Topics in Geometric Fully Nonlinear Equations

Pengfei Guan






Preface

There have been some renewed interests on fully nonlinear equations on manifolds recently,
in particular in connection to some problems in classical Euclidean geometry and conformal
geometry. These equations are of some kind of interpolation of the Monge-Ampere equation
and Laplace equation with respect to certain quadratic form involving second order covariant
derivatives. Due to the fundamental work of Krylov [87] and Evans [42], there is a general
theorem on C%%-regularity of the solutions of these equations once C? a priori estimates are
established. The basic structure of these equations in Euclidean domains have been studied
thoroughly in [26]. When dealing with equations arising from geometry, the treatments may
vary according to the underline geometric situation.

In this lecture notes, we will restrict ourselves on fully nonlinear elliptic and parabolic
equations related to classical Euclidean geometry and conformal geometry. Some algebraic
and analytic properties of concave symmetric functions and Garding’s theory of hyperbolic
polynomials are collected in the appendix. The choice of the topics is solely based on author’s
personal taste and the material familiar to him.

This an expanded and updated version of the notes delivered in a series of lectures in the
workshop of Monge-Ampere equations and summer school of mathematics in Zhejiang University,
Hangzhou, 2002 and 2004 respectively. These notes are compiled from some of joint works with
B. Guan, C.S. Lin, X. Ma and G. Wang in recent years. This is a record of their contributions
to the subject. Of course, any errors, mistakes and omissions in the notes lies completely on the
author. I have learned a great deal from them during the pleasant period of collaborations. I
would like to take this opportunity to thank them for their friendship and impact on me.
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Part 1

Curvature equations of hypersurfaces in R"



CHAPTER 1

Theory of convex bodies: Alexandrov-Fenchel inequality

Suppose  C R™*! is a bounded domain with reasonable smooth boundary, let’s denote V (£2)
and A(0Q) the volume of 2 and surface area of 02 respectively. The isopermetric inequality
says that

V(@)™ < e AT,
where ¢, is a dimensional constant, with the equality holds if and only if 2 is a ball.

If © is convex, there is a sequence of geometric quantities called quermassintegrals W ()
for k =1,2,...,n+ 1 with W,,11(Q) = V(Q) and W, () = A(09), They defined as

Wi(Q) = / vol(Q|m)dm,
T€G(k,n+1)

where 7 is any k-dim hyperplane (as a point in Grassmannian manifold G(k,n+1)) and vol(2|)
is the volume of the projection of €2 to . The Cauchy-Crofton formula states that

Wi(Q2) = Cn,k/ On—t (K1, s Ein),s
o0

where ¢, 1, is a positive constant depending only on n, k, oy is the k-th elementary symmetric
function and k1, ..., K, the principal curvature functions on 9€2. We note that if 92 is smooth,
On—k(K1, ..., Kn) i a smooth function, while k1, ..., K, may not necessary smooth (but they are
continuous).

Support function: we define

u(z) = I;leaé( <z,y> xS

If O is strictly convex, one may check that u(z) =< z,n~!(z) > for z € S"™.

The support function carries all the information of ). There is one-to-one correspondence of
support function and convex body. For any function on S™, we may extend it as a homogeneous
function of degree one in R"*!. A function u on S” is a support function of some convex body
if and only if it is a convex function in R™! after this extension.

For convex bodies, one can define Minkowski summation. Together with the concept of
support functions, they play fundamental roles, in the theory of convex bodies.

Minkowski summation: For two convex bodies 2; and {29, define

D+ Qo ={x+ylre,yecQ}.
and for A > 0, define
AQ = { x|z € Q}.

2



1. THEORY OF CONVEX BODIES: ALEXANDROV-FENCHEL INEQUALITY 3

So, for any positive numbers t1, ..., ¢, and convex bodies {21, ..., ), with support function
U1, ..., Uy Tespectively. We can define ¢1Q1 + ... + £, 0y, it is still convex. It is easy to check
that the corresponding support function is tyuy + ... + .

Minkowski proved that the volume of ¢1£2; + ... + t,+1{2,41 is a homogeneous polynomial in
t1,...,tn+1. The coefficient in front of the minomial ¢; X ... X £, is called the mixed volume,
often write as V(Q4, ..., Qpt1)-

From now on, we assume 952 is C? and strictly convex. By the Hadamard’s theorem, it is
equivalent to k1, ..., kK, are positive functions on 9. If we view J€) as a Riemannian manifold
embedded in R"! as a compact hypersurface, let X be its position vector and n be its outer
normal (Gauss map), the first and second fundamental forms are given by I = dXdX and
11 = dnd X respectively. k1, ..., k, are the eigenvalues of 11 with respect to the first fundamental
form I. When 02 is strictly convex, the Gauss map n is a diffeomorphism from 952 onto S™. We
may view the inverse Gauss map as a natural parametrization of 9€). This is a starting point
for the theory of convex bodies.

There is a magic connection of the support function and curvature functions of 9. Write

W = (uij + (L-ju),

where u;; indicates the second order covariant derivatives of u with respect to any orthonormal
frame on S™. The eigenvalues of W are the principal radii of 9. By divergence theorem,
V(Q) =cp [, aq U- For the rest, we will assume 02 is strictly convex and C?. So, we have the
formula

(1.1) Wk(Q)—ang/ ou(W), 1<n.

n

The volume V' (2), in general Wy11(€2) can also be expressed as (via Minkowski formula, see

(1.7))
Wk+1(Q) = én,k/ uak(W), 1 S n.

n

For the above, it’s easy to see that V (¢121 + ... + t+1Q,+1) is a homogeneous polynomial of
degree n + 1. Though the above expression only proved for strictly smooth convex bodies, the
general case can be valid by approximation.

or(W) is called the k-th area function of 2. The problem of prescribing k-th area function
on S™ is called The Christoffel-Minkowski problem. The main subject of the theory of convex
bodies is to study the mixed volumes and their local versions: area measures and curvature
measures.

We now start differential calculations with respect to support functions. Let eq,...,e, is an
orthonormal frame on S”, let wy,...,w, be the corresponding dual 1-forms. For each function
u € C?(S™), let u; be the covariant derivative of u with respect to e;. We define a vector valued
function

n
Z = E U;e; + Uenyi.

=1



4 1. THEORY OF CONVEX BODIES: ALEXANDROV-FENCHEL INEQUALITY

where e, 11 is the position vector on S”, that is, the outer normal vector field of S™. We note
that Z is globally defined on S™. We write the hessian matrix of w with respect to the frame as

W = {uij + U(Sij}.
We calculate that,

u=2"eny,

dzZ = duze; + uide;) + duey4q + udepq
+ +

i=1
n n . n A n n+l
=2 uigw! = Y wwilei+ (3 uiwfea)
i=1 j=1 j=1 i=1 a=1
n ) n ]
+ Z(uiwl)enﬂ +u Z w'e;
i=1 i=1
n n
=D QO (uy + diju)es)’
j=1 i=1
Let u!,...,u"*t € C?(S"), we define VI = 1,...,n + 1,
n
Zt = Zuéei + ulen+1,
i=1
and
Wl = {ui] + uléij}

Set,
(1.2) Qut, ..., u™h = (Z',dz?, dZ3, ..., dz"Y).
and
(1.3) V(' u?.u :/ Qut, ..., u" ).

We note that
(1.4) Q(ul, ..., u" ™) = wlo, (W2, ..., W™ )ds
where o, (W2, ..., W"t1) is the mixed determinant and ds is the standard area form on S". In

particular, V1 < k < n, if we set uF*? = ... = u"t! = 1, we obtain

-1
(1.5) Qul, ..., u" ) = <Z> Wrop (W2, ..., W) ds

where o, (W2,..., W51 is the complete polarization of the symmetric function o}, defined for
symmetric matrices.

LEMMA 1.1. V is a symmetric multilinear form on (C?(S"))"*1.
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Proof. The multilinearility follows directly from the definition. Also, by the definition, for
any permutation o of {2,...,n + 1},
Q(ut, v, u ) = Qut,u @ u ),

so V(u',u?. ., umth) = V(u!,u® .. w1 To see V is a symmetric form, we only need to
show

(1.6) V(ul,u?ud. . u" ) = Vi? ul ud .
We first assume u! € C3(S™),Vi. Let,
wut, .., u") = (ZY, 2%, dz3, ..., dZ"Y),

we have

dw(ul, .., u™™) = —Q(u?,ut, ud T + Qut, W ud L u Y,
Now, (1.6) follows from Stokes theorem. The identity (1.6) is valid for C? function by approxi-
mation. [ |

Remark: If u',...,u"*! are the support functions of convex bodies K1, ..., K, 11 respectively,
then V (u!,u?...,u"*!) is the Minkowski mixed volume V (K7, ..., Kp11).

The following is a direct corollary of the lemma. If u is a support function of a convex body,
it is well known as Minkowski type integral.

COROLLARY 1.1. For any function u € C*(S™), W = {u;; + d;ju}. For any 1 <k < n, we
have the Minkowski type integral formulas.

(1.7) (n— k) / uoR(W)ds = (k + 1)/ i1 (W) ds,

n

where ds is the standard area element on S™.

For any n xn symmetric matrices W1, ..., Wy, let o (W71, ..., W) be the complete polarization
of oj. Let u and @ are two C? functions on S”. Let W and W are the corresponding Hessian
matrices of u and @ respectively. Define P,s = o, 4s(W, ..., W, W W) where W appears r times
and W appears s times. So, P, is a polynomial in T/VZ]7 Wl]7 homogeneous of degrees r and s
respectively. The following is another corollary of Lemma 1.1.

COROLLARY 1.2. Suppose u and @ are two C? functions on S", then the following identities
hold.

(1.8) / [uPOk - fLPl’k_l]dx = 0,
(19) / [U-Pk—l,l - fLPko]dx = 0,
and,

2/ w(Poy, — Pr—1,1)dx
Sn

(110) = /Sn {ﬂ(Pl,k—l - Pk;()) - u(Pk_Ll — P()k)}d$
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Now, we consider functions satisfying the following equation,
(1.11) or(W)=¢ on S"
DEFINITION 1.1. For 1 <k <mn, let I'y, is a convexr cone in R"™ determined by
I'e={AeR": o1(A\)>0,..,0r(N) >0}

Suppose u € C*(S™), we say u is k-convez, if W (x) = {u;;(z)+u(z)d;;} is in Ty for each z € S™.
u 18 convex on S™ if W is semi-positive definite on S™. Furthermore, u is called an admissible
solution of (1.11), if u is k-convex and satisfies (1.11).

The next is a uniqueness theorem.

THEOREM 1.1. Suppose u and @ are two C? k-convex functions on S™ satisfying (1.11). If

o, (W) = ox(W), and if one of u and 1 is nonnegative, then u — i € Span{x1, ..., Tns1} on S
Proof of Theorem 1.1. We may assume u is nonnegative. Since oi(W) is positive,
we conclude that u is positive almost everywhere on S™. As o}, is complete hyperbolic, and

VIWWieTy,,i=1,..,k,
1 1
(1.12) o (W WEY > gF (W) .o (WF),

with the equality holds if and only if these k matrices are pairwise proportional.
If W,W €Ty, from (1.12) we have

(1.13) Pok < Pr-1,1,

with the equality holds if and only if W and W are proportional.

Suppose oy (W) = o) (W) on S*, where W = {u;; + d;ju} and W = {a;; + 6;jii}. The left
hand side of the integral formula (1.10) in Corollary 1.2 is non-positive. The same is therefore
true of the right hand side of (1.10). The latter is anti-symmetric on the two function v and 4,
and hence must be zero. It follows that P,_;; = Py by (1.13). Again, the equality gives that
W and W are proportional. Since oi(W) = o4 (W), we conclude that W = W at each point of
S™. In particular,

Llu—u)=A(u—1u)+n(u—u)=0, on S"
We know that L is a self-adjoint linear elliptic operator on S™, Span{zi, ..., xn11} is exactly the
kernel of L. This gives u — u € Span{xy, ..., Tpt1}- [ |

The following is an infinitesimal version of Theorem 1.1.
PROPOSITION 1.1. Vu?, ..., u* € C%(S") fized, define

(1.14) L(v) = Q(1,v,u2...,u* 1,...,1),

k

then, L is self-adjoint. If in addition, u?,...,u* are k-convex, and at least one of them is non-

negative, the kernel of L is Span{x1,...,Tni1}.

Proof of Proposition 1.1. First, L is self-adjoint is self-adjoint by Lemma 1.1. To
compute the kernel, we may assume u? is nonnegative. Since u? is k-convex, it is positive almost
everywhere. Suppose v is in kernel of L, i.e.,

(1.15) L(v) = 0.
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Simple calculation shows that

k

where A = {v;j + d;;v} and W' = {uﬁJ + 6iju'}.
We claim that, if (1.15) holds, then

(1.16) op(A A W3, WF <o,

~1
Q(1,v,0,u3, ..., uk 1, ...,1) = (n) o(A, A, W3, WFds,

with equality if and only if A =0, i.e., v € Span{x1,...,zp+1}.
We note that,
0 = / vL(v) = Qv, v, u?,u?, auf 1 1)
n Sn

2 3 k 2 3 k
= V(v,v,u”,u’, .. u”1,...,1) =V (u,v,v,u’, ..., u 1, ..., 1)

= /uQQ(l,v,v,u?’,...,uk,l,...,1)

—1
_ (:) /uQJk(A,A,W3,...,Wk)ds.

If the claim is true, we will conclude that v is in Span{x1, ..., 7,41} since u? is positive almost
everywhere.
To prove the claim, we make use of hyperbolicity of oy, in the cone I'y, (Corollary 13.1). Since
ul is k-convex, W' € Ty, V2 < [ < k. For W3, ..., W fixed, the polarization oy (B, B, W3, ..., W)
is also hyperbolic and complete for B € T'y. Let Wy = W?2 + tA, we have
oWy, W, W3, . WH*) = o, (W2, W2, W3, ..., Wk
+2to (A, W2, W3, WR) + 20, (A, A, W3, L WF).
Since
o (W2, W2 W3, Wwk) >0,
and
op(A, W2 Wk =0.
By the hyperbolicity, o, (Wy, Wy, W3, ..., W¥) has only real roots in ¢ variable, so (1.16) must be
true. If in addition, o (A, A, W, ..., W) = 0, we would have
oWy, We, W, .y W) = o (W, ..., W),

for all t € R. By Lemma 13.2 and the completeness of o (W, W, W3, .., W*) | A =0. The claim

is proved. [ |
For any n > k > 1 fixed, set u**2 = ... = 4" ™! = 1 we define Vu!,...,u**1 € C%(S"),
(1.17) Vi1 (ul, w2, o) = Vet W2, u .

Now we state a form of Alexandrov-Fenchel inequality for positive k-convex functions.
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THEOREM 1.2. Iful, ..., uF are k-convex, and ui positive, and at least one of u' is nonnegative

on S (for 2 <1< k), then Yv € C%(S"),
(1.18) Vk2+1(v,u1, oy t®) > Vi (ul ul u?, L uF) Vi (v, 0,02, L u),
the equality holds if and only if v = au® + E?;Lll a;x; for some constants a,aq, ..., Gpi1-

Proof. The theorem follows directly from the next statement.
Statement: If

(1.19) Vir1(v,ut,u?, .. uF) =0, for some v e C?*(SM),
then
(1.20) Vier1 (v, 0,02, ..., uF) <0,

with equality if and only if v = Z?Ill a; ;.

