, δCpxq “

#

0, x P C,

`8, else.

Its subdifferential is BδCpx̄q “ tv | xv, x´ x̄y ď 0 @x P C u for all x̄ P C. Its conju-
gate is the support function of C, i.e. δ˚Cpyq “ supxPC xx, yy “: σCpyq. We point
out that the support functions of compact, convex, symmetric sets C that contain
0 (thus 0 P intC) are exactly the norms on E [16, Theorem 15.2] .
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The subdifferential of the `1-norm } ¨ }1 : Rn Ñ R, }x}1 “
ř

i“1 |xi|, reads

B} ¨ }1pxq “

˜#

sgnpxiq, xi ‰ 0

r´1, 1s, xi “ 0

¸n

i“1

“ ty P B8 | xx, yy “ }x}1 u . (6)

Obviously, the most important example to our study is the subdifferential of the
nuclear norm.

Proposition 2.6 (Subdifferential of nuclear norm). Let X̄ P Rnˆp and let pŪ , V̄ q P
Opnq ˆOppq such that

ŪdiagpσpX̄qqV̄ T “ X̄.

The following hold:

(a) We have Y P B}¨}˚pX̄q if and only if X̄ and Y have a simultaneous singular
value decomposition and σpY q P B} ¨ }1pσpX̄qq.

(b) It holds that

B} ¨ }˚pX̄q “
 

Y
ˇ

ˇ

@

X̄, Y
D

“ }X̄}˚, }Y }op ď 1
(

3 (7)

“ ŪB} ¨ }˚pdiagpσpX̄qqV̄ T . (8)

Proof. (a) See [10, Corollary 2.5].

(b) The expressions for the subdifferential can be found in [24], see, in particular,
[24, Theorem 3.1] for the characterization in (8).

�

For a convex set C Ă E, its affine hull, denoted by aff C, is the smallest affine set
that contains C. In particular, aff C is a subspace if and only if it contains 0. The
subspace parallel to C is defined to be the unique subspace parallel to aff C and
given by parC :“ aff C ´ x̄ for any x̄ P C. Clearly, this entails that riC “ intC if
and only if the latter is nonempty, i.e. when parC “ E.

The relative interior riC of C is its interior in the relative topology with respect
to its affine hull. The following characterization of relative interior points is useful
to our study, see, e.g., [1, Exerc. 13, Ch. 1]:

x P riC ðñ R`pC ´ xq “ parC. (9)

For more details on the relative interior we refer the reader to Rockafellar [16,
Chapter 6].

We will now exploit the representation in (8) to derive yet another representation
of the subdifferential of the nuclear norm as well as its relative interior and parallel
subspace. This is useful to our study but also of independent interest. We need the
following lemma.

Lemma 2.7. For r ď ppď nq set

T :“
 

B P Rnˆp
ˇ

ˇ DIAGpBq P t1ur ˆ Rn´r, }B}op ď 1
(

.

Then

T “
!

`

Ir 0
0 R

˘

ˇ

ˇ

ˇ
R P Rpn´rqˆpp´rq, }R}op ď 1

)

.

Proof. Let B P T . Then, by Lemma 2.1 and the fact that bii “ 1 for all i “ 1, . . . , r,
we find that B “

`

Ir 0
0 R

˘

for some R P Rpn´rqˆpp´rq. Now observe that

}R}op ď 1 ðñ
›

›

`

Ir 0
0 R

˘
›

›

op
ď 1.

This shows the desired equality. �
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Proposition 2.8 (Convex geometry of B} ¨ }˚pX̄q). Let X̄ P Rnˆp with r :“ rank X̄
and let pŪ , V̄ q P Opnq ˆOppq such that

ŪdiagpσpX̄qqV̄ T “ X̄.

Then the following hold:

(a) B} ¨ }˚pX̄q “ Ū
 `

Ir 0
0 R

˘
ˇ

ˇ R P Rpn´rqˆpp´rq, }R}op ď 1
(

V̄ T ;

(b) ri pB} ¨ }˚pX̄qq “ Ū
 `

Ir 0
0 R

˘ ˇ

ˇ R P Rpn´rqˆpp´rq, }R}op ă 1
(

V̄ T ;

(c) par pB} ¨ }˚pX̄qq “ Ū
 

p 0 0
0 R q

ˇ

ˇ R P Rpn´rqˆpp´rq
(

V̄ T .

Proof. (a) From the characterization (8) we find that ŪB} ¨ }˚pdiagpσpX̄qqV̄ T . In
turn, by (7), we find that

B} ¨ }˚pdiagpσpX̄qq “
 

B P Rnˆp
ˇ

ˇ

@

B, diagpσpX̄q
D

“ }diagpσpX̄qq}˚, }B}op ď 1
(

.

Now, observe that, by taking adjoints,
@

B, diagpσpX̄q
D

“ xDIAGpBq, σpx̄qy , and

also }diagpσpX̄qq}˚ “ }σpX̄q}1. Hence

B} ¨ }˚pdiagpσpX̄qq “
 

B P Rnˆp
ˇ

ˇ DIAGpBq P t1ur ˆ Rn´r, }B}op ď 1
(

,

and thus Lemma 2.7 gives the desired result.

(b) Define F : Rpn´rqˆpp´rq Ñ Rnˆn by F pRq “ Ū
`

Ir 0
0 R

˘

V̄ T . Then, in view of (a),

we find that B} ¨ }˚pX̄q “ F pBopq. Therefore the desired formula follows from [16,
Theorem 6.6].

(c) Follows immediately from (a) or (b). �

In the setting of Proposition 2.8, it follows immediately from part (c) that

par pB} ¨ }˚pX̄qq “ span
 

uiv
T
j | i “ r ` 1, . . . , n, j “ r ` 1, . . . , p

(

, (10)

where ui pi “ 1, . . . , nq and vj pj “ 1, . . . , pq are the columns of Ū and V̄ , respec-
tively.

3. Flatness of the nuclear norm and simultaneous polarizability

As before, we assume (w.l.o.g.) that n ě p. In this section we present our main
results on the geometry of the nuclear norm sphere, specifically a characterization
of the flats4. We then leverage this to characterize the uniqueness of certain nuclear
norm optimization problems. The next definition is central to this analysis.

Definition 3.1 (Polarizability). Let X, X̂ P Rnˆp.

(a) We say that U P Vn,p polarizes5 X if XUT P Sn`.

(b) We say that X and X̂ are simultaneously polarizable if there exists a matrix

U P Vn,p that polarizes both X and X̂.

A polarization in the sense of Definition 3.1 (a) always exists as the following result
shows, which is based on polar decomposition. Note that conventionally, for the case
of the rectangular polar decomposition, the polarizing matrix U usually appears
on the small side of the matrix, see Horn and Johnson [9, Theorem 7.3.1]. In
Definition 3.1, we have placed it on the large side, but we observe that by padding,
it is possible to conclude the existence of the large polarization as well.

4Flats, in the context of Riemannian geometry, are (uncurved) Euclidean submanifolds.
5Sometimes this is also called the ‘angular’ part of the polar decomposition.
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Proposition 3.2 (Existence of polarization). Let X P Rnˆp. Then there exists
U P Vn,p that polarizes X.

Proof. Consider the augmented matrix rX 0s P Rnˆn. By polar decomposition, see,
e.g., [9, Theorem 7.3.1], there exists Q P Opnq and S P Sn` such that rX 0s “ SQ.
Now, partition Q “ rU W s according to rX 0s. Then

XUT “ rX 0s ¨

„

UT

WT



“ S ľ 0,

and, by construction, U has orthonormal columns. �

Polarizability can be expressed in terms of the subdifferential of the nuclear norm.

Lemma 3.3. Let X P Rnˆp and let U P Vn,p. The following are equivalent:

(i) U P B} ¨ }˚pXq;
(ii) xU, Xy “ }X}˚;
(iii) U polarizes X, i.e. XUT P Sn`.

Proof. (i)ñ(ii): By the subdifferential representation of } ¨ }˚ in (7).

(ii)ñ(iii): Observe that UTU “ Ip. In particular, σpUq “ r1, . . . , 1sT P Rp. By
assumption, we hence have xU, Xy “ }X}˚ “ xσpUq, σpXqy . By (von Neumann’s)
Theorem 2.3, we thus find Ū P Opnq, V̄ P Oppq such that X “ ŪdiagpσpXqqV̄ T and
U “ Ū

`

Ip 0
0 0

˘

V̄ T . Consequently

XUT “ Ū
´

diagpσpX̄qq 0
0 0

¯

V̄ T V̄
`

Ip 0
0 0

˘

ŪT “ Ū
´

diagpσpX̄qq 0
0 0

¯

ŪT ľ 0.

(iii)ñ(i): Extend U to a an orthonormal matrix rU W s P Opnq. Then

tr pXUT q “ }XUT }˚ “ }X}˚,

where the first identity employs the assumption that XUT P Sn` combined with (3)

and the second one is due to Lemma 2.5. Since }U}op “ 1 (as UTU “ Ip), the
desired statement follows from Proposition 2.6(b). �

We now present our first main result which characterizes the existence of (proper)
line segments in the nuclear norm sphere.

Theorem 3.4 (Flats in the nuclear norm sphere). Let X̄, X̂ P Rnˆp and define

Xptq :“ X̄ ` tpX̂ ´ X̄q @t P r0, 1s.

Then the following are equivalent:

(i) }Xptq}˚ “ }X}˚ for all t P r0, 1s.

(ii) X̂ and X̄ are simultaneously polarizable and }X̄}˚ “ }X̂}˚.