The proof of the Statement will be reduced to an eigenvalue problem for certain elliptic
differential operators.

First, for u?,...,u* € T}, fixed, we set

L(v) = Q(1,v,u2...,u* 1,...,1).

By Lemma 13.1, L(v) > 0if v is k-convex. We claim that L is an elliptic differential operator with
negative principal symbol. The principal symbol of L at the co-tangent vector § = (61, ...,6,,) is
obtained when A is replaced by —0 ® 6 in

op(A, W2 W,
So it is equal to
—o(0 @0, W2, ..., WF).
Since oy, is hyperbolic with respect to the positive cone 'y, and 6§ ® 0 is semi-positive definite
and is not a 0 matrix if # not 0. By the complete hyperbolicity,
—o(0®0, W2, ... Wk <o.

We now use continuity method to finish the job. For 0 <t < 1, let u} =t + (1 — t)u’, and
set
Q1 u),u.. uf 1,...,1)

Pt = 1 ’
Uy

We examine the eigenvalue problem:
(1.21) Li(v) = Apyv.

If for we set Q¢(u,v) = [g, uL(v), the eigenvalue problem (1.21) is corresponding to the qua-
dratic form @y with respect to the inner-product < u,v >,,= fSn UV Pt

We want to show Claim: A =1 is the only positive eigenvalue of multiplicity 1 with eigen-
function u}, and A = 0 is the eigenvalue of multiplicity n+1 with eigenspace Span{z1, ...., Tp+1}
for the eigenvalue problem of (1.21).

We note that u; is an eigenfunction corresponding to the eigenvalue A = 1. If the Claim is
true, (1.19) implies that v is orthogonal to eigenspace corresponding to A = 1 with respect to



1. THEORY OF CONVEX BODIES: ALEXANDROV-FENCHEL INEQUALITY 9

the inner product < .,. >,,. If the claim is true, Statement follows from the standard spectral
theory of self-adjoint elliptic operators.

We now prove the Claim. When t = 0, the problem can be reduced to the following simple
form by straightforward calculations:

Av + nv = nAwv.

The eigenvectors of A are the spherical harmonics of degree v = 0, 1, ..., with the corresponding
eigenvalues —v(v +n — 1). v = 0 corresponds to A = 1 and v = 1 corresponds to A = 0 in the
eigenvalue problem (1.21) respectively in this special case. And A < 0 when v > 1. It is well
known that spherical harmonics of degree 0 are constants, and spherical harmonics of degree
1 are linear functions, i.e., Span{xi,...,zn41}. Therefore, the Claim is true for ¢ = 0. For
arbitrary ¢, since 1 is an eigenvalue of the problem (1.21) with eigenfunction u}, by the theory
of elliptic equations, we only need to prove that 0 is the eigenvalue of multiplicity n + 1. It’s
obvious that z1,...,x,41 are the eigenfunctions of L corresponding to the eigenvalue 0. The
theorem now follows from Proposition 1.1. [ |

Now, we consider a class of domains which will be named k*-convex. They can be viewed
as a generalization of convex bodies via polar dual. Let D be a star-shaped bounded domain in
R™*! with C? boundary. The distance function of D is defined as,

(1.22) u(z) = min{Az € AD}, Vx e S".
When D is convex, the distance function is also called the gauge function of D.

DEFINITION 1.2. Let D be a star-shaped bounded domain in R" with C? boundary. We
say D is k*-convex if its distance function w is k-convex on S™. We day D is polar centrized if
its distance function u satisfies

/ zju(r)ds =0, Vj=1,2,...,n+1.

If D1, ..., Dgyq are k*-convex bodies, let uq, ..., upy1 are the corresponding distance functions, and
Wi, ..., Wii1 be the corresponding hessians of the gauge functions respectively. For 0 <[ < k,
we define mixed polar surface area functions

(1.23) o1(D1, ..., Dy, z) = oy(Wq, ..., Wp).

We call oy(D, ) = oy(W, ..., W) the lth polar surface are function of D. We also define a mized
polar volume,

1
1.24 Ve (Dy, o Dpsy) =
(1.24) k(D1 1) Vi1 (U, oo Upy1)

where Vi1 (ut, ..., ury1) defined as in (1.17). We also write, V0 < | < k+ 1, V(D) =
Vi (D, ...,D, B, ..., B), where B is the unit ball centered at the origin in R D appears |
times, and B appears k 4+ 1 — 1 times in the formula.

As an application, we have the following consequences of Theorem 1.1 and Theorem 1.2.
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THEOREM 1.3. Suppose Dy, Dy are two k*-convex domains in R" 1. If kth polar surface
area functions of D1 and Doy are the same, i.e.,

o1(D1,x) = 0y(Da,x), VxeS",
then, the distance functions of D1, Do are equal upto a linear function. In particular, if both D

and Do are polar centrized, then D1 = Ds.

THEOREM 1.4. Suppose D1, ..., D1 are k*-convex domains in R" ! then we have the fol-
lowing Alexandrov-Fenchel inequality for the mized polar volumes:

(Vi (D, D)) < Vi 1(D1, D1, Ds...., Dy 1) Vi 1 (D2, D, D3..., Dy 1),
with the equality if and only if the distance functions of D1 and Do are equal upto a linear

function. In particular, if both D1, Do are polar centerized, then D1 = ADsy for some A > 0.

The above theorem indicates that the reciprocal of the mixed polar volume is log-concave.
Therefore, one may deduce a sequence of inequalities for k*-convex domains from Theorem 1.2.
In particular, one can obtain the corresponding Brunn-Minkowski inequality and quermassinte-
gral inequalities for V*.

COROLLARY 1.3. Suppose Dy, Dy are k*-convex, then for 0 <t <1,
Via((L =)D+ Do) 51 > (1= Vi1 (DT + 8V (Da) 0,

if D1, Dy are polar centralized, the equality for some 0 < t < 1 holds if and only if D1 = AD>
for some A > 0. If D is k*-convex, then for 0 <i < j<lI<k+1,

(VD))" < (VA (D) (VA (D).
if D is polar centralized, the equality holds if and only if D is a ball centered at the origin. In
particular, if we let o, be the volume of the unit ball B in R*H1,

o, (VD) < (Vi (D),

if D is polar centralized, the equality holds if and only if D is a ball centered at the origin.

At the end of this chapter, we discuss the geometric obstructions and uniqueness problem
for equation
(1.25) &(u” + 5wu) =f on S™.
On—k
This equation arises from the problem of prescribing Weingarten curvatures on outer normals
(see [4], [36]). It was discovered in [57] that the necessary conditions for the Minkowski problem
are not valid for equation (1.25) if k # n.

We start with some calculation. Let v € C°°(S™) and consider uy = 1 + tv. For ¢ > 0 small,
ut is a supporting function of some smooth strictly convex hypersurface, and
n
on(Viuy +u0) = Z

=1

n!

41
M=
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Here, and in the rest of this section, we write o; = 0;(V?v + vo). It follows that
(1.26) /xjaida:& Vi<j<n+4+1, 1<i<n

since

/ :cjan(VQUt +uo)do =0, V1<ji<n+1

for all ¢t > 0 sufficiently small.

For a fixed k (1 < k < n), by straightforward calculation we see that
(1.27) o*nvk(VQUt +wo) =1+ a1t + ast® + ast> + O(t4)
where

a; = (n — k)oy,
n—=k
(128) ag = 5 [(n + k — 1)0'2 — 2k0’%],
k(n — k)

as = T[Zka:{’ — (n+ 2k — 2)o109] + aos,

for some constant a depending only on k and n.
From this we compute, for any m € R, the coefficients of the Taylor expansion

(1.29) [0 (V2up + uo)]™ = 14 byt + bot® + bat® + O(t*)
to obtain
by = m(n — k)oy,
1.30 —k
(1.30) bgzm(n2)[(n+k—1)02+(m(n—k)—n—k:)a%]
and, when m = %,
k(n+ k
(1.31) bs = w(&flag —20%) + bos

6
where b is a constant. We are now in a position to prove the following result.

PROPOSITION 1.2. For every integer k, 1 < k < n, and any m € R, m # 0 there exists

v € C®(S™) such that the function u; = 1 + tv satisfies

(1.32) / [0 1 (Vuy + wo)]do # 0
for all t > 0 sufficiently small.

PROOF. We use the spherical coordinates on S™
x1 = cosfy,
xj =sinby---sinfj_jcosl;, 1<j<n
(1.33) ’ ’

Tpy1 =sinfy - -sinf,_1sinb,,

dogn = sin™ 10, sin" 20y - - -sinb,,_1db; - - - db,,



12 1. THEORY OF CONVEX BODIES: ALEXANDROV-FENCHEL INEQUALITY
where 0 <0; <7, 1<j<n-1; 0<0, <27 Let

(1.34) g(x) = n(cos®6y) - - - n(cos® B, _1)(cos 26,, + sin 36,,)

where 7 is a smooth cut-off function satisfying 0 < 5 < 1; n(t) = 1 if |t| < § and n(t) = 0 if
[t| > 2. One finds that

(1.35) / zjg(z) =0, V1<j<n+1, / Tni19%(x) # 0.
T S’VL

Note that the linear elliptic operator L defined by L(v) = o1(V?v + vo) is self-adjoint with
kernel Ky = Span(zy,...,Tn+1). As g is orthogonal to the kernel of L, there exists v € C*°(S™)
satisfying the equation

(1.36) o1(V*v +vo) =g on S™.

By (1.35), we see from (1.26)-(1.30) that u; = 1 + tv satisfies (1.32) for all ¢ > 0 sufficiently
small, provided that m # z—fﬁ

Turning to the case m = Z—i‘,’:, we take v = 2} where [ > 1 is an odd integer. For ¢t > 0
sufficiently small, the function u; = 1 4 tv then is the supporting function of a surface of

revolution. For convenience we write § = 6; and, therefore, 1 = cosf, 0 < § < 7. Using a
formula in [47] with some simplification, we obtain

1—
o1 = —l(n cos? 6§ — Isin? ) cos' 20,
n
1—1)?
o9 = ( - ) (ncos® 6§ — 21 sin? 0) cos® =24,
It follows that
1-1)3
30109 — 205 = ( 3 (n3 cos® 6 — 3n%l cos @ sin” 6 + 212 sin® A) cos® 4.
n

We calculate

/ z1(30109 — 203)do = ¢ /;(30102 —207%) sin™ ! 0 cos Hdh
=c /07r (n® cos® 0 — 3n2l cos® @ sin? 0 4 213 sin® 0) cos® > G sin" ! 9dh
=ncy /Oﬂ(n cos® 1 9sin" 1 6 — 31 cos® L G sin™ T 0)df
+ 23¢9 /07r cos® 0 9 sin™*° 0do

:2l302/ cos® 0 9 sin™ 0 0d < 0
0

since

™
/ (ncos® 1 9sin™ 1 0 — 31 cos® 1 A sin" 1 0)df = cos® Hsin™ @ :)T =0
0
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and [ > 1 is an odd integer, where c; is a positive constant (equal to the volume of S"~!) and
cy = 61(7117?)3 < 0. jFrom (1.26)-(1.31) it follows that u; satisfies (1.32) for all ¢ > 0 sufficiently

small. ]

REMARK 1.1. In the case m = Z—J_r’,z, uz constructed in the proof of Proposition 1.2 is the
support function of a surface of revolution. Similar construction can also be done for m # Z—J_r’,z
It follows from the proof of Proposition 1.2 that the linearized operator L, of S)'. at u; is not
self-adjoint with respect to the standard metric on S™. We complement this with the following

observation. Suppose w is a positive function defined on S™ such that
(1.37) / 20() [ (V20 + uo)™ = 0

for all u € C°(S™) with {V?u +uc} >0, where 1 <j<n,1<k<nandmecR, m#0 (all
are fized). Then, for any v € C*(S™), as the function u; = 1+ tv satisfies (1.37) for all t > 0
sufficiently small, we have

/n zjw(z)or (Vv +vo) =0

by (1.29) and (1.80). This implies A(xjw) + nxjw =0 on S". Since the kernel of A +n is the
linear span of x1,...,x,, we see that w = const.

Notes

If assuming the convexity, the main results in this chapter are classical, see [3], [45] and
[36]. They were extended to k-convex case in [69].

Our proof of Theorem 1.2 follows the similar arguments of Alexandrov’s second proof of
Alexandrov-Fenchel inequality in [3] (see also [81]), which in turn is adapted from Hilbert’s
proof of the Brunn-Minkowski inequality in the case n = 3. Instead of using Alexandrov’s
inequality for mixed discriminants in his original proof, we make use of the hyperbolicity of the
elementary symmetric functions as in [81].

Proposition 1.2 was proved in [57], where the existence and uniqueness for the prescribing
Weingarten curvatures on outer normals were studied. the problem was proposed by Alexandrov
[4] and Chern [36].

We note that if D is convex, D is polar centrized if and only if the Steiner point of the
polar of D is the origin. If D is convex, V;*(D) in Definition 1.2 is the is the reciprocal of
the Ith quermassintegral of the polar of D. The geometric quantities of D and its polar D* in
this case are related by some important inequalities, like Blascke-Santalo inequality, Mahler’s
conjecture. When D is a centrally symmetric convex body and [ = n + 1, by the work of [18],
V(D)V(D*) > ¢, for some positive constant ¢, depending only on the dimensionality.



CHAPTER 2

The Minkowski Problem

The Minkowski problem is the main source for the study of Monge-Ampere equation. The
work of Nirenberg, Cheng-Yau and Pogorelov on the Minkowski problem led to the late devel-
opment of the theory of fully nonlinear equations.

Suppose M is a closed strongly convex hypersurface in the Euclidean space R"*!, the Gauss
map 7 : M — S"™ is a diffeomorphism, where at any point p € M, 7i(p) is the unit outer normal
at p. In this way, the Gauss curvature can be viewed as a positive function k(7! (x)) on S”. Let
us denote kK = (K1, ,Kkp) be the principal curvatures and K = kj - - - k,, the Guass curvature
of M respectively. The Minkowski problem is a problem of prescribing Gauss curvature on the
outer normals of convex hypersurfaces. To be more precise, the question is: given a positive
function K on S", is there a closed strongly convex hypersurface whose Gauss curvature is K
as a function on its outer normals? By the Divergence Theorem, K has to satisfy equation

Xy e .
(2.38) :/n-E-:O,Zzl,...,n—i—l,
sn K(z) ’

where z; are the coordinate functions and E’l is the standard ith coordinate vector of S™.

A C? closed hypersurface M in R™*! is called strongly convex if its Gauss curvature is
positive everywhere. By the Hadamard Theorem, M is a boundary of a convex domain. In
turn, M can be parametrized by its inverse Gauss map over S” with y(z) = 7,/ (). In this
chapter, we prove the following theorem.

THEOREM 2.1. Suppose K € C%(S"),K(x) >0, VY x €S, and K satisfies equation (2.38),
then there is a C3*(V 0 < a < 1) strongly convex surface M in R, such that k(iiy} (z)) =
K(x) VY e S™ M is unique up to translations.