Proof. Note that there is nothing to prove if X̄ “ X̂. So we assume the contrary
from now on.

(i)ñ(ii): By assumption, the convex function f : R Ñ R, fptq “ }Xptqq}˚, is
constant on r0, 1s. Hence, by the (subdifferential) chain rule [16, Theorem 23.8], we
have

t0u “ tf 1ptqu “
!A

X̂ ´ X̄, Y
E

| Y P B} ¨ }˚pXptqq
)

@t P p0, 1q,

i.e.
A

X̂ ´ X̄, Y
E

“ 0 @Y P B} ¨ }˚pXptqq, t P p0, 1q. (11)
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Now, for any t P p0, 1q and any Y P B} ¨ }˚pXptqq, we have
A

tX̂ ` p1´ tqX̄, Y
E

“ xXptq, Y y “ }Xptq}˚ “ }X̄}˚. (12)

Multiplying (11) by ´t and adding to (12) then yields
@

X̄, Y
D

“ }X̄}˚ @Y P B} ¨ }˚pXptqq, t P p0, 1q,

hence

B} ¨ }˚pXptqq Ă B} ¨ }˚pX̄q @t P p0, 1q. (13)

Similarly, multiplying (11) by p1´ tq and adding to (12) ultimately yields

B} ¨ }˚pXptqq Ă B} ¨ }˚pX̂q @t P p0, 1q. (14)

Combining (13) and (14) we thus find

B} ¨ }˚pXptqq Ă B} ¨ }˚pX̂q X B} ¨ }˚pX̄q @t P p0, 1q. (15)

Now, for t P p0, 1q, set Xt :“ Xptq. Choose Ut P Rnˆp that polarizes Xt by means of
Proposition 3.2. Then, by Lemma 3.3 , we have Ut P B} ¨ }˚pXtq, and consequently,

by (15), we find Ut P B} ¨ }˚pX̂q X B} ¨ }˚pX̄q. Therefore, we find
@

X̄, Ut
D

“ }X̄}˚ and
A

X̂, Ut

E

“ }X̂}˚.

By Lemma 3.3 we thus infer that Ut polarizes both X̄ and X̂.

(ii) ñ (i): Let U P Rnˆp polarize X̄ and X̂. Consequently, U polarizes Xptq, and
hence, by Lemma 3.3, U P B} ¨ }˚pXptqq for all t P r0, 1s. Therefore

}Xptq}˚ “ tr pXptqUT q “ t ¨ tr pX̄UT q ` p1´ tq ¨ tr pX̂UT q “ }X̄}˚.

Here, the last identity uses that tr pX̄UT q “ }X̄}˚ “ }X̂}˚ “ tr pX̂UT q as U

polarizes both X̄ and X̂ which have the same nuclear norm (by assumption). �

An immediate consequence is the following corollary.

Corollary 3.5. For X̄, X̂ P Rnˆp and A P LpRnˆp,Eq the following are equivalent:

(i) } ¨ }˚ and A are constant on the line segment rX̄, X̂s.

(ii) X̂´ X̄ P kerA, }X̄}˚ “ }X̂}˚ and X̂ and X̄ are simultaneously polarizable.

The previous result, while geometrically elegant, is potentially difficult to evaluate.
By working with the singular value decomposition of a the base point X̄, one can
further specify exactly the set of directions which should not be contained in the
kernel of the ambient linear operator A. To state this result, we use the following
notation for some r P t1, . . . , nu:

Sr`` :“
 

pA 0
0 0 q P S

n
`

ˇ

ˇ A P Sr``
(

Ă Sn`.

Corollary 3.6. Let X̄ P Rnˆp and let r :“ rank X̄. Let there be posed a singular
value decomposition X̄ “ ŪdiagpσpX̄qqV̄ T and let A P LpRnˆp,Eq. Set

W pX̄q :“

$

&

%

ŪM
`

Ir 0
0 R

˘

V̄ T

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

M P Sn` ´ Sr``, tr pMq “ 0,

R P Vn´r,p´r, M
´

Ir 0

0 RRT

¯

“M

,

.

-

.

See Section 3.1 for a discussion of W . The following are equivalent:
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(i) X :“
 

X P Rnˆn
ˇ

ˇ ApXq “ ApX̄q, }X}˚ “ }X̄}˚
(

does not contain a proper6

line segment including X̄.
(ii) kerAXW pX̄q “ t0u.

Proof. (ii)ñ(i): Assume (i) does not hold, i.e. there is X̂ ‰ X̄ such that rX̄, X̂s Ă

X . By Corollary 3.5, we find that X̄ and X̂ are simultaneously polarizable, i.e.
there exists U P Vn,p such that X̄UT P Sn` and X̂UT P Sn`. In particular, by

Lemma 3.3, U P B} ¨ }˚pX̄q, hence, by Proposition 2.8, U “ Ū
`

Ir 0
0 R

˘

V̄ T for some
R P Vn´r,p´r. The latter comes from the fact that U P Vn,p. Moreover, since

X̂UT P Sn`, we find that

ŪT X̂V̄
´

Ir 0

0 RT

¯

“ ŪT pX̂UT qŪ P Sn`. (16)

On the other hand, we also have

ŪT X̄V̄
´

Ir 0

0 RT

¯

“ diagpσpX̄qq P Sr``.