1. Support function
Let M be a closed strongly convex hypersurface. The support function of M is defined as

u(x) =supx-z=uz-y(x), Ve € S".
zeM

We extend u as a homogeneous function of degree one in R™*!\ {0}. It is easy to check that u
is a convex function in R™*!. Since %yj is tangent to M for all j, and = = 7ijs(y) is normal to

M, we have x - Y — 0 for all j. It follows that

oxj;
(2.39) y(x) = Vgntru(z).

14
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Therefore, M can be recovered completely from u by above equation. The relation y(x) = 7, ()
and (2.39) yield

(2.40) Ventru(z) = iy (z).
Equation (2.40) implies that u is C? if M is C? and its Gauss curvature is positive.

Let en41 = x be the position vector on S", let e1,--- , e, is an orthonormal frame on S"
so that e1, - ,e,41 is a positive oriented orthonormal frame in R"*!. Let w’ and w;- be the

corresponding dual 1-forms and the connection forms respectively. We have

n n
dej = — Zw}ei, Vi=1,2,---,n, and depy1 = Zwiei.
i=1 i=1
For each function u € C?(S"), let u; be the covariant derivative of u with respect to e;. We
define a vector valued function

n
Y = Z U;i€; + Uent1.
i=1
We note that Y is independent of the choice of the orthonormal frames. We calculate that,

n

dY = Z(duiei + wide;) + duen11 + uden 1

i=1
n n n n n+l
=D _uiye’ =Y e+ (D uiwfea)
i=1 j=1 j=1 i=1 a=1
+ Z(inl)en+1 +u Z w'e;
i=1 i=1
n n
=> (O (uij + diu)es)w.
j=1 i=1

In particular, if u is a support function of M, by (2.39) the position vector of M is y(x) =
Y (x), that is

n
y(z) = Z Uie; + Uepni1.
i=1
In turn,
(2,41) dy = Z(UU + uéij)ei Q wj
Z"j
The identity (2.41) indicates that the differential dy maps T,(S™) to itself and it is self-
adjoint. dy is sometimes called the reverse Weingarten map. Since the Gauss curvature K is
positive, the Gauss map 7, is invertible at y = ﬁ;j (z). We have
(2.42) dy = (ditpr) ™,

so that the reverse Weingarten map at x coincides with the inverse of the Weingarten map at
y. Since the eigenvaules of the Weingarten map are the principal curvatures k = (k1,- -+, kp) of
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M at y, the eigenvalues of reverse Weingarten map at x = 7ijs(y) are exactly the principal radii
at y.

Conversely, if u(z) is a C? function on S™ with (u;; + ud;;) > 0, we claim that there is a
strongly convex hypersurface M such that its support function is u. Again, we extend u as a
homogeneous function of degree one in R™™!\ {0}. It is clear that M should be defined as in
(2.39), that is,

(2.43) M = {Vgniru(z)|z € R"\ {0}} = {Z ui(z)ei(z) + u(z)epti(z)|x € S}
i=1

Since (u;j + ud;j) > 0 is non-singular, we may read off from (2.41) that the tangent space
of M in R™ at y(z) = S, wi(@)ei(w) + u(@)ens1(x) is span{er, - ,eq}. Morcover, from
det(uij + uéw) > 0 and

dy A --- Ndy N enq1 = det(ui; + udij)dwi A -+ A dwp,

we conclude that e,41 = x is a normal vector at y(z) = Y i | ui(x)ei(x) + u(x)ent1(z) of M.
This provides a global orientation of M and also gives a global inverse of the map from M
(defined in (2.43)) to S™. That is, the map y(z) = > 1" ; ui(z)e;(x) + u(x)enr1(x) is globally
invertible and M is an embedded hypersurface in R**!. Equation (2.43) implies u(z) = z - y(z).
By (2.42), the principal curvatures at y is exactly the reciprocals of the eigenvalues of (u;;+ud;;).
In particular, the Gauss curvature of M does not vanish. Because M is a compact hypersurface,
the Gauss curvature is positive at some point, therefore must be positive at every point. By
the Hadamard Theorem, M is strongly convex. And u(z) = x - y(z) = x - iy} () is the support
function of M.
In summary, we have proved the following proposition.

PROPOSITION 2.1. A strongly convex hypersurface M in R* 1 is C2 if and only if its support
function w is in C*(S™) with (u;j + ud;;) > 0. The eigenvalues of (u;j + ud;;) are the principal
radii of M (parametrized by the inverse Gauss map over S™). In particular, the Gauss curvature
K of M satisfies equation

1
(2.44) det(ugj + udsj) = T on S™.
Furthermore, any function v € C?(S™) with (uij+udi;) > 0 is a support function of a C? strongly
convex hypersurface M in R,

From the above discussion, the support function carries all the information of M. Let Q the
convex body bounded by M. The kth quermassintegral Wy (2) is defined to be the average over
the Grassmannian manifold G(n+1, k) of the k-dimensional volume of the projections of €2 into
k hyperplanes in R"*!. The Cauchy-Crofton formula (e.g., see [110]) yields

(2.45) We(Q2) = Cn,k:/ uok_l(uij + U(Sij),
where ¢, is a dimensional constant, u is the support function of the boundary of Q2 and oy is
the lth elementary symmetric function. Wy,41(2) and W, (€2) are the volume of © and surface

area of M respectively, and W;(€2) is the mean width of 2. Moreover, the Alexandrov-Fenchel
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quermassintegral inequality in the previous chapter states that for 1 <[ <k <n+1, thereis a
constant C' depending only on [, k,n such that

(2.46) WE(Q) < el (@),

the equality holds if and only if €2 is a ball.

To conclude this section, we note that we have reduced the Minkowski problem to equation
(2.44). The uniqueness part of Theorem 2.1 is implied in Theorem 1.1. Moreover, Proposition 1.1
and the standard Implicit Function Theorem imply the openness of solutions to equation (2.44).

2. A priori estimates

We want to complete the proof of Theorem 2.1 using the continuity method. Here we need to
show the closeness, that is, to prove some a priori regularity estimates for equation (2.44). Since
equation (2.44) is elliptic at any admissible u, and det%(W) is concave, the higher regularity
estimates follow from the Evans-Krylov Theorem and the standard elliptic theory if we have a
prior bounds upto the second derivatives of solutions. Therefore, our focus here is to derive C?
a priori estimates for equation (2.44).

For a solution u of equation (2.44), u + Z?:Jrll a;x; is also a solution. By proper choice of
{a;}7_,, we may assume that u satisfies the following orthogonality condition:

(2.47) / riudr =0, Vi=1,2,...,n+1.

If w is a support function of a closed hypersurface M which bounds a convex body £2,
condition (2.47) implies that the Steiner point of Q coincides with the origin.
We first estimate the extrinsic diameter of M.

LEMMA 2.1. Let M € C?, M be a closed convex hypersurface in R"1, and let ¢ be the k-th
surface area function of M. If L is the extrinsic diameter of M, then

< e[

where cp 1 15 a constant depending only on n and k. In particular, if u is a support function of
M satisfying (2.44) and (2.47), then

k+1
k

( inf max(0, (y, x>)g0(a?)>l ;

yES" Sn

k+1

L= -1
k
0 <minu < maxu < ¢y </ <p> < inf max(0, <y,x>)g0(a:)> .

yeSn sn

PROOF. Let p,q € M such that the line segment joining p and ¢ has length L. We may
assume 0 is in the middle of the line segment. Let ¢ be a unit vector in the direction of this line.
Let v be the support function and W = {v;; + vd;;}. We have o,(W) = ¢. Now, for z € S", we
get

—_

v(z) = sup (Z,x) > iLmax(O, (y,z)).
zeM
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If we multiply by ¢ and integrate over S", we get

L < 2</nw> < [ max(0, (y,x))g0>_1.

By the Quermassintegral inequality (2.46),

([ oW < Cual [ o s,

On the other hand, from a Minkowski type formula (1.7), we have

(n—k—l—l)/nvak_l(W):k/nak(W):k/gngo.

In turn, we get
k+1
k

-1
L<cug </ w) <yi€nan : max (0, (y,x))<p> :

If u satisfies (2.47), the Steiner point of M is the origin. The last inequality is a consequence
of the above inequality. [

PROPOSITION 2.2. There is a constant C' > 0 depending only onn, k, ||¢[|c2(sny and ming» ¢,
such that if u satisfies (2.47) and u is a solution of (2.44), then ||ullc2sny < C. There is an
explicit bound for the function H := trace(u;; + d;ju) = Au + nu,

(2.48) min (ng(z)) < max H(z) < max(ng(z) — Ap(z)),

where p := <p%.

PROOF. Since the entries |u;;+0J;;u| are controlled by eigenvalues {\;}7*; of W = (u;;+6;5u).
Since W >0, \;, < H,Vi=1,--- ,n.

By Lemma 2.1, we have a C° bound on u. So the |u;;| are controlled by H. C! estimates
follows from interpolation if we have bounds on the second derivatives. Therefore, we only
need to bound H. Assume the maximum value of H is attained at a point xo € S”. We
choose an orthonormal local frame ey, e, ..., e, near zo such that u;;(zo) is diagonal. We define

GW):= on%(W). Then equation (2.44) becomes
(2.49) GW) = 3.

For the standard metric on S”, one may easily check the commutator identity H; = AWy, —
nW;; + H. By th'ej assumption that the matrix W € Ty, so (GY) is positive definite. Since
(H;;) <0, and (G¥) is diagonal, by the above commutator identity, it follows that at xo,

(2.50) 0> GYH;j = G"(AWy) — nG" Wi + HY G,

As G is homogeneous of degree one, we have
(2.51) G"Wyi = ¢.
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Next we apply the Laplace operator to equation (2.49) to obtain
G"Wijk = Vi@,  GI"WinWosk + GV AW = A
By the concavity of G, at x, we have
(2.52) GUAWy) > A
Combining (2.51), (2.52) and (2.50), we see that
(2.53) 0> A¢—n¢+H§:G%.
i=1

As W is diagonal at the point, we may write W = (Wi, ..., W,,,,) as a vector in R™. A simple
calculation yields

G = g0 (W)n Loy (W]i),
where (W i) is the vector given by W with W;; deleted. It follows from the Newton-MacLaurin
inequality that
n
NG = op(W)E o, (W) > 1.
i=1

By (2.53), we have H < np — Ag. ]

By the Evans-Krylov Theorem and the standard elliptic theory, together with Proposi-
tion 2.2, we have the following a priori estimates.

PROPOSITION 2.3. For each integerl > 1 and 0 < o < 1, there exist a constant C depending
only on n,l,a,min g, and ||||c11(S™) such that

(2.54) [lul|otr1,a (S™) < C,
for all admissible solution of (2.44) satisfying the condition (2.47).
We now precede to prove Theorem 2.1 using the method of continuity. By Proposition 2.3.

we may assume that K in equation (2.44) is C*°. Let H™(S™) be the Sobolev space. We pick
m sufficient large so that H™(S") C C*(S™). We define

Sm=AF € H"SM| | f)ai=0vi=1, 0+ 1},

and we define a nonlinear operator on &,
F(u) =: det(uij + ’U,(Sl])
For Vu € C%(S™) and for each i, if we let u1 = x; and u; = u for j > 1, Lemma 1.1 implies that
Jon ziF'(u) = 0. Therefore,
F: Sm — Sm_z.
For any convex u, let L, be the linearized operator of F' at u. By Proposition 1.1,

Range(Ly) = (Ker(Ly))™ = (Span(z1, -+, 2n41))"
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That means that L, is surjective. The standard Implicit Function Theorem yields that F' is
locally invertible near u. For 0 <t < 1, define

t
E={0<t<1l|F(u)=1—-t+ I has an admissible solution}.

So E is open and E # () since 0 € E. Proposition 2.3 implies F is closed. Hence E = [0, 1], so
the existence of the solution to the Minkowski problem is proved. The uniqueness follows from
in Theorem 1.1.

Notes

The Minkowski problem was considered by Minkowski in [95] 1897. The differential geo-
metric setting of the problem in this chapter was solved in early 1950s by Nirenberg [97] and
Pogorelov [105] for n = 2. The solution of the Minkowski problem in higher dimension came
much later in 1970s by Cheng-Yau [35] and Pogorelov [107]. The proof of Theorem 2.1 in this
chapter follows mainly from that of Cheng-Yau in [35], see also a forthcoming book ”Isometric
embeddings”.



CHAPTER 3

The Christoffel-Minkowski problem, admissible solutions

We deal with the Christoffel-Minkowski problem in this chapter. For each convex body
Q c R™! induces a kth area measure on S™ by dAdq = oy, (uij + udij)dosn, where u is a support
function of Q and dogn is the standard volume form on S”. The Christoffel-Minkowski problem
is the problem of finding a convex body with its kth area measure is prescribed on S”. It leads
to the following equation on S™ :

(3.1) ok(uij—ku&ij):(p on S™.

In order to solve Christoffel-Minkowski problem, we want to find a solution of equation (3.1)
with the following convex condition:

(3.2) (uij + U(sz‘j) >0, on S,

Our main interest of this chapter is to understand existence and uniqueness of admissible
solutions. We will treat some general fully nonlinear equations on S”. In particular, we will
establish general existence and uniqueness of admissible solutions of equation (3.1).

If Vo € C?(S™), it is necessary that

(3.3) / Lm0k (vij(z) + v(x)ds;)dx = 0, Ym=1,2,...,n+ 1.
In order that equation (3.1) to have a solution, it is necessary that
(3.4) / zip(zr)dr =0, Vi=1,2,...,n+ 1.
The class of quotient equations is also important: (0A < k < n)
ox (W)
3.5 =¢, on S

where W = (u;j + ud;j). When [ = 0, equation (3.5) is the same as equation (3.1). In special
case k = n, the equation is related to the problem of prescribing Weingarten curvature posted
by Alexandrov and Chern (see [57]). When 1 <[ < k < n, like equation (3.1), (3.5) is fully
nonlinear. In this aspect, it is similar to the Monge-Ampere equation. But there is an essential
difference: the class of convex functions is not a natural class of solutions of equation (3.1). By
Corollary 13.1, the elementary symmetric functions o, are hyperbolic polynomials defined for
symmetric matrices. For each oy, there is a connect1 cone I'y containing the identity matrix such

that oy is positive, (ii) is positive definite and S ,f is concave in the cone. Let S be the space
J

consisting all n x n symmetric matrices. For any symmetric matrix A € S, oy (A) is defined to

21
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be o (), where A = (A1, ..., A,) are the eigenvalues of A. I'y, can be written equivalently as the
connected cone in S containing the identity matrix determined by

(36) Fk:{AGS: 0'1(14) >0,...,0’k(A) >0}.

We note that k-convex functions are the natural class of functions where equations (3.1) and
(3.5) is defined and elliptic.

We now consider existence of admissible solutions of general fully nonlinear equations on
S™. We will establishment of some appropriate estimates for admissible solutions of equations
under some structural conditions. The existence problem is closely related to the uniqueness
of some particular constant solution of the equation. Equation (3.1) is among this type of
equations. For these equations, the uniqueness in general setting is a difficulty issue and the
continuity method does not work well. Instead, degree theory is more suitable in many cases
(e.g., see [57]). For example, degree theory can be used if one can isolate constant solutions of
the equation. This is why the uniqueness of the constant solutions comes in to the picture of
the existence.

The following is the existence result for equation (3.1).

TuEOREM 3.1. (Existence) Let p(x) € CL1(S") be a positive function, suppose o satisfies
(8.4), then equation (3.1) has a solution. More precisely, there exist constant C' depending only
on n,a,min g, and ||¢||c1.1(S?) and a C3* (¥ 0 < o < 1) k-convex solution u of (3.1) such
that:

(3.7) lullese(S™) < C.
Furthermore, if o(x) € CHY(S™) (1> 2,74 >0), then u is C*tY. If ¢ is analytic, u is analytic.

We first establish the a priori estimates for admissible solutions of equation (3.1). We
note that for any solution u(z) of (3.1), u(x) + I(z) is also a solution of the equation for any
linear function [(x) = Z?jll a;x;. We will confine ourselves to solutions satisfying the following
orthogonal condition

(3.8) / riudr =0, Vi=1,2,...,n+ 1.

When u is convex, it is a support function of some convex body 2. Condition (3.8) implies that
the Steiner point of €2 coincides with the origin.

Here we establish a priori estimates for admissible solutions. We note equation (3.1) will be
uniformly elliptic once C? estimates are established for . By the Evans-Krylov Theorem and
the Schauder theory, one may obtain higher derivative estimates for u. Therefore, we only need
to get C? estimates for u.

In fact, the a priori estimates we will prove are valid for a general class of fully nonlinear
elliptic equations on S™. We consider the following equation:

(3.9) F(uij + U(Sz]) = on S”.
DEFINITION 3.1. We say a function u € C?*(S") is I-admissible if W(z) = (u;j(z) +

diju(z)) € T for all x € S™. If u is I'-admissible and satisfies equation (3.9), we call u an
admissible solution of (3.9).
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We now switch our attention to a priori estimates of solutions of equation (3.9).
We will obtain an upper bound on the largest eigenvalue of the matrix (u;; + 6;;u) first. We
then come back to deal with the C° bound.

PROPOSITION 3.1. Suppose F' satisfies the structural conditions (13.11)- (18.14), suppose

u € C*(S") is an admissible solution of equation (3.9), then there is C > 0 depending only on
F(I) in (13.15), 6 in (153.14) and ||¢||c2 such that

(3.10) 0 < Amax < C,

where Amax 15 the largest eigenvalue of the matriz (u;; + d;5u). In particular, for any eigenvalue
Ai(x) of (uij(x) + diju(x)),

(3.11) IANi(z)| < (n—1)C, VzeS"

1
Proof. When F' = 0% and u is convex, this is the Pogorelov type estimates. Here we will deal
with general admissible solutions of F' under the structure conditions. It seems that the moving
frames method is more appropriate for equation (3.9) on S™.

(3.11) follows from (3.10) and the fact I' C I';. Also the positivity of Apax follows from the
assumption that I' C I'y. We need to estimate the upper bound of Apax. Assume the maximum
value of Apax is attained at a point zg € S™ and in the direction e1, so we can take Apax = Wi1
at x9. We choose an orthonormal local frame ey, es, ..., e, near xy such that u;;(zo) is diagonal,
so W = {u;j + d;;u} is also diagonal at zo.

For the standard metric on S™, we have the following commutator identity

Witii = Wiinn — Wi + W
By the assumption, (F%) is positive definite. Since Wi1; < 0 at mg, , it follows that at this
point
(3.12) 0> F'"Wiiy; = F'"Wyn1 — F"Wy; + Wi F™.
By concavity condition (13.13),

(3.13) Y _FUW)Wy <Y FUW)+F(W)—F(I)=> F*W)+¢—F(I).

Next we apply the twice differential in the e; direction to equation (3.9), we obtain
FIW,ijp = V1§,
FrsWnWest + FIWij = P11
By the concavity of F', at g we have
(3.14) F"Wiin > 1.
Combining (3.13), (3.14) and (3.12), we see that
n
0>¢n—» F'—@+Wny F'+F().
i i=1

By assumption, ¢ < M for some M > 0. From condition (13.14), >°% ; F > 63, > 0. It follows
that Wy < C. [ |
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COROLLARY 3.1. If u € C*(S") is an admissible solution of equation (3.1) (so W(x) =
(uij(x) + u(z)di;j) € I'y, Vo € S™), then 0 < maxzesn Amax(x) < C.

In order to obtain a C? bound, we need a C° bound for u. Here, we use the a priori bounds
in Proposition 3.1 to get a CY bound for general admissible solutions of equation (3.9).

LEMMA 3.1. For any I'-admissible function u, there is a constant C depending only on n,
maxgesn Amax (%) and maxgn |u| such that,
(3.15) lullg2 < C.

Proof. The bound on the second derivatives follows directly the fact W (z) = (u;;(z)+0;;u(x)) €
I' € I'y. The bound on the first derivatives follows from interpolation. [ |

Now we establish the C?-estimate. The proof is based on a rescaling argument.

PROPOSITION 3.2. Suppose F satisfies structure conditions (13.11)-(13.14). If u is an ad-
missible solution of equation (3.9) and w satisfies (3.8), then there exists a positive constant C
depending only on n, k,||@||c2 and F such that,

(3.16) lul|c2 < C.

Proof. We only need to get a bound on ||u[[co. Suppose there is no such bound then Jul(l =
1,2,..) sa‘msfylng (3. 8) there is a constant C' independent of I, and F(W') = @' (where W' =
(u + 6;ul)), with @' satisfies

16'lc2 < C, supp <1, ||| 2 L.

Let of = HU’H , then

(3.17) |[0!|| Lo = 1.

By Proposition 3.1, we have for any eigenvalue \;(W'(z)) of W'(z),
(3.18) N (Whz))| < (0 — DAmax(Wh) < C,

where )\maX(Wl) is the maximum of the largest eigenvalues of W' on S™ and the constant C is
independent of [. Let W! = (v + 6;v!) and from (3.18) v! satisfies the following estimates

— 0.

(3.19) AW (@))] < (1 = 1) Amax (W) < N[l] [ oo

In particular, Avt + novt — 0.
On the other hand, by Lemma 3.1, (3.17) and (3.19), we have

[o']]o2 < C.
Hence, there exists a subsequence {v%} and a function v € C»*(S") satisfying (3.8) such that
(3.20) i — v in CH(SY), with |[v|[pe = 1.

In the distribution sense we have

Av+nv=0 on S™
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By linear elliptic theory, v is in fact smooth. Since v satisfies (3.8), we conclude that, v =0 on
S™. This is a contradiction to (3.20). ]

The higher regularity would follow from the Evans-Krylov Theorem and the Schauder theory
if we can ensure the uniform ellipticity for equation (3.9). That can be guaranteed by the
following condition,

(3.21) limyy o0 F (W) = 0.

THEOREM 3.2. Suppose F satisfies the structure conditions (153.11)-(13.14) and condition
(3.21), and @ > 0 on S", then for each 0 < o < 1, there exists a constant C depending only on
n,a, min @, ||@||c1.1(S™) and F such that

(3.22) lullgs.a (S) < C,

for all admissible solution u of (3.9) satisfying (3.8). If in addition F € C for some | > 2, then
there exists a constant C depending only on n,l, o, min @, ||@|| 11 (S") and F such that

(3.23) [lul|ct+1,a(S™) < C.

In particular, the estimate (3.23) is true for any admissible solution of (3.1) and (3.8) with
p=pr.

Proof. We verify that equation (3.9) is uniformly elliptic. By Proposition 3.2 and condition

(3.21), the set {W(z) € I'| F(W(z)) = @(x),Vx € S} is compact in T'. Since F € C*, equation
(3.9) is uniformly elliptic by condition (13.12). ]

We establish existence result for equation (3.1). With the a priori estimates just proved. We
will use degree theory argument for the existence. In fact, the argument applies to equation (3.9).
In order to compute the degree, we need some uniqueness result. The following uniqueness result
is known as when u is a support function of some convex body, e.g., by Alexandrov’s moving
planes method. But we need to treat the uniqueness problem for general admissible solutions.
Here we use a simple a priori estimates argument to obtain a general uniqueness result in this
direction.

PROPOSITION 3.3. Suppose that F' satisfies condition (13.12) and (13.13). Assume that
(3.24) > FUW)Wi; >0  for each W € T with F(W) = F(I).

.3
If u is an admissible solution of equation of the following equation
(3.25) F(uij + 52‘]‘”&) =F({I) on S",
then u =1+ Z?ill a;x; for some constants ai,- - ,Qp41-

Proof. By concavity, for W = (W;;) € T,

(3.26)  F(I)<F(W)+ Y FI(W)(6i; — Wij) = F(W) + zn: FYW) — zn: F9 (W)W
J i i,
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Also by the symmetry, F(I) = ... = F"™(I) = w
If u is an admissible solution of (3.25), we know u € C? by definition. By the Evans-
Krylov Theorem and the Schauder theory, u € C*°. Let W (x) = (u;;(x) + d;5u(z)) and H(z) =

traceW (z) = Au(x) + nu(z). Since FVI(I) = Z?%FM(]),V]’, by concavity, for all x € S,

FOW () < F() + Y P W) — a5) = () + 2= iy 5™ iy,
i\ i=1

As F(W(z)) = F(I) and Y., F*(I) > 0, we get
(3.27) H(z)>n, VYreS"

We want to show H(z) < n for all z € S”. Assume the maximum value of H(z) is attained
at a point zyg € S". We choose an orthonormal local frame ey, ea, ..., e, near zg such that u;;(xo)
is diagonal, so W = {u;; + d;;u} is also diagonal at z. For the standard metric on S", we have
the following commutator identity

H;; = AW;; —nW;; + H.

Since F(W (z)) = F(I), it follows from (3.26) that Y 1 ; F*(W) > >0 | F4(W)W;;. As H;; <0
at xo,

=1 i=1

i=1 i=1
(3.28) > Y FUW)AWy —n > FH W)Wy + H Y FHW)Wi.
i=1 i=1 i=1
Applying A to F(W) = F(I), and by the concavity of F, we obtain at x,
(3.29) F*Y(W)AW;; > AF(I) = 0.

Combining (3.29) and (3.28),
n n
ny FY W)Wy > HY  FYW)Wi.
i=1 i=1
By assumption (3.24), Y- | F*(W)W;; > 0, we get n > H(xo). Combining (3.27), we conclude
that H(x) = n,Vz € S". Therefore, u — 1 € span{xi,--- ,Tpt1}. [ ]

REMARK 3.1. By Lemma 13.6, conditions (13.11)-(13.13) and (13.22) imply (3.24). We
note that conditions (13.13) and (3.21) implies F(W) > 0 for all W € I". Therefore, (3.24)
follows from (13.11)-(13.13) and (3.21).

For a > 0, I > 0 integer, we set,
(3.30) Abe = {f e Ch(S™) : f satisfying (3.8)}.
For R > 0 fixed, let
(3.31) Or = {w € A" : w is T-admissible and [wl|cragny < R}
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In addition to the structural conditions on F' in the previous section, we need some further
conditions on F' in (3.9) to ensure general existence result. We assume that there is a smooth
strictly monotonic positive function @ defined in R, = (0,00), such that Vu € C?(S") with
W = (uij + udij) € I', F satisfies the orthogonal condition,

(3.32) QF(W(x)))xm =0,Vm =1,2....,n+ 1.
S’ﬂ

PROPOSITION 3.4. Suppose F' satisfies the structural conditions (13.11)-(18.14), (3.21) and
the orthogonal condition (3.32). Then for any positive p € CHL(S™) with o(z) = Q(@(x))
satisfies (3.8), equation (3.9) has an admissible solution u € A>*,Y0 < a < 1 satisfying

[|ul|gs.0 (S") < C,
where C' is a constant depending only on F,Q, a,miny, and ||¢||c11(S™). Furthermore, if
o(z) € CY(S™) (1> 2,v>0), then u is C?>TH7,

Proof. For each fixed 0 < ¢ € C*(S") with ¢ = F($) satisfying (3.8), and for 0 < ¢ < 1, we
define
(3.33) Ty(u) = Q(F({uij + udij})) — to — (1 =) F(I).

T; is a nonlinear differential operator which maps A2 into A4, If R is sufficiently large,
Ti(u) = 0 has no solution on Og by the a priori estimates in Theorem 3.2. Therefore, the
degree of T; is well-defined (e.g., [93]). As degree is a homotopic invariant,

deg(T07 O'R7 0) = deg(T17 O'Ra O)

At t = 0, by Remark 3.1 and Proposition 3.3, u = 1 is the unique solution of (3.9) in Og. We
may compute the degree using formula

deg(T()a O'R,?O) = Z (_l)ﬁ]7
13 >0

where (1 are the eigenvalues of the linearized operator of T and 3; its multiplicity. Since F' is
symmetric, it is easy to show that the linearized operator of Ty at u = 1 is

L=v(A+n),

for some constant v > 0. As the eigenvalues of the Beltrami-Laplace operator A on S™ are
strictly less than —n, except for the first two eigenvalues 0 and —n. There is only one positive
eigenvalue of L with multiplicity 1, namely p = nv. Therefore,

deg(T17 OT\’,? O) = deg(T07 OT\’,? O) = -1

That is, there is an admissible solution of equation (3.9). The regularity and estimates of the
solution follows directly from Theorem 3.2. [ |

Proof of Theorem 3.1. Theorem 3.1 follows from the above Proposition, since F(W) =
1

of (W) satisfies conditions (13.11)-(13.14) and (3.21). The orthogonal condition (3.32) follows
from (3.4). [ ]
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REMARK 3.2. Since the C? a priori bound in Proposition 3.2 is independent of the lower
bound of ¢ (we note it is used only for the C** estimate), Proposition 3.4 can be used to prove
existence of CY1 solutions to equation (3.9) in the degenerate case. To be more precise, if F
satisfies the structural conditions (13.11)-(13.14), (3.21) and the orthogonal condition (3.52).
Then for any nonnegative p € C1(S™) with p(x) = F(p(x)) satisfies (3.8), equation (3.9) has
a solution u € CHY(S™). For equation (3.1), we can do a little better. One can prove that if
¢ > 0 satisfying (3.4) and goﬁ € CY1, then equation (3.1) has a CY' solution (see [59] and
[58] for the similar results for the degenerate Monge-Ampére equation). For this, we only need
to rework Proposition 3.1. Instead, we estimate H = Au+nu. Following the same lines of proof

of Proposition 3.1, the desired estimate can be obtained using two facts: (1), for f = gpﬁ, we
have |V f(z)]?> < Cf(x) for all x € S, where C depending only on C“' norm of f; (2), for
1 1 1

k>1and F=of, Y0 FYW) > %O’k_k(k_l) (W)a =" (W) (for a proof, see Fact 3.5 on page
1429 in [75]).

The structural conditions (13.11)-(13.14) and (3.21) are satisfied for the quotient operator

FW) = (‘;’;((x)))ﬁ with I' = T’y for any 0 < [ < k. Also, constant is the unique solution of

F(W) = 1 in A% by Proposition 3.3. Unfortunately, the orthogonal condition (3.32) is not
valid in general by some simple examples in Proposition 1.2. Nevertheless,we have the following
existence result.

PROPOSITION 3.5. Suppose F' satisfies the structural conditions (13.11)-(15.14) and (3.21).
Assume ¢ € CHL(S™) (1 > 1) is a positive function. Suppose there is an automorphism group G
of S™ which has no fixed points. If ¢ is invariant under G, i.e., ¢(g(x)) = @(x) for all g € G
and x € S™. Then there exists a G-invariant admissible function u € CH2 (V0 < a < 1), such
that u satisfies equation (3.9). Moreover, there is a constant C depending only on a, min @, and
|2llcta (S™), such that

HUHCH-La (Sn) S C.