Combining this with (16), we find that

M :“ ŪT pX̂ ´ X̄qV̄
´

Ir 0

0 RT

¯

P Sn` ´ Sr``,

and, trivially, M
´

Ir 0

0 RRT

¯

“M . Moreover

tr pMq “ tr
´

ŪT X̂V̄
´

Ir 0

0 RT

¯¯

´ tr
´

ŪT X̄V̄
´

Ir 0

0 RT

¯¯

“ }ŪT X̂V̄
´

Ir 0

0 RT

¯

}˚ ´ }Ū
T X̄V̄

´

Ir 0

0 RT

¯

}˚

“ }X̂}˚ ´ }X̄}˚

“ 0,

where the second identity uses the positive semidefiniteness of the matrices in
question (combined with (3)), and the third one uses orthogonal invariance and

Lemma 2.5. Since also ApX̂q “ ApX̄q, we consequently have

0 ‰ X̂ ´ X̄ “ ŪM
`

Ir 0
0 R

˘

V̄ T PW pX̄q X kerA.

(i)ñ(ii): Assume (ii) does not hold, i.e. there exists M P pSn` ´ Sr``qzt0u with

tr pMq “ 0 and R P Vn´r,p´r such that Y :“ ŪM
`

Ir 0
0 R

˘

V̄ T P kerA. Define U :“

Ū
`

Ir 0
0 R

˘

V̄ T . Since }R}op “ 1, in view of Proposition 2.8, we have U P B} ¨ }˚pX̄q.

Now, for ε ą 0 set Xpεq :“ X̄ ` εY . Then

ŪT pXpεqUT qŪ “ ŪT X̄UT Ū ` εŪTY UT Ū

“ diagpσpX̄qq ` εM
´

Ir 0

0 RRT

¯

“ diagpσpX̄qq ` εM.

Recall that M P Sn` ´ Sr``, and diagpσpX̄qq P Sr``, and hence we can find ε̂ ą 0,

sufficiently small, such that diagpσpX̄qq ` ε̂M P Sn`. Consequently, for X̂ :“ Xpε̂q,

we have X̂UT P Sn`, i.e. U polarizes X̂ (and X̄). In addition, we find that

}X̂}˚ “ tr pŪT pX̂UT qŪq “ tr pdiagpσpX̄qqq ` ε̂ ¨ tr pMq “ }X̄}˚,

6A line segment that is not just tX̄u.
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as tr pMq “ 0. Since we have ApX̂q “ ApX̄q as well, Corollary 3.5 now gives the
desired conclusion. �

3.1. The set W pX̄q in Corollary 3.6. Some comments on the contents of Corol-
lary 3.6 are in order. We note that that the set W pX̄q is a cone, owing to the set
Sn` ´ Sr`` being a cone. While the cone is not reflection symmetric, the condition
(ii) is equivalently formulated with the symmetrization of W pX̄q under the reflec-
tion x ÞÑ ´x. The symmetrization of W pX̄q has the interpretation as the subset of
the tangent space at X̄ (in Rnˆp) in which the nuclear norm changes linearly (i.e.
is non-strictly convex). The cone W pX̄q is not generally convex, save for the case
that X̄ is full rank; in that case, the set W pX̄q simplifies to

W pX̄q :“
 

Ū M rIp 0sT V̄ T
ˇ

ˇ M P Sn, tr pMq “ 0
(

.

Moreover, we point out that in the square case (n “ p), the set W pX̄q simplifies to

W pX̄q “
 

ŪM
`

Ir 0
0 R

˘

V̄ T
ˇ

ˇM P Sn` ´ Sr``, tr pMq “ 0, R P Opn´ rq
(

.

WhileW pX̄q is relatively pathological, we note that its span has a simple expression:

Proposition 3.7 (spanW pX̄q). Let X̄ P Rnˆp and let r :“ rank X̄. Let there be
posed a singular value decomposition X̄ “ ŪdiagpσpX̄qqV̄ T and let A P LpRnˆp,Eq.
Let W pX̄q be as in Corollary 3.6. Then

spanW pX̄q “
!

Ū pA B
C D q V̄

T
ˇ

ˇ

ˇ
A P Sr, B P Rrˆpp´rq, C P Rpn´rqˆr, D P Rpn´rqˆpp´rq

)

.