In particular, for any positive G-invariant positive p € C11(S™), equation (3.5) has a k-convex
G-invariant solution.

Proof. We only sketch the main arguments of the proof. Since any G-invariant function is
orthogonal to span{zi,...,zn4+1} by [67]. Therefore, v = 1 is the unique G-invariant solution
of (3.9) by Proposition 3.3. We again use degree theory. This time, we consider G-invariant
function spaces:

Abe = {f € C(S") : f is G-invariant},
and
Or = {w is k-convex,w € AH® : [wllcagny < R}

One may compute that the degree of F' is not vanishing as in the proof of Theorem 3.4. ®
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THEOREM 3.3. Suppose there is an automorphism group G of S™ which has no fixed points.
Suppose p € C>(S™) is positive and G-invariant, then equation (3.5) has a G-invariant convex
smooth solution w.

We remark that the reason to impose group invariant condition in Theorem 3.3 is that, since
for [ # 0, equation (3.5) does not have variational structure. For this reason, it is found in ??
that condition (3.4) is neither sufficient, nor necessary for the existence of admissible solutions
of (3.5).

-1
Proof Theorem 3.3. For 0 <t < 1, we define ¢; = (1 — t + tp#-1)7F*+ Certainly ¢; is
-1 -1
G-invariant and {(@¢*=1);; + ¢t #10;;} is semi-positive definite everywhere on S". We consider
equation

Ok
(3.34) ;l(u;,?j +u'dig) = .
Applying degree theory as in the proof of Proposition 3.5, there exists admissible solution u® of
equation (3.34) for each 0 <t < 1. [ ]
Notes

When k = n, equation (3.1) is the Monge-Ampére equation corresponding to the Minkowski
problem:

(3.35) det(u;; +udij) =, on S".

In this case, our Existence Theorem was proved in the works of Nirenberg [97] (for n = 2),
Cheng-Yau [35] and Pogorelov [107]. For the other extremal case k = 1, equation corresponds
to the Christoffel problem. In this case, equation (3.1) has the following simple form:

(3.36) Au+nu=¢, on S"

where A is the spherical Laplacian of the round unit sphere. The operator L = A + n is linear
and self-adjoint. In this case, our Existence Theorem follows easily from the linear elliptic theory.
The general form of the Existence Theorem was proved in [68].

Some general form of fully nonlinear geometric equations on S were studied by Alexandrov
[4] and Pogorelov [106]. In particular, uniqueness problem was considered in [4] and existence
problem was addressed in [106] under various structural conditions. Their attentions were
mainly drawn to solutions which may represented as support functions of some convex bodies.
The results for admissible solutions were obtained in [68].



CHAPTER 4

The Christoffel-Minkowski problem, the issue of convexity

In this chapter, we discuss when an admissible solution of equation (3.1) is convex. The con-
vexity of equation (3.1) is important since it is related to the geometric problem: the Christoffel-
Minkowski problem.

We will establish a general convexity principle for solutions of fully nonlinear partial differ-
ential equations. The existence of convex solutions is usually obtained by the continuity method
or flow method. The basic philosophy of this type of deformation lemma is to show the strict
convexity is preserved in the process. Here, we prove a convexity principle under some general
simple structure conditions.

Let us fix some notations. Let ¥ C R™ be an open symmetric domain, denote Sym(n) =
{n xn real symmetric matrices}, set

(4.1) U ={Ac Sym(n): \(A) € ¥}

We will assume

_9f
Y

extend it to F : ¥ — R by F(A) = f(A(A)). We define F(A) = —F(A~") whenever A~ € ¥,

we also assume

(4.2) f € C*W) symmetric and fy,(\)

(AN)>0,Vi=1,---,n, YAeVU.

(4.3) F s locally concave.

THEOREM 4.1. Under conditions (4.1)-(4.3), if u is a C® convex solution of the following
equation in a domain  in R™

(4.4) F(uij(z)) = ¢(z,u(x), Vu(z)), VYzeQ,

for some p € CLH(Q x R x R™). If o(x,u,p) is concave in Q x R for any fived p € R"™, then the
Hessian (ui;) has constant rank in ).

We now turn to fully nonlinear equations arising from classical differential geometry.

Let M be an oriented immersed connect hypersurface in R”*! with a nonnegative definite
second fundamental form. Let k(X) = (k1(X), - , k(X)) be the principal curvature at X € M.
We consider the following curvature equation

(4.5) F(5(X)) = p(X, (X)), ¥X € M,
where 77(X) the unit normal of M at X.

30
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THEOREM 4.2. Suppose f and F as in Theorem 4.1. Suppose ¥ C R"1 x S™ is a bounded
open set and ¢ € CYY(T) and p(X,y) is locally concave in X wvariable for any y € S™. Let
M be an oriented immersed connect hypersurface in R* with a nonnegative definite second
fundamental form. If (X,7(X)) € X for each X € M and the principal curvatures of M satisfies
equation (4.5), then the second fundamental form of M is of constant rank. If in addition M is
compact, then M is the boundary of a strongly convex bounded domain in R™H1.

We next consider the Christoffel-Minkowski type equation,
(4.6) F(ujj +udij) =¢ on QCS",
where u;; are the second covariant derivatives of u with respect to orthonormal frames on S".

THEOREM 4.3. Let f and F' as in Theorem 4.1, and assume f is of homogeneous degree —1
and Q is an open domain in S™. If 0 > ¢ € CH1(Q) and (5 +¢di;) < 0 on Q, if u is a solution
of equation (4.6) with w;; + ud;; is nonnegative, then (u;; + ud;;) of constant rank. If Q =S",
then (uij + ud;j) is positive definite everywhere on S".

1. Equations in flat domains in R"

We first present proof of Theorem 4.1 to illustrate the main idea to establish a local differ-
ential inequality (4.11) near the point where the minimum rank of the Hessian (u;;) is attained.
One of the key property we will use is the symmetry of u;;, with respect to indices i, j, k. The
proof of Theorem 4.2 and Theorem 4.3 will be given in the next section. The main arguments
also work for equations on Codazzi tensors in Riemannian manifolds, which we will discuss in
the last section.

k. Of  Fkl . 9%f af _ _OF aBrs . O2F
We define f* = D = RNOTE FeP = 9405 and I = 9A,50A

Proof of Theorem 4.1. We set ¢(z) = p(x,u(z), Vu(z)) and W = (W;;) with W;; = u;;. We
rewrite (4.4) in the following form

(4.7) F(W(2)) = ¢(z), Ve

Suppose zg € (2 is a point where W is of minimal rank [. We pick an open neighborhood
O of zg, for any z € O, let \; < Ag... < A\, be the eigenvalues of W at z. There is a positive
constant C' > 0 depending only on ||u||cs, ||¢]lc2 and n, such that A\, > Ap—1... > N1 > C.
Let G={n—14+1,n—1+2,...,n} and B = {1,...,n—1} be the “good” and “bad” sets of indices
respectively. Let Ag = (An_i44,---; An) be the 7good” eigenvalues of W at z, for the simplicity
of the notations, we also write G = A if there is no confusion.

Since F' is elliptic and W is continuous, if O is sufficiently small, we may pick a positive
constant A such that
(4.8) min F**(W(x)) > 2 Z |FQB’TS(W(33))], Vz € 0.

o A

Ot,ﬁ,ﬂS

Set (with the convention that o;(W) =0if j <0 or j > n)
(49) 6(@) = 011 (W) + Aoryo(W).
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Following the notations in [24], for two functions defined in an open set O C Q, y € O, we
say that h(y) < k(y) provided there exist positive constants ¢; and ¢ such that

(4.10) (h=k)(y) < (c1|Vo| + c20) ().

We also write h(y) ~ k(y) if h(y) < k(y) and k(y) S h(y). Next, we write h S k if the above
inequality holds in O, with the constant ¢;, and ¢z depending only on ||ul|cs, ||@]|c2, 7 and Co
(independent of y and O). Finally, h ~ k if h < k and k& < h. In the following, all calculations
are at the point z using the relation ” <7, with the understanding that the constants in (4.10)

are under control.
We shall show that

n

1 aa ~
(4.11) el ST F 00 Y i

a=1 i€B

To prove (4.11), we may assume u € C* by approximation. For each z € O fixed, we can rotate
coordinate so that W is diagonal at z, and W;; = \;,Ve = 1,...,n. We note that since W is
diagonal at z, (F®#) is also diagonal at z and F*#" =0 unless « = f,r =sor a =7, = s.

Now we compute ¢ and its first and second derivatives in the direction x,. The following
142

computations follow mainly from [67]. As W is diagonal at z, oy12(W) < Co[ﬂ (W), we obtain

(412) 0~ ¢(2) ~ o (W) ~ O Wi)o(G) ~ > Wi, (so Wi ~0, i€DB),
i€B i€EB

Let W be a n x n diagonal matrix, we denote (W|i) to be the (n — 1) x (n — 1) matrix with
ith row and ith column deleted, and denote (W|ij) to be the (n —2) x (n —2) matrix with 4, jth
rows and 4, jth columns deleted. We also denote (G|i) be the subset of G with \; deleted. Since
o1+1(W1i) <0, we have

(4.13) 0~ ¢po ~ 0i(G) Z Wiia ~ Z Wiia

i€B i€B

(4.12) yields that, for 1 <m <1,

om(Glj), ifjeG;

(4.14) on(W) ~ om(G),  om(W|j) ~ {Um(g), if j € B.

Gm(G|Z])7 leaJEGal#%
om(Wlij) ~ S om(Glj), ifie B,je€G;

om(G),  ifi,jeB,i#j.
(

Since W is diagonal, it follows from (4.12) and Proposition 13.1,

(4.15) doi1 (W) ol(G), ifi=j€B,
' oWy 0, otherwise,
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and for 1 <m <n,

e Py _ [ R

’ 8mj8WT’S N O—m_2 Zj ’ n jf " J’ o 27

, otherwise.
From (4.13)-(4.16), we have
(417) Zo'l 1 W|7/.7 szaW]ja ~ Zo'l 1 G‘] jja ZWua ~ ’
i€B jeG i€B
JjeG
(4.18) > o a(Wlif)WiiaWija ~ —01-1(G) Y Wik,
i,jEB i€EB
i#]
(4.19) Z o1 (Wli)W, Z_]a Z o1-1(G[7)W, zga’
j€GieB i€B,jeCG
and if | <n — 2 (that is |B| > 2)
?a142(W) 2
2 o, VeV~ 2 ol@Wiali = 3 oG,
1,j=1 i#jEB i#jEB
~ _Zal zza - Z (G)ija
i€B i#jEB
(4.20) ~ —o(G) Y Wi,
i,jeB

We note that if [ = n — 1, we have |B| = 1, (4.20) still holds since wj;q ~ 0 by (4.13).

By (4.14)-(4.19), Vae € {1,2, ...,n}

(z)oza = Agl+2 Z Z+ Z Z Ul 1 W‘Z] irey ]ja

i€eG i€EB  ijeB  i,jeCG
JEB  JEG  uj i)

0
- Z Z+ Z Z O]—1 W’U zga O-g_vl[/” zzaa

i€G i€eB  i,jeB  i,jeCG
JEB  JEG i) z‘;éj

~ ZWuaa +AZUZ+1 Wli)Wiiaa ZZUZ 1(G7)W, z]a
i€B 1€B
jeG
(4.21) —(01-1(G) + A (G)) Y Wi,

1,j€B

33
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Since F*? is diagonal at z, we have

ZFaa¢aa ~ AZ ZF 0141 W’ ) iiaa T Z Faa Ul ZWuaa A Z z]a
a=1

a=1i=1 i€l 1,j€EB
(422) —0]— 1 Z 1]04 2ZUZ 1G|J zga]
i,JEB i€B
jeG

By equation (4.7),
n n n
pi= > FWagi, Gu= Y, FOPT WesiWesi+ Y F Wagis.

Cl(,ﬁ:l Q,B,T‘,Szl Cl{,ﬁzl

So for any ¢ € B, we have

n
(4.23) > P Wanii ~ @i — >, FOT Wapi W
Oé:1 0‘75,7.’5

As Wanii = Wiiaa and o741 (W1i) ~ 0, from (4.22) and (4.23)

S G~ Al YD D P - AY S e
a=1

i€EB i€B a,B,r,s a i,jeEB
(4.24) —or1( Z > Feewy, 2220, 1(GlJ) F“W .
a=1ij€B a=1ieB
jeG

In order to study terms in (4.24), we may assume the eigenvalues of W are distinct at z (if
necessary, we perturb W then take limit). In the following we let \; = W;;.
Using (13.8), (13.9) and (4.24), we obtain

ZFaa(bOCOC ~ UI(G)ZSEM— Z Z f ﬁWaazWBBz'f‘zZ )\ W2 ]
a=1

1€B 1€B a,f=1 a<f
(425) _(Ul—l(G) +Aal Z Z fa zga ZZZUZ 1 G‘] fa z]a
a=11i,j5€B a=1ieB

JjEG
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As Wiji, is symmetric with respect to i, j, k (here the symmetry of Wijy, is essentiall),

n

al(lG) D F e ~ D Gu=D [+ D 42D 1 WaaiWas:

a=1 i€B i€B a,peB  a,peG acG
66
(4.26) -2 + > + ; A fowz,
B J
zEB a,BeG@ oG  «a BEB ﬁ a=11i,5€B

a<f  BEB a<ﬁ

—2) [+ Z asi =2 L2+ N Z fa

i€B a,feG aeB i€B a,peB  aeG k=n— l+1
BEG BEB

Now we divide (4.26) into three parts according to sum 3, sc: D acc and -, s p. Then
) ﬁEB B
(4.26) becomes

(4.27) al(lc;) S F ~ Y = S L+ I+ 1) - A Y oW,

a=1 i€eB i€EB a€Gi,jEB

where

I, = Z f Waazwﬁﬁl+2 Z f )‘B ,31+2 Z f /31’

a,BeG a,BeG BeG
a<f
I =Y [2f* WammeLZuWQ +2f Ws + ( Zn: —)few2s]
Ao —Ag @PETTN, N apib
aeG k=n—I1+1
BEB
. f L ;
L= Y fWaaiWisi+2 Y 5 Wagi+ Y ( Z +AfW,
a,€B ,BeﬁB Aa o,86B k=n— z+1
a<

We need the following lemma.

LeMMA 4.1. If f and F satisfy conditions (4.1)-(4.3), (Wij) satisfies (4.12)-(4.18), and A
defined as in (4.8), then

(4.28) I, >0, II;>0, III;>0, VieB.