Proof. Let W4 be the right-hand side of the displayed equation. The containment
of spanW pX̄q ĂW4 is immediate from the containment W pX̄q ĂW4 and the fact
that the latter is a subspace. For the reverse, we argue by construction of a flag
W1 ĂW2 ĂW3 ĂW4 each of which we show is in spanW pX̄q. Set

W1 :“
!

Ū p 0 0
0 D q V̄

T
ˇ

ˇ

ˇ
D P Rpn´rqˆpp´rq

)

,

W2 :“
!

Ū pA 0
0 D q V̄

T
ˇ

ˇ

ˇ
A P Sr, D P Rpn´rqˆpp´rq

)

,

W3 :“
!

Ū pA 0
C D q V̄

T
ˇ

ˇ

ˇ
A P Sr, C P Rpn´rqˆr, D P Rpn´rqˆpp´rq

)

.

(17)

W1 Ă spanW pX̄q: For any element of W1 for some D P Rpn´rqˆpp´rq, let R P

Vn´r,p´r be a polarizing matrix such that P “ DRT P Sn´r` . Now set

M :“
`

aIr 0
0 P

˘

where a :“ ´
tr pP q

r
.

Then
1
2M

`

Ir 0
0 R

˘

´ 1
2M

`

Ir 0
0 ´R

˘

“M p 0 0
0 R q “ p

0 0
0 D q . (18)

Since PRRT “ DRTRRT “ DRT “ P and tr pMq “ 0, we conclude that
W1 Ă spanW pX̄q.

W2 Ă spanW pX̄q: It suffices to show that W2{W1 Ă spanW pX̄q{W1. For arbitrary
A P Sr, let P1, P2 P Sr`` be such that A “ P1 ´ P2. Now set

Mi :“
´

´Pi 0
0 aiIn´r

¯

where ai “
tr pPiq

n´r i “ 1, 2.

Then tr pMiq “ 0 pi “ 1, 2q, and taking R “ rIp´r 0sT , we have that

pA 0
0 ˚ q “ ´M1

`

Ir 0
0 R

˘

`M2

`

Ir 0
0 R

˘

P spanW pX̄q,
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where the p˚q represents a matrix of no importance. Therefore, W2{W1 Ă spanW pX̄q{W1,
which suffices to show the desired inclusion.

W3 Ă spanW pX̄q: It suffices to show that W3{W2 Ă spanW pX̄q{W2. Take an

arbitary element W3{W2 represented by some matrix C P Rpn´rqˆr. For some c
sufficiently large

A “
´

´
n´r
r cIr CT

C cIn´r

¯

P tM P Sn` ´ Sr`` | tr pMq “ 0u.

Taking R “ rIp´r 0sT , we find

1
2A

`

Ir 0
0 R

˘

` 1
2A

`

Ir 0
0 ´R

˘

“ A
`

Ir 0
0 0

˘

“ pA 0
C 0 q PW pX̄q,

and hence W3{W2 P spanW pX̄q{W2.

W4 Ă spanW pX̄q: It suffices to show that W4{W3 Ă spanW pX̄q{W3. Take an

arbitary element W4{W3 represented by some matrix B P Rrˆpp´rq. Then for all c
sufficiently large,

A “

˜

´
p´r
r cIr B 0

BT cIp´r 0
0 0 0

¸

P tM P Sn` ´ Sr`` | tr pMq “ 0u.

Taking R “ rIp´r 0sT , we find

A
`

Ir 0
0 R

˘

“

˜

´
p´r
r cIr B

BT cIp´r

0 0

¸

PW pX̄q,

and hence we conclude that W4{W3 P spanW pX̄q{W3.
This concludes the proof. �

4. Unique solutions in nuclear norm minimization

Throughout this section, let pE, x¨, ¨yq be a (finite-dimensional) Euclidean space and
let A P LpRnˆp,Eq. Our study above immediately yields uniqueness results for the
nuclear norm minimization

min
XPRnˆp

}X}˚ s.t. ApXq “ b. (19)

Corollary 4.1. Let X̄ P Rnˆp be a solution of (19) with rank X̄ “ r, and let
W pX̄q be defined as in Corollary 3.6. Then the following are equivalent:

(i) X̄ is the unique solution of (19).
(ii) kerAXW pX̄q “ t0u.

Proof. Observe that the solution set X of (19) is convex and can be written as
X “

 

X P Rnˆn
ˇ

ˇ ApXq “ ApX̄q, }X}˚ “ }X̄}˚
(

. Now, by convexity, X does not

contain a proper line segment including X̄ if and only if X̄ is the unique solution
of (19). Thus Corollary 3.6 gives the desired statement. �

4.1. Sufficient conditions through convex analysis. The following result is a
generic convex analysis result which, given a solution, provides a sufficient condition
for uniqueness of solutions to a(ny) convex optimization problem. It was established
in [6] that in the polyhedral convex case it is also necessary which was then exploited
to establish uniqueness of solutions for `1-minimization problems.
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Proposition 4.2. Let f : E Ñ R Y t`8u be proper, convex and assume that
0 P int Bfpx̄q. Then argmin f “ tx̄u.