Since (u;j) is diagonal at the point,
Z Qi = Z(S@xlxl + 20,0 U; +80uuu + Z Uig 290901171 + Op;p; Wii + Pu +2§0umu2 + Z Pp; Z Uiy -
i€eB i€B i€B J 1€B
By our assumption on ¢, (4.12) and (4.13),

ZSOM S

i€B



36 4. THE CHRISTOFFEL-MINKOWSKI PROBLEM, THE ISSUE OF CONVEXITY

By Lemma 4.1,
1 n
F%aa S ) i S0
O'Z (G) agl ao ZGZB 1
Theorem 4.1 then follows from the strong minimum principle. [ |

Proof of Lemma 4.1. I; Z 0 follows from (13.10) in Corollary 13.3.
For I1;, we note for 8,7 € B,a € G, f*8 ~ f. Thus from (4.13)

2 Z f'aﬂWaaiWEﬁi ~ Z faBWaai(Z W,@ﬁz) ~ 0.
%gg aeG peB

And for a € G, 8 € B, A\g ~ 0, we have
«a 3e] 36 fou
It L

A=A Aa Aa

In turn,
fe
TR SIS S SEE ST R
ace o k1 2k
BeB BEB
Finally I1I; 2 0 by our choice of A in (4.8) and Lemma 7.1. The proof of Lemma 4.1 is
complete. -

2. Curvature equations of hypersurfaces in R"*!

In this section, we convexity problem of fully nonlinear curvature equations of hypersurfaces
in R"*!1. We prove Theorem 4.3 first.

Proof of Theorem 4.3. We work on spherical Hessian W = (u;; + ud;;) in place of standard
Hessian (u;;) in the proof of Theorem 4.1.

As in the proof of Theorem 4.1, let 2y € 2 be a point where W is of minimum rank and O
is a small open neighborhood of zg. For any z € O C 2, we divide eigenvalues of W at z into G
and B, the “good” and “bad” sets of indices respectively. Define ¢ as in (4.9). We may assume
at the point, W is diagonal under some local orthonormal frames. We want to show that

1 n
(4.29) — N F*00 > i + ¢
(@) i€B
The same arguments in the proof of Theorem 4.1 yield (4.12)-(4.13) for W = (u;j + udsj),
and

n n

(430)2 F*nq ~ Z Faa 0'[ Z Wiiaa — o1-1( Z zja —2 Z 01-1(Glj) z]a}

a=1 a=1 i€EB i,jEB i€B
JjeG
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Since f is of homogeneous degree of —1, > " | F**W,q = —¢, we get

n n

Y F %0~ Y F0u(G)Y (Waaii + Wi = Waa) — 01-1(G) Wi = 2 01 1(Gl) W]

ot o icB 1€B
jeG
n
~ ZFO@ U[ ZWaan"i_(n_l)o—l(G)(p

a=1 i€EB

(4.31) —011(G) Y Wi =2 o1 (Gl WE,].

i,jEB i€EB
jeG

Since Wiy, is symmetric respect to indices {ijk} (which is used in the derivation from (4.25)
0 (4.26) in the proof of Theorem 4.1), as in (4.27), we reduce that

~> il = > L= 1L =Y 11

i€EB 1€EB i€B i€EB

where I;, 11;, I1]; defined similarly as in (4.27). Therefore, (4.29) follows from Lemma 4.1. The
condition (p;; + ¢d;;) < 0 yields

(4.32)

1 n
4.33 — Y F%%, S0,
(4.33) pte)] azl ¢

It follows from strong minimum principle that W is of constant rank in Q. If Q2 = S”, the
Minkowski integral formula implies W is of full rank (e.g., see argument in [67]). [

We now precede to treat curvature equation (4.5). Let W be the second fundamental form
of M, equation (4.5) can be rewritten as

(4.34) FW(X)) = ¢(X,/), VX € M.

Proof of Theorem 4.2. We let ¢o(X) = ¢(X,7(X)). We work on second fundamental form
W = (hi;) in place of standard Hessian (u;;) in the proof of Theorem 4.1.

As in the proof of Theorem 4.1, let O C M be an open neighborhood of some point zg where
the minimum rank of W is attained. For any z € O, we choose a local orthonormal frame {e}
in the neighborhood of z in M with {e1, 2, ..., e, } tangent to M and e,41(= 7) is the normal so
that the second fundamental form (W;;) is diagonal at z, we divide eigenvalues of W at z into
G and B, the “good” and “bad” sets of indices respectively. Set ¢ = o;41(W). As in the proof
of Theorem 4.3, we want to show

(435> O’l(l ) Z aa¢aa ~ Z Dii

i€B
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The same arguments in the proof of Theorem 4.1 yield (4.12)-(4.13) for W = (h;;), and

n

S %~ (@)Y Y F Wiae — 011 (G)S° Y FROW,

a=1 a=1i€B a=1ijEB
(4.36) =233 011 (Gl FW,.
a=1ieB
JEG
It follows from the Gauss equation and (4.12) that
Y P~ 01(G)D F D (Wagii + WilW2y — WiWaa)
a=1 a=1 1€EB
—01-1(G) Z Wi, —2 Z o11(GlH)W,]
i.jEB i€B
JEG
~ 0l(G)D P Waaii —01-1(G) Y Wiy =2 01-1(Gli)Wi)-
a=1 i€B i,jeB icB
J

Since by Codazzi formula Wjjj, is symmetric respect to indices {ijk}, as in (4.27), we reduce
that

(4.37) . (1(;) E_;F%aa ~Y iy L= 1Li— ) 1L

i€B i€B ieB i€B

where I;, I1;, I11; defined similarly as in (4.27). Now (4.35) follows from the Lemma 4.1 in the
proof of Theorem 4.1.
We now compute @;;. Vi€ {1,2,...,n},

n+1
. A
@(X)z = Z Px,6 + Pent1 (en+1)i7
A=1
n+1 n+1 n+1
~ A A A
QO(X)” = Z PXaXcCi ez’C + Z ox,Xi; +2 Z PXaent1% (en+1)i
A,C=1 A=1 A=1

+()06n+17€n+1 (6n+1)i(€n+1)i + SDen.;_l (6n+1)’i’i-

By the Gauss formula and the Weingarten formula for hypersurfaces, it follows that,

n+1
(4.38) D EX) > D exaxeeiel.
i€B i€eBAC=1

By our assumption on ¢, we conclude that

n

! > F*q S 0.

(4.39) (@) 2=
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The strong minimum principle implies W is of constant rank [. If M is compact, there is
at least one point that its second fundamental form is positive definite. Therefore it is positive
definite everywhere and M is the boundary of some strongly convex bounded domain in R™**.

[

We note the proof of Theorem 4.3 is of local nature, there is a corresponding local statement
of constant rank result for W = (u;; + ud;;) as in Theorem 4.2. If Q = S", the condition on
¢ in Theorem 4.3 is equivalent to say that ¢(z) is concave in R"*! after being extended as a
homogeneous function of degree 1. Theorem 4.3 can deduce a positive upper bound on principal
curvatures of M if it satisfies (4.6).

COROLLARY 4.1. In addition to the conditions on F in Theorem 4.3, we assume that F' is
concave and

Ali%l\p JA) = —oc.

For any constant B > 1, there exist positive constants v > 0,9 > 0 such that if 0 > ¢(z) €
CH1(S") is a negative function with infgn(—¢) = 1, [[¢llcrasny < B, and (pi; + (0 — 7)) <0
on S", if u satisfies (4.6) on S™ with (u;; + udy;) > 0, then (u;; + udij) > +1 on S™. That is,
the principal curvature of convexr hypersurface M with u as its support function is bounded from
above by 9.

Proof of Corollary 4.1. We argue by contradiction. If the result is not true, for some
B > 1, there are sequences functions 0 > ¢! € CH1(S") and u! € C?(S"), with supg. ¢! = —1,
||gochl,1(Sn) < B, (gij + (o — 1)dij) <0, W = (uﬁj + uld;;) > 0 on S" and its minimum
eigenvalue X, (z;) < 7 at some point z; € S™. Since equation (4.6) is invariant if we transfer
u(x) to u(z) + Y7 asa;, we may assume that

/ w(z)r; =0, Vji=1,--- ,n+1L

It follows [57, 67, 68] that
[ | cragny < C,
independent of [. By the assumption that

li =
e >ty o

W' stay in a fixed compact subset of ¥ for all [, and F' is uniformly elliptic. By the Evans-Krylov
Theorem and Schauder theory,
0| c2a sy < C,
independent of I. Therefore, there exist subsequences, we still denote ¢; and u!,
o — ¢ in CPS"), W —su in CPSM),

for 0 > ¢ € CHL(S") with supgn ¢ = —1, (¢ + ©di;) < 0 on S", u satisfies equation (4.6)
and the smallest eigenvalue of (u;j(x) 4+ u(x)d;;) vanishes at some point z. On the other hand,
Theorem 4.3 ensures (u;; + ud;;) > 0. This is a contradiction. ]
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We also have the corresponding consequence of Theorem 4.2

COROLLARY 4.2. In addition to the conditions on f and F in Theorem 4.2, we assume that
F' is concave and

Jim [F()] = oo.

For any constant 8 > 1, there exist positive constantsy > 0,9 > 0 such that if |p(z)||c1.1ry < B,

and (X, p)—~ is locally concave in X for anyp € S™ fixed, if M is a compact convex hypersurface
satisfying (4.5) with || M||c2 < B, then k;(X) >0 forall X € M andi=1,--- ,n.

The proof of Corollary 4.2 is similar to the proof of Corollary 4.1, we won’t repeat it here.

3. Codazzi tensors on Riemannian manifolds

Let (M, g) be a Riemannian manifold, a symmetric 2-tensor W is call a Codazzi tensor if
W is closed (viewed as a T'M-valued 1-form). W is Codazzi if and only if

VxW(Y,2)=VyW(X, 2),

for all tangent vectors X,Y, Z, where V is the Levi-Civita connection. In local orthonormal
frame, the condition is equivalent to wj; is symmetric with respect to indices 4, j, k. Codazzi
tensors arise naturally from differential geometry. We refer Chapter 16 in [15] for general
discussions on Codazzi tensors in Riemannian geometry. The followings are some important
examples.

(1) The second fundamental form of a hypersurface is a Codazzi tensor, implied by the
Codazzi equation.

(2) If (M,g) is a space form of constant curvature ¢, then for any u € C*(M), W, =
Hess(u) 4 cug is a Codazzi tensor.

(3) If (M, g) has harmonic Riemannian curvature, then the Ricci tensor Ric, is a Coddazi
tensor and its scalar curvature R, is constant.

(4) If (M, g) has harmonic Weyl tensor, the Schouten tensor S, is a Codazzi tensor.

The convexity principle we established in the previous sections can be generalized to Codazzi
tensors on Riemannian manifolds. Let (M, g) be a connected Riemannian manifold, for each
x € M, let 7(x) be the minimum of sectional curvatures at .

PROPOSITION 4.1. Let F' as in Theorem 4.3, and (M, g) is a connected Riemannian manifold.
Suppose o € C%(M) with Hess(¢)(x) + 7(x)p(x)g(z) < 0 for every x € M. If W is a semi-
positive definite Codazzi tensor on M satisfying equation

(4.40) Flg7'W)=¢ on M,
then W is of constant rank.

Proof. The proof goes the similar way as in the proof of Proposition 4.3. We sketch here some
necessary modifications.

We work on a small neighborhood of zg € M be a point where W (zg) is of minimum rank /.
Set ¢p(x) = 0141 (W (z)) for z € O. For any z € O C M, we choose a local orthonormal frame so
that at the point W is diagonal. As in the proof of Theorem 4.3, we may divide eigenvalues of
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W at z into G and B, the “good” and “bad” sets of indices respectively with |G| =, |B| =n—1.
As before, (4.12)-(4.13) hold for our Codazzi tensor W. We want to show that

n

1
(4'41) O'Z(G) Z Faad)oza 5 Z[Sou + 7—90]

a=1 i€B

Our condition on ¢ implies

n

1
FCMOA . 5 0
o1(G) 2 1o

a=1

Theorem 4.1 would follow from the strong minimum principle.

We now prove (4.41). The Codazzi condition implies W;;j, is symmetric respect to indices
{ijk}. The same computation for ¢ = o;11(WW) in the proof of Theorem 4.1 can carry through
to deduce the same formula (4.30) for our Codazzi tensor W.

Since W is diagonal at the point, it follows from Ricci identity, (4.12), (4.30) and homogeneity
of F,

n n

Y Fna ~ Y F0i(G)Y (Waaii + Rinia(Wii = Waa)) — 01-1(G) > W]
a=1 a=1 i€B ,.j€B
n
S Z F*oy(G) Z(Waau — ™Waa) — o11( Z zga QZJZ 1(GlH)HW, zga
a=1 i€B 1,j€EB i€B
jeG
= ZFO‘O‘ [o(G ZWaau‘+ (n—107101(G) — 011 ( Z Ua
i€EB i,jEB
(442) -2 Z Ol—-1 G’.] Z]Oé]
i€B
JjeEG

As in (4.27), we reduce that

(4.43) G X F " 0n S Yl el = L= S 1= SO

a=1 i€B i€B 1€B i€B
where I;, I1;, I1]; defined similarly as in (4.27). (4.41) now follows directly from Lemma 4.1. m

COROLLARY 4.3. Suppose (M, g) is a connected Riemannian manifold with nonnegative har-
monic Riemannian curvature, then the Ricci tensor is of constant rank.

Proof. When M is compact, there is a stronger assertion that Ric, is parallel by Weitzenbock
formula and Stokes Theorem (e.g., [15]). Corollary 4.3 is of local nature, M is not assumed to
be compact. Since (M, g) has nonnegative harmonic Riemannian curvature, Ric, is a Codazzi
tensor and it is semi-positive definite and the scalar curvature R, is constant. Let W = Ric,
and F(W) = o1(W). W satisfies

(4.44) F(g™'w) =c



42 4. THE CHRISTOFFEL-MINKOWSKI PROBLEM, THE ISSUE OF CONVEXITY
The Corollary 4.3 now follows from Proposition 4.1. [ |

The same argument also works for manifolds with non-positive harmonic curvature.

PROPOSITION 4.2. Suppose (M, g) is a connected Riemannian manifold with non-positive
harmonic Riemannian curvature, then the Ricci tensor is of constant rank.

Proof. We work on W = —Ricy. Since (M, g) has non-positive harmonic Riemannian curvature,
Ricg is a Codazzi tensor and it is semi-negative definite and the scalar curvature R, is constant.
So W is semi-positive definite and o1 (g~ W) = c is a nonnegative constant. Let F(W) = a1 (W).
W satisfies

(4.45) F(g™'w) =c

Suppose zg € M is the point where W attains the minimal rank [. We choose a small
neighborhood O of zg, set ¢(z) = o1 (W(x)) for x € O. For any z € O, we choose a local
orthonormal frame so that at the point W is diagonal. As in the proof of Theorem 4.3, we may
divide eigenvalues of W at z into G and B, the “good” and “bad” sets of indices respectively
with |G| =[,|B| = n — [. As before, the proposition will follow, if we can show

1
a1(G)

n

S F < 0.

a=1

(4.46)

Following the same computation in the proof of Theorem 4.1, since W is diagonal at the
point, it follows from Ricci identity, (4.12) and (4.30),

(447Z Faa¢aa ~ Z Foe [UZ(G) Z(Waaii + Riaia(Wii - Waa —0]— 1 Z z]a

a=1 a=1 i€eB i,jEB
Since Rjnia < 0, we have |Rjnio| < Wi;. Again by (4.12), (4.47) becomes

(448) Z FO‘O‘(;SW g Z oo [U[(G) Z(Wiiaa — 0] 1 Z z]oz
a=1 a=1

i€EB i,jEB
As in (4.27), we reduce that

(4.49) p (G) Z Faa S i =y _li= 1= 1l

1€B 1€B i€B i€B
where [;, [I;, I11; defined similarly as in (4.27) and ¢ = c. (4.46) now follows directly from
Lemma 4.1. |

We note that if the Ricci tensor in Corollary 4.3 or in Proposition 4.2 is not of full rank,
then the eigenspace distribution Vj(x) corresponding to the zero eigenvalue of the Ricci tensor
is of constant dimension and it is integrable (e.g., Proposition 16.11 in [15]). In fact, since the
sectional curvature in both cases has a fixed sign, the nullity space Ty(x) is the same as Vj(x)
for every € M. Therefore, Ty is integrable and totally geodesic (e.g., Proposition 2, page 349,
85]).



3. CODAZZI TENSORS ON RIEMANNIAN MANIFOLDS 43

Notes

The results in this chapter appeared in [25]. The deformation argument for the convexity by
estimating a lower bound for problems in geometry used by Singer-Wang-Yau-Yau in [118] (see
also [106] for the Christoffel-Minkowski problem). The argument here traces back to [24] where
Caffarelli-Friedman treated semilinear equation in plane domains. Their result was generalized
to domains in R" by Korevaar-Lewis in [86]. A sufficient condition for solution of the Christoffel-
Minkowski problem was found in [67] via this convexity approach, generalizing results in [24,
86] to equation (3.1). The corresponding results for oy (or quotient of elementary symmetric
functions) of principal curvatures or principal radii were treated in [63, 68].

The constant rank results in Theorems 4.1-4.3 are of local nature in the sense that there is
no global or boundary condition imposed on the solutions. Conditions (4.1)-(4.3) are natural,

1

there is a large class of functions satisfying them. Some well known examples are: f(\) = o} (}),
1

FO) = (Z)FT(N), f(N) = —0, F(A), F(A) = —(2Z)7F7(A) with ¥ =T}, where 0 <1 < k < n,

gl
o; the jth elementary symmetric function and I'y = {A € R"| o;(\) > 0,V1 < j < k}. The

1
results in [24, 86, 67, 63, 68] should be interpreted as f(A) = —o, *(A). We choose this
form for the sake of a simple statement of the condition on ¢. We also note that homogeneity
assumption is not imposed in Theorem 4.1 and Theorem 4.2.

The condition (4.3) was first appeared in [7], where they treated the existence of convex
viscosity solutions under state constraints boundary conditions and the assumption of a com-
parison principle for the state constraints problem. The conditions in Theorem 4.1, together
with some proper convex cone condition on ¥ and concavity condition on f, were also used in
[9] on pinching estimates of evolving closed convex hypersurfaces in R"*1. We also note that
concavity condition on m was used in [125] for the related work on curvature flow of closed

convex hypersurfaces in R*+1.
Combining the results in previous and this chapters, one funds a sufficient condition for

_1
solution of the Christoffel-Minkowski problem. Set C_1 = {0 < ¢ € 02(5")\(%3-’“ +5ij¢_%) > 0}.

1
"
THEOREM 4.4. Let ¢ € C_% , then the Christoffel-Minkowski problem has a unique convex
solution up to translations.
The Theorem was first proved in Guan-Ma [67] under further assumption that ¢ is connected
to1lin C 1. It turns out this extra condition is redundant as C_1 is indeed connected. This

k k
fact was first proved in the joint work of Andrews-Ma [10] via curvature flow approach. More
recently, this fact was also verified directly by Sheng-Trudinger-Wang [116].



CHAPTER 5

Weingarten curvature equations

In this chapter, we study the curvature equations of radial graphs over S™. Our main concern
is the existence of hypersurface with prescribed Weingarten curvature on radial directions. For
a compact hypersurface M in R"*!, the kth Weingarten curvature at « € M is defined as

Wi(z) = ox(k1(x), ke (x), -+, kin(T))

where k = (K1, Ko, ..., kn) the principal curvatures of M, and oy, is the kth elementary symme-
try function. If the surface is starshaped about the origin, it follows that the surface can be
parametrized as a graph over S™:

(5.1) X = p(x)z, x e S,

where p is the radial function. In this correspondence, the Weingarten curvature can be con-
sidered as a function on S™ or in R"*!. There is an extensive literature on the problem of
prescribing curvature functions. For example, given a positive function F in R"*!\ {0}, one
would like to find a starshaped hypersurface M about the origin such that its kth Weingarten
curvature is F'. The problem is equivalent to solve the following equation

(5.2) ok(K1, K2y .oy k) (X) = F(X) forany X € M.
DEFINITION 5.1. For 1 < k < n, A C? surface M is called k-admissible if at every point
X eM, (K,l,lig, R Iin) eTly.
THEOREM 5.1. Let F(X) be a smooth positive function in ri < |X| < ry, r <1 < ro,
satisfying
1

el

(5.3) F(X)s > (C’,’f)%% for |X|=mr, F(X)% < (CS)% for | X|=ro.
2
and
9 k
(5.4) %(p F(X)) <0, where p=|X]|.
Then there is a C™ k-admissible hypersurface M satisfying
(5.5) oK1, K2, ooy bin ) (X) = F(X).

Any two solutions are endpoints of a one-parameter family of homothetic dilations, all of which
are solutions.

As a consequence of Theorem 4.2, we have the following existence of convex hypersurface
with prescribed Weingarten curvature.

44
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COROLLARY 5.1. Suppose F' as in Theorem 5.1, if in addition F(X)fi is a conver function
in the region r1 < |X| < ra2. Then the k-admissible solution in Theorem 5.1 is strictly conver.

We also consider homogeneous Weingarten curvature problem. If M is a starshaped hy-
persurface about the origin in R"*!, by dilation property of the curvature function, the kth
Weingarten curvature can be considered as a function of homogeneous degree —k in R"*1\ {0}.
The homogeneous Weingarten curvature problem is: given a homogeneous function F
of degree —k in R™"1\ {0}, does there exist a starshaped hypersurface M such that its kth
Weingarten curvature is at © € M is equal to F'(z)? If F is of homogeneous degree —k, then the
barrier condition (5.3) will never be valid unless the function is constant. Therefore Theorem 5.1
is not applicable, the problem needs a different treatment. In fact, the problem is a nonlinear
eigenvalue problem for the curvature equation.

THEOREM 5.2. Supposen > 2, 1<k <n and f is a positive smooth function on S™. If
k < n, assume further that f satisfies

\Y%
(5.6) sup M < 2k,
snf
Then there exist a unique constant v > 0 with
Cck Cck
(5.7) e <y <
maxgn f mingn f

and a smooth k-admissible hypersurface M satisfying
X
(5.8) Tw(kr by bn)(X) = A (IXI™H, VX € M,

and solution is unique up to homothetic dilations. Furthermore, for 1 < k < n, if in addition
1
\X|f(|§—‘)7ﬁ is convex in R"1\ {0}, then M is strictly conver.

For the simplicity of notations, the summation convention is always used. Covariant differ-
entiation will simply be indicated by indices.

We first recall some identities for the relevant geometric quantities of a smooth closed com-
pact starshaped hypersurfaces M C R™*! about the origin. We assume the origin is not on
M.

Since M is starshaped with respect to origin, the position vector X of M can be written
as in (5.1). For any local orthonormal frame on S™, let V be the gradient on S and covariant
differentiation will simply be indicated by indices. Then in term of p the metric g;; and its
inverse g¥ on M are given by

= 025 4 e g = p2(5 — PPy
gij = p-0ij + pipj- g7 = p~"(0i T pr)
The second fundamental form of M is

_1
hij = (p* + [V pI*) "2 (0%0i5 + 20ip; — ppij)-
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pz—Vp

curvature of M are the eigenvalue of the second fundamental form with respect to the metric
and therefore are the solutions of

and the unit outer normal of the hypersurface M in R**! is N = The principal

det(hij - k:gij) =0.
Equivalently they satisfy
det(Aij — kém) = 0.

where the symmetric matrix {A4;;} is given by

. 1 .1
(5.9) {45} = {g" V2 hafg”}2.
Let {gij}% be the positive square root of {g*} and is given
9717 = ™16y - o ]

0;
TP VP VP

We may also work on orthonormal frame on M directly. We choose an orthonormal frame
{e4} such that {ej,eq,...,e,} are tangent to M and e,i1 is normal. Let the corresponding
coframe be denoted by {w4} and the connection forms by {wa p}. The pull-backs of those
through the immersion will still be denoted by {wa},{wa g} if there is no confusion. Therefore
wn+1 = 0 on M. The second fundamental form is defined by the symmetric matrix {h;;} with

(510) Win+1 = hijwj.
The following fundamental formulas are well known for hypersurfaces in R*+1.
(5.11) Xij = —hijent1, (Gauss formula)
(5.12) (én+1)i = hijej, (Weingarten equation)
(5.13) hiji = hikj, (Codazzi formula)
(5.14) Rijki = hithji — hyhj, - (Gauss equation),

where R;jj; is the curvature tensor. Using (5.13), (5.14) and the rule for interchanging the orders
of derivatives, we observe the following commutation formula

(5.15) hijkr = hiiij + (hmgiha — hihig) ke + (R hia — hmihigg) Bom -
From (5.11)-(5.12)
(5.16) (€nt1)ii = hisje; — h?jenH.
Then oy (K1, K2, ..., kn) = 0x(A{hi;j}). We consider the following curvature equation
(5.17) or(Mhi i D(X) = f(X,ent1), VX € M,

where f is a positive function defined in U x S™ for some neighborhood of M in R™*1

Proof of Corollary 5.1. For 0 <t <1and 0 <e < 1, set
F(t, X) = [(1— t)(CF) 75 | X ["*e + P75 (X)) 7"
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Consider
(518) O-k(lilaKQa"'aﬁn)(Xt) :F(tht)a

Following the same lines of the proof using continuity method in [26], there is a unique M* when
t € [0,1] solving (5.18) with C* norm under control. Using continuity method as a deformation
process, M! is strictly convex is preserved for t € [0, 1] by Theorem 4.2. [ |

1. Homogeneous Weingarten curvature equation

We consider the homogeneous Weingarten curvature problem in this subsection. Since equa-
tion (5.2) is invariant under dilations, there is no C° bound in general. To solve the equation,
we need to establish the Harnack inequality for solutions of (5.2). This is the main part of the
proof in this section. We will follow ideas in [61] to consider the following auxiliary equation
first

X
(5.19) Ok (K1, K2, ey ki) (X) = f(m

where f is a prescribed positive function on S® and M is a starlike hypersurface in R**!. Since
M is starshaped, let p be the radial function as in (5.2). The following is the equation for p.

(5.20) k(K1y ooy bin)(x) = f(x)p™ on S",

We first derive an upper bound of |V?p| estimates for the k-admissible solution p of equation
(5.20) for any p € [k, k + 1] assuming C! boundedness.

JX|P, VX eM, 1<k<n-1,

LEMMA 5.1. If M is a starlike hypersurface in R" 1 respect to the origin, f is a C? positive
function on S, k > 1,p € [k, k + 1], if M is a C* k-admissible solution of equation (5.19).
VS [V2S]

Then we have the mean curvature H < C' for some constant C depends only on k,n, B AT

llpllcr and ||%||% (independent of p). In turn, max,csn |V2p(z)| < C.

Proof: Let F(X) = f(%) and p(X) = [\X\*pF(X)]%. The equation in Lemma 5.1 become

1
(5.21) G(Mhi})(X) = [or(Mhi DIF(X) = ¢(X),  on M.
Assume the function P = log H — log < X, e,,4+1 > attains its maximum at X, € M, then at
X, we have
Hi <X ,eny1>i —0, Py Hiy <X, ent1 >ii

p =t .
TH <X, engp1 > H <X, eny1 >

Let GY = %{iﬁ}), and choose the suitable {ej,e2,...,e,} on the neighborhood of X, € M

such that at X, the matrix {h;;} is diagonal. Then at X, the matrix {G¥} is also diagonal and
positive definitive. At X,

i i1 GUHy Y G < X eng1 >
5.22 Gii p,; = L= p = <0,
( ) ”2 Y H < X, entl > -

from this inequality we shall obtain an upper bound of H.
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We set |A|2 = Y"1 | h2. From (5.14), we have

n n

S, = 306 z ) = 3G S + sy~ )

i=1 1=1 =1 =1

= Z Glhgiy + |A)? Z G'hi; — H Z G > ou+|APe—H> G'h,.
il=1 =1 i=1

And from (5.10) and (5.15)

n n n
ZG" < X, ent1 >i= ZG”[Z hiit < X,e1 > +hig — hi; < X, eny1 >]
=1 =1 =1

= Z ZG”hm <X,e> +ZG“h“— <X, ent1 > ZG“h

=1 =1
- Zsoz <X,e>+o— < X, ens1 > ZG“hfi.
=1 i=1

So from (5.22), at X, we have the following inequality
n n
H H
(5.23) AP+ Y P <X o <0

Let Fy4, Fap are the ordinary Euclidian differential in R™*!. Since

o 1 & F
o= —[=plx1 <Xel>+ZFXl,

n+1

n
ou 2 Fa A
;@ = [ |X’ <X€n+1> k;AZlF n+1]

n  n+l n  n+l FAFB

+ Z > FABXZAXZ +y 0N

llABl =1 AB=1

+§[ PIXI72 = 22+ 2)IX [ < X ensr >

X xp

n n+1

|X\ QZZ AXA < X e >

=1 A=1

V1l
f Y

2
VA such that H(X,) < C. Again from C' bound, we have max H < C. The proof of the

As |A]? > LH? by (5.23) there exist a positive constant C' depends only on the k, n,

Lemma is complete. [ |
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One may also derive C'-estimates if C° bound is assumed. Instead, we will derive the
Harnack inequality directly, that will imply C? and C! bounds. It is convenient to introduce a
new function v = —log p. Then the first and second fundamental forms become

gij = 6_2v [5z’j + ’l)z"l)j}7

hij = eiv(l + |V2}‘2)7%[5ij + viv; + Uij].

and
o1 ViV
glJ 7 = ¢ 52 _ J )
9] & \/1+\W\2(1+\/1+\wy2)]
So if we let
g’LJ = [5Z] - Uivj ]7
VI1I+[Vu2(1+ /14 |Vv]?)
Elm = Ot + VVm + Vi,
(5.24) aij = G himg™ .
Then the matrix in (5.9) become
(5.25) Aij = " (1+ Vo) 2ay,
and equation (5.20) turns into
(5.26) op(Maij}) = e® P14+ V|22 f(z) on S

First we have the easy case p > k.

PROPOSITION 5.1. Suppose p > k. For any f(x) € C*(S"),n > 2, [ > 0, there exist a
unique k-admissible starlike hypersurface M satisfies (5.19). If in addition to f satisfies

., X
(5.27) ]X\Ef(m)fi is a convex function in R"1\ {0},

then M 1is a strictly convex hypersurface.

Proof of Proposition 5.1: For any positive function f € C?(S"), for 0 < t < 1, set
fi=[1—t+ tffé]_k. We consider the equation

(5.28) Ok(K1s oo fin) () = fi(x)p™" on S,

Set I = {t](5.28) solvable}.
We first consider C° — estimates. let

= Hsljlnp and L = max p,
If z, € S™ such that p(z,) = L. Then at z,
Vp=0, and {p;} <0.
It follows that at z,,

ﬁi(mo)ZLfl, vV 1<i<n.
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maxgn fy, L

Evaluating (5.28) at x,, using the above, we have L < | ok |P=%. The similar argument
n

miHSn ft
(@
With the CY-estimates, the arguments in [26] immediately yield the C'-estimates. Together
with Lemma 5.1, we have

also yields | > | ]P%k

1
(5.29) llpllc2sny < € and H;Hm(s”) <C,

where C' depends only on p, k,n, |[f[|c2(s») and ming» f (in the case k = 1, (5.29) follows from
the standard quasilinear theory. The regularity assumption on f can also be reduced).