Proof. Let x P E. By assumption, there exists ε ą 0 such that εpx ´ x̄q P Bfpx̄q.
Consequently

fpxq ě fpx̄q ` xεpx´ x̄q, x´ x̄y “ fpx̄q ` ε}x´ x̄}2 ą fpx̄q.

�

We will, of course, apply this to the objective function f “ } ¨ }˚ ` δt0upAp¨q ´ bq

of (19). It turns out that the following conditions at some (feasible) point X̄ are
equivalent to having 0 P int pBfpX̄qq.

Assumption 4.3. For X̄ P Rnˆp such that ApX̄q “ b it holds that:

(i) ri pB} ¨ }˚pX̄qq X rgeA˚ ‰ H;
(ii) par

`

B} ¨ }˚pX̄q
˘

` rgeA˚ “ Rnˆp.

The reader can make these conditions even more tangible by inserting the respective
expressions for the relative interior and parallel subspace of the B} ¨ }˚pX̄q provided
in Proposition 2.8 (and (10)).

We now provide the advertized characterization.

Proposition 4.4. Let A P LpRnˆp,Eq, b P E and define the (closed) proper, convex
function f : Rnˆp Ñ RY t`8u by fpXq “ }X}˚ ` δt0upApXq ´ bq. For X̄ P Rnˆp
such that ApX̄q “ b, the following are equivalent:

(I) 0 P int BfpX̄q.
(II) Assumption 4.3 holds at X̄.

Proof. Observe that Bpδt0upp¨q ´ bq ˝AqpX̄q “ A˚Bδt0up0q “ A˚E “ rgeA˚, by the

chain rule [16, Theorem 23.9], and consequently BfpX̄q “ B} ¨ }˚pX̄q ` rgeA˚, by
the sum rule [16, Theorem 23.8]. Hence (I) reads

0 P int pB} ¨ }˚pX̄q ` rgeA˚q “ ri pB} ¨ }˚pX̄qq ` rgeA˚,
where the identity uses the sum rule for the relative interior [16, Corollary 6.6.2]
and the fact that a subspace is relatively open. This already shows that (I) implies
ri pB} ¨ }˚pX̄qq X rgeA˚ ‰ H. On the other hand, it also yields that, for any
y P B} ¨ }˚pX̄q, we have

Rnˆp “ aff pB} ¨ }˚pX̄q ` rgeA˚q
“ aff pB} ¨ }˚pX̄q ` rgeA˚

“ aff pB} ¨ }˚pX̄q ´ yq ` y ` rgeA˚

“ par B} ¨ }˚pX̄q ` rgeA˚.
All in all, (I) implies (II).

Conversely, if (II), starting from par B} ¨ }˚pX̄q ` rgeA˚, the latter equations
shows Rnˆp “ aff pB} ¨ }˚pX̄q ` rgeA˚q, while ri pB} ¨ }˚pX̄qq X rgeA˚ ‰ H implies

0 P ri pB} ¨ }˚pX̄qq ` rgeA˚ “ ri pB} ¨ }˚pX̄q ` rgeA˚q “ int pB} ¨ }˚pX̄q ` rgeA˚q,
where the first identity is, again, due to the sum rule for the relative interior, while
the last identity uses the fact that the relative interior is an interior if (and only
if) the parallel subspace (which is here equal to the affine hull) of the convex set in
question is the whole space. �
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Corollary 4.5. Let X̄ be a solution of (19) such that Assumption 4.3 holds at X̄.
Then X̄ is the unique solution of (19)

Proof. Combine Proposition 4.2 and Proposition 4.4. �

4.2. More insight. Combining Corollary 4.5 and Corollary 3.6, it follows readily
that Assumption 4.3 at X̄ implies that W pX̄qXkerA “ t0u. On the other hand, this
argument is not very illuminating when trying to understand the exact interplay
of these two types of conditions. Moreover, it is not clear whether Assumption 4.3
might also be necessary for uniqueness of solutions (as it is for its `1-analog). We
shed some light on these issues now and start with an auxiliary result.

Lemma 4.6. Let X̄ satisfy Assumption 4.3. Then

Rnˆp “ rgeA˚ ` R`B} ¨ }˚pX̄q.

Proof. Set S :“ B}¨}˚pX̄q, and let Y P rgeA˚XriS which exists by Assumption 4.3
(i). Then

Rnˆp “ rgeA˚ ` par pB} ¨ }˚pX̄qq

“ rgeA˚ ` R`pS ´ Y q
“ R` prgeA˚ ` S ´ Y q
“ R`prgeA˚ ` Sq
“ rgeA˚ ` R`S.

Here the second identity uses the property of relative interior points from (9). �

As alluded to above, the following result is clear from our previous analysis. We give
an explicit proof in the hopes of consolidating the different flavors of the conditions
in Assumption 4.3 and Corollary 3.6, respectively.

Proposition 4.7. Let X̄ P Rnˆp with r :“ rank X̄ and singular value decomposition
X̄ “ ŪdiagpσpX̄qqV̄ T . If Assumption 4.3 holds, then kerAXW pX̄q “ t0u.

Proof. Let X P kerA XW pX̄q. Then, by definition of W pX̄q, there exists M “
´

A´D B
BT C

¯

with A P Sr`, C P Sn´r` , D P Sr``, tr pAq ` tr pCq “ tr pDq, and R P

Vn´r,p´r such that

X “ ŪM
`

Ir 0
0 R

˘

V̄ T .

On the other hand, by Lemma 4.6 and Proposition 2.8 we find Z P rgeA˚, F P Bop
and t ě 0 such that

X “ Z ` t ¨ Ū
`

Ir 0
0 F

˘

V̄ T .
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Consequently, we have

}X}2 “
@

ŪM
`

Ir 0
0 R

˘

V̄ T , Z ` t ¨ Ū
`

Ir 0
0 F

˘

V̄ T
D

“ t ¨
@

ŪM
`

Ir 0
0 R

˘

V̄ T , Ū
`

Ir 0
0 F

˘

V̄ T
D

“ t ¨
@

M
`

Ir 0
0 R

˘

,
`

Ir 0
0 F

˘D

“ t ¨ tr
´´

Ir 0

0 RFT

¯

¨

´

A´D B
BT C

¯¯

“ t ¨ tr
´´

A´D B
RFTBT RFTC

¯¯

“ t ¨
`

tr pAq ´ tr pDq ` tr pRFTCq
˘

“ t ¨
`

tr pRFTCq ´ tr pCq
˘

ď t ¨
`

}RFT }op ¨ }C}˚ ´ }C}˚
˘

ď 0.

Here, the second identity takes into account that Z P rgeA˚ while ŪM
`

Ir 0
0 R

˘

V̄ T “
X P kerA. The seventh (last) equality uses the fact that tr pAq ` tr pCq “ tr pDq.
The first inequality uses the fact that C is positive semidefinite as well as the
‘Hölder inequality’ for the operator and nuclear norm. The last inequality is due
to the fact that }R}op “ 1, }F }op ď 1 and the submulitiplicativity of the operator
norm.

All in all, we find that X “ 0 which proves the desired result. �

The natural question as to whether Assumption 4.3 is also necessary for uniqueness
is answered negatively by the following example.

Example 4.8. Set E :“ R2ˆ2 ˆ R2ˆ2, and define A : R2ˆ2 Ñ E by

ApXq “ rp 1 1
0 0 qX, PA2pXqs,

where PA2pXq – 1
2 pX ´ XT q is the projection onto the 2 ˆ 2 skew symmetric

matrices A2. Set b :“ rp 1 0
0 0 q , p

0 0
0 0 qs P E. Equipped with these choices, consider

min
XPR2ˆ2

}X}˚ s.t. ApXq “ b. (20)

The following hold:

‚ kerA “ span t
`

1 ´1
´1 1

˘

u.

‚ A˚ : EÑ R2ˆ2, A˚pY,Zq “ p 1 0
1 0 qY ` PA2pZq.

‚ rgeA˚ “ tp t st s q | t, s P Ru ` A2.

Now, set X̄ :“ p 1 0
0 0 q. Then ApX̄q “ b, i.e. X̄ is feasible for (20). Moreover, by

Proposition 2.8, observe that

B} ¨ }˚pX̄q “
 `

1 0
0 β

˘

| β P r´1, 1s
(

and par pB} ¨ }˚pX̄qq “
 `

0 0
0 β

˘

| β P R
(

.

It is then an easy exercise to find that par pB} ¨ }˚pX̄qq ` rgeA˚ “ R2ˆ2. Moreover,
we observe that

0 P B} ¨ }˚pX̄q ` rgeA˚ ðñ B} ¨ }˚pX̄q X rgeA˚ ‰ H
ðñ Dβ P r´1, 1s, t, s, q P R :

`

1 0
0 β

˘

“ p t st s q `
`

0 q
´q 0

˘

.

The latter system has only one solution t “ q “ 1, s “ β “ ´1. In particular, we
see that X̄ is a minimizer of (20) and that

ri pB} ¨ }˚pX̄qq X rgeA˚ “ H.
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In particular, the sufficient condition from Assumption 4.3 for uniqueness is violated
at X̄ (while (ii) is satisfied). In turn, realizing that rank X̄ “ 1, and consequently

W pX̄q “
 `

a´d b
b c

˘

p 1 0
0 R q

ˇ

ˇ R2 “ 1,
`

a b
b c

˘

P S2
`, tr

`

a´d b
b c

˘

“ 0, d ą 0
(

,

we find that

X PW pX̄q X kerA ùñ X “
`

x ´x
´x x

˘

“
`

a´d ˘b
b ˘c

˘

, a´ d` c “ 0.

ùñ X “ 0.

Therefore, by Corollary 3.6, X̄ is the unique solution of (20).

4.3. Other nuclear norm minimization problems. The following general re-
sult affords us to carry over uniqueness results from above to other nuclear norm
minimization problems involving a linear operator. The proof relies on Fenchel-
Rockafellar duality [1, 8, 16, 17], and the dual correspondence of strict convexity
and essential smoothness [16].

Proposition 4.9. Let A P LpE1,E2q, g : E Ñ R strictly convex, and h : E1 Ñ

R Y t`8u closed, proper convex. Then A and h are constant on the solution set
X ˚ :“ argminxPE1

tgpApxqq ` hpxqu .

Proof. Clearly, it suffices to prove that A is constant on X ˚. To this end, ob-
serve that the dual problem of (the primal problem) minxPE1

tgpApxqq ` hpxqu reads
maxyPE2t´g

˚p´yq´h˚pA˚pyqqu. Since g is finite-valued, strong duality holds, and,
in particular, for some dual solution ȳ P E2 and any primal solution x P X ˚ it
holds that, in particular, Apxq P Bg˚p´ȳq, cf., e.g. [17, Example 11.41]. However,
since g is strictly convex, g˚ is essentially smooth [16, Theorem 26.3] and hence
Apxq “ ∇g˚p´ȳq. Since x P X ˚ was arbitrary, this proves result. �

Corollary 4.10. Let A P LpRnˆp,Eq, b P E, λ ą 0, f : EÑ R strictly convex, and
let X̄ be a solution of

min
XPRnˆn

fpApXq ´ bq ` λ}X}˚. (21)

Then X̄ is the unique solution if and only if
 

X P Rnˆp
ˇ

ˇ ApXq “ ApX̄q, }X}˚ “ }X̄}˚
(

“ tX̄u.

(all of which is the case if and only if W pX̄q X kerA “ t0uq.

Proof. Let X “ argminRnˆptfpAp¨q ´ bq ` λ} ¨ }˚u be the solution set of (21).
Applying Proposition 4.9 to g :“ fpp¨q´ bq and h :“ λ} ¨ }˚ yields that, in fact, X “
 

X P Rnˆp
ˇ

ˇ ApXq “ ApX̄q, }X}˚ “ }X̄}˚
(

. Therefore, the claim follows. �

5. Final remarks

In this paper, starting from a study of line segments in the nuclear norm sphere, we
established necessary and sufficient conditions for uniqueness of solutions for mini-
mizing the nuclear norm over an affine manifold. The central linear-algebraic notion
in this regard is simultaneous polarizability, which formalizes the idea of rotating
two (square) matrices in the same fashion to render them positive semidefinite.
We then gave another set of sufficient conditions based on the convex geometry of
the subdifferential (of the nuclear norm) and its interplay with (the range of) the
ambient linear operator. A duality-based argument enabled us to transfer these
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findings to a whole class of nuclear norm-regularized optimization problems with
strictly convex fidelity term.

As a topic of future research, we intend to build on this analysis to study stability
of nuclear norm(-regularized) optimization problems in terms of the right-hand side
b and the regularization parameter λ. In particular, we would like to study Lipschitz
properties of the solution function

pb, λq ÞÑ argmin
XPRnˆp

"

1

2
}ApXq ´ b}2 ` λ}X}˚

*

.

This study will rely on a suitable representation of the graph of the subdifferential
of the nuclear norm.
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[19] E.M. de Sá: Faces of the unit ball of a unitarily invariant norm. Linear Algebra and its
Applications 197-198, 1994, pp. 451–493.

[20] E. Stiefel: Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten.
Commentarii Mathematici Helvetici 8(4), 1935–1936, pp. 305–353.



18 TIM HOHEISEL AND ELLIOT PAQUETTE

[21] G.A. Watson: Characterization of the subdifferential of some matrix norms. Linear Algebra

and its Applications 170, 1992, pp. 33–45.

[22] G.A. Watson:On matrix approximation problems with Ky Fan k norms. Numerical Algo-
rithms 5, 1993, pp. 263–272.

[23] K. Zietak: On the characterization of the extremal points of the unit sphere of matrices.

Linear Algebra and its Applications 106, 1988, pp. 57–75.
[24] K. Zietak: Subdifferentials, faces, and dual matrices. Linear Algebra and its Applications

185, 1993, pp. 125–141.

[25] H. Zhang, W. Yin, and L. Cheng: Necessary and sufficient conditions of solution unique-
ness in 1-norm minimization. Journal of Optimization Theory and Applications 164, 2015,

pp. 109–122.

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St
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