Now the Evens-Krylov theorem and the Schauder theorem imply that I is closed. The
openness is from the implicit function theorem since the linearized operator of (5.26) is invertible
when p > k. The method of continuity yields the existence. The uniqueness follows easily from
the Strong Maximum Principle and the dilation property of equation (5.19) for p > k.

Since f; satisfies the convexity condition (5.27) in Theorem 5.1 for 0 < ¢ < 1, the strict
convexity from Theorem 4.2. [ |

We now deal equation (5.19) for the case p = k in the rest of this section. Equation is in the
following form,

(5.30) 0k(K1, Koy ooy kin) () = flz)pF, Vo eSm,
In order to bound ﬁ?;‘pp, we turn to estimate |V log p| = |Vv|. We follow an argument in [61]

to make use of the result in Proposition 5.1 with some refined estimates for p, with p, = k + %
We hope to get the convergence of p, as r tends to infinity. It turn out the limit of p, will satisfies
equation (5.30) but with f replaced by ~f for some positive . We will show the constant - is
unique.

LEMMA 5.2. For 1 < k < n and f is a positive C* function on S™. Suppose p is a C>
k-admissible solution of equation (5.20) with p € [k,k+ 1]. If k < n, we further assume that f
satisfies

(n—k)s\1  nf(z) V()
k k -

o e T
where di = min f, do = max f. Then maxgn |V log p(z)| < C, for some constant C' depending

only on k, n, dy, max@ (and independent of p). In particular,

s,

I

(5.31) §p =

min
zeS™,d1 <s<ds2

1< ==P <.
min p

REMARK 5.1. If k = p, from the proof below, the gradient estimate Lemma 5.2 can be
established under simpler and weaker condition
(Ch)F | fF

POELEN\ 7
(@t

f

in{k
gellgg{( I

) }>0.
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From the counter-example in Treibergs, it can be shown that this condition is sharp for the
gradient estimate of equation (5.26) when 1 <k <n —1.

Proof: We work on equation (5.26) to get gradient estimates for v. Let P = |Vv|? attains
its maximum at x, € S™, then

n
(5.32) P, = kavki =0, at .
k=1
Let {e1,e2,...,e,} be the standard orthonormal frame at the neighborhood of z,, take e; such
that
(5.33) vy = V|, ©v;,=0, i>2
and ey, ..., e, such that {v;;}(z,) is diagonal, it follows that at z,
V11 = 0, ’Uz‘j = O, 1 75 j,
so the matrices {g"}, {Ez]} and {a;;} are diagonal at the point, and g'! =

71 h =
ooE h11
1+ |Vv|?, a11 = 1; and for all i > 1, g% =1, hy; = a;; = 1 + vy,
Let F = g%;’ so {F¥} is diagonal at z,. Differentiating equation (5.26) to get

(5.34) Filg;, = e® v (1 4 |Vo2)2[(p— k)vsf + fi]-
From (5.24),

aijs = (G hmg™)s,  vsg™ = 0 = vsg",
we have
(535> UsQijs = gilvsvlmsgmj'

Couple (5.34) and (5.35)
E
2

(5.36) vsFYa;j5 = FIg g™ = e® RV (1 + |Vol?)
On the other hand

US[(p - k)vsf + fs]

y il o Il o
Ustjaijs = ngz Usvlmsgmj =F mgz Usvijsgmj
Im—il—mj
= """ g™ s [vsij — vs0ij + 0044

_ Flmgilymj VVsi — |VU\2 Z Flmgilgmi + Z Flmgilymj v;V;.

ilm ijlm
—=ij il ij . . =11 ji i .
Let F” = doim Flimgilgmi  so at z,, F° is diagonal with F~ = 1’11:2 and F' = F for i > 1.
1

Then we have
i —ij 9 N =it —ij
E vsFYa;55 = E Fosvg5 — |Vl E F+ E F*vv;.

From (5.36), (5.37) and (5.33)

(5.37) Y Fugug; = P14 (Vo) Susl(p — K)o + fi] + (Vo2 Y F
ijs i=2
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For F'7 is positive definite and
Py = vsivg + Y Vsvsij,
S S
thus at x,

(5.38) FPP; =Y Flugug + Y Flu; <0,
L] IYE]
From (5.37) and (5.38) it follows that at x,
(5.39) SF (0} ) + P+ V)2 [(p — K)ot S + v fi] <O

i=2
i.e., we obtain the following inequality

(5.40) ZF 2) 4 @R (1 4 |Vol?) 2 fi < 0.

Let A = (A1, Ag, .., )\n) be the eigenvalues of the matrix {a;;}, at the point,

(541) AM=1, d=14wv,... Ay=14vun;
and for 7 > 2
(5.42) F'=op 1 (\i), 02 =22—2)\ + 1.

Then equation (5.26) becomes
(5.43) ou(\) = PRV (1 + Vo[22 f(z) on S
From (5.40) and (5.42) we have

(1+2?) 2 or_1(\|i) + Z Aop_1(Ai)

(5.44) —QZAak L) + e®R0 (1 + | Wu2) 2y f1 < 0.
1=2
Since
(5.45) Zak 1(Al7) — k)og-1(A) + op—2(A[1),
and

> Nor1(Ai) = 2> Niow_1(Ald)
=2 1=2

=> Aot (Ai) = 2) " Niok_1(Ai) + op_1(A[1)
i=1 =1
(5.46) = 01(N)or(A\) = (k + D)o (N) — 2kok(A) + or_1 (A[1).
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Put (5.45) and (5.46) to (5.44), it follows that
(14 0])(n = k)or—1(A) + 01(N)or(A) — (k + Dogpr(N)
(5.47) +€(p_k)v’01f1(1 + U%)g — Zkak(/\) + (1 + ’U%)Jk_g()\u) + Uk—l(Ml) <0.

We also note that if ;1 and zs are minimum and maximum points of v respectively, from
equation (5.43),

k k k k
(5.48) oty 5 O o On b < Cn o Cn
= f(x1) T max f’ ~ f(z2) ~ min f
So Vz,
(5-49) O] s by > ok S
min f max f

This fact will be used in late on.

We divide into two cases.

Case 1: k =n.

As 0,41(A) =0, and both o,_2(A|1) and o,—1(\|1) are positive, the above inequality takes
a simpler form

1N an(A) + P f1(1+02)2 < 2nopn(N).
Since A1 = 1, 0,(A) = 05n—1(A|1). By the Newton-MacLaurin inequality,
a1(N) > o1 (A1) > (1 — Don_1(A1)7T = (n — 1)on(A)o1.

In turn, we get

(5.50) (n— 1), (N) 7T — eV | A|(1+03)% < 2no,(N).
(5.43), (5.49) and (5.50) yield that at the point,

(n = )+ T (B gk (1o

V/l
f

is bounded from below by a positive constant ( depending only

< 2n.

max f

min f
max f

: n 1
Slnce m > 5 and

on the upper bound of ‘VTf'), we obtain an upper bound for |Vuv].

Case 2: k < n.
Claim:

(5.51) (k+ 1)opi1(A) < (k+ 1)op(\) + (n — k — 1)(CF_ )" rap(A\) et

Proof of Claim:

If o;.41(A) <0, it is automatic. We may assume If og11(A\) > 0. As A € T'g, we get A € I'gy1.
In turn (A1) € T'y. We have
(5.52) Uk+1()\) = O'k+1(>\|1) + O'k()\|1) < Uk+1()\‘1) + Uk()\).

If o+1(A\|1) < 0, we are done. Thus we may assume oy41(A|1) > 0. Again as (A1) € ', this
gives (A1) € Tgy1.
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By the Newton-MacLaurin inequality,

ore1(A|1) < CEHCE_ )™ (o (A1) F < CHHHCE_ ) op(N)
n—k—1 _1 Ly
(5.53) = ﬁ(cﬁfl) Fo (A

The Claim now follows from (5.52)-(5.53).

Now back to the proof of the lemma. If o;(A|1) < 0, we will have o;_1(A) > ox(A). From
(5.51), (5.47) and the Newton-MacLaurin inequality, we get
IV/I
f

¢ From this we obtain an upper bound of |Vv|.
We may now assume o (A1) > 0, i.e, (A1) € I’y in the rest of the proof. From the
Newton-MacLaurin inequality,

(14 12)(n — k)op(A) — —H (1 +02)20%(\) — (3k + 1)op(A) < 0.

A1(N) > a1(A1) > (n — 1)(CE_) T of (AL),

similarly,
_1

(A1) > (n— 1)(CE D=0l (A1),

; From this, we get

(o1(N) + Z:llf)k > of(\) + walf_l()\)
n—1)% L
> <C7,§1><ak<m> o) = & Cﬁ: o
That is
(5.54) o1(N) > (n— 1)(CE )T o (\) — Z:;
Since

(n = k)ok-1(A) + op—2(A[1) = (n = k)og_1(A[1) + (n — k + 1)op—2(A[1),
and ox(A) = ox(A1) + ox—1(A|1), we get

[(n = k)or-1(\) + ox2(AD)F = D> Cln— k) (n—k+ 1) 0, (A1)l _, (A1),
0<5<k
KECE of ) = > KRCE O ol T (N e_ (D).
0<j<k—1

Again using the Newton-MacLaurin inequality on oj(A|1), it is elementary to check that for
. . . . o
Cln— k¥ (n—k+ 170, TN Dol _,(N1) > k*CE_ 0] oy T (AD)al_ (A1),
that is

k-1

(5.55) (n—k)or1(N) + ox2(A[1) > k(CE_)Ea, F (V).
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Combining (5.51), (5.55), (5.54), (5.43) and (5.47), we obtain

A
/

(5.56) (1+v2)2 (k(A+ A™Y )< C,

k
Cn—l

(k=p)v .
3 (=5 )% and C' is a constant under control.

where A = ¢

In view of condition (5.31), and by (5.48), we get (1 + v%)%éf < C. The proof is complete.
|

Since (5.6) implies (5.31), Theorem 5.2 is a consequence of the following proposition.

PROPOSITION 5.2. Suppose n > 2, 1 < k < n, suppose f is a positive smooth function
on S". If k < n, we assume f satisfies condition (5.31). Then there exist a unique constant
~v > 0 satisfying (5.7) and a smooth k-admissible hypersurface M satisfying equation (5.8).
The solution is unique up to homothetic dilations. Furthermore, for 1 < k < n, if in addition

\X|f(|§(—‘)_% is convex in R"1\ {0}, then M is strictly convex.

Proof of Proposition 5.2:

First we deal with the existence of solution and ~. For all » € Z™, from Proposition 5.1, we
let p, = | X,| be the unique solution of equation (5.20) with p = k+ % We rescale p, let p, = ’l’—:,
with [, = min p,. Now p, satisfies

O’k(lzrl,/;u‘g, ,l;:n)(:r) = ﬁ*k*%fr(x), on S",

~ o ~ k

where f = 1,77 f. jFrom (5.48), Saminon ] < f < Camaxor S
if f satisfies the conditions in the proposition, by Lemmas 5.2 5.1, there exists a positive
constant C' independent of r, such that 1 < p, and ||p;||c2 < C. The Evans-Krylov theorem

gives ||pr||cie < Clq, with Cj4 (I > 2,0 < a < 1) independent of . So, there is a subsequence
1

rj — 00, such that p., — p in Cho(sM), and lrj_rj — ~ for some positive constant . (5.48)
implies (5.7) and the radial graph of p satisfies (5.8). The higher regularity of p follows from
the standard elliptic theory.

We now turn to the uniqueness. Let M(p) = o1 (k1, K2, ..., kn)p" and suppose Iyg, v1, po > 0
and p; > 0 satisfying (5.8) respectively. We may assume vy > 71, so we have

M(po) — M(p1) = (o —m).f = 0.

Since M is invariant under scaling, we may assume py < p1, and po(z,) = p1(x,) at some point

xo € S™. Let py =tp1 + (1 —t)po. Since py = po and Vp; = Vpg at z,. So the first fundamental

forms of p; are same at x, for all 0 <t < 1. Therefore p; is k-admissible for all 0 < ¢ <1 at x,.

By the continuity of the second derivatives, there is a neighborhood of x, such that p; is
k-admissible for all 0 <t < 1. We have, in the neighborhood of z,,

1
0
M(p1) — M(po) = / aMtdt
0

= > 09 (p1,p0)(p1 = p0)is + Y ¢ (p1:.po)(p1 = po)i + d(pr, po) (p1 — po).-
i,j=1 i=1
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By the Strong Maximum Principle, p; = pg everywhere and v; = 7p.

Finally we discuss the convezity. It is easy to check that the convexity of | X|f ~% (%) implies

the convexity of ]X]%ffi(l%) for any p > k. When 1 < k < n — 1, from Proposition 5.1, we
know the solution M = {p(z)z : S* — R"!} is convex if f satisfies the convex condition in
Theorem 5.2. The strict convexity follows from Theorem 4.2. |

Notes

The equations we treated in this chapter were first considered by Alexandrov [6] and Aeppli
[1], they studied the uniqueness question of starshaped hypersurfaces with prescribed curvature.

Theorem 5.1 was proved by Caffarelli-Nirenberg-Spruck in [26] (in the case £k = 1, by
Bakelman-Kantor [12], Treibergs-Wei [121] ). The question of convexity of solution in Theorem
5.1 was treated by Chou [37] (see also [133]) for the mean curvature case under concavity
assumption on F, and by Gerhardt [52] for general Weingarten curvature case under concavity
assumption on log F', see also [53] for the work on general Riemannian manifolds. The convexity
results for hypersurfaces in this chapter were proved in [62].

When k = n, then equation (5.2) can be expressed as a Monge-Ampere equation of radial
function p on S", the problem was studied by Delanoé [41]. The case k = 1 was considered by
Treibergs in [120]. Here we give a uniform treatment for 1 < k < n here. Condition (5.6) in
Theorem 5.2 can be weakened as in Proposition 5.2.



CHAPTER 6

Problem of prescribed curvature measure

Curvature measure is one of the basic notion in the theory of convex bodies. Together
with surface area measures, they play fundamental roles in the study of convex bodies. They
are closely related to the differential geometry and integral geometry of convex hypersurfaces.
Let © is a bounded convex body in R"*! with C? boundary M, the corresponding curvature
measures and surface area measures of {2 can be defined according to some geometric quantities
of M. Let k = (K1, - , kn) be the principal curvatures of M at point z, let Wi.(x) = o (k(x)) be
the k-th Weingarten curvature of M at x (where oy, the k-th elementary symmetric function). In
particular, W7 is the mean curvature, Wy is the scalar curvature, and W, is the Gauss-Kronecker
curvature. The k-th curvature measure of € is defined as

Ch(Q ) = / Wi xdF,
BAM

for every Borel measurable set 3 in R"*!, where dF), is the volume element of the induced metric
of R"*1 on M. Since M is convex, M is star-shaped about some point. We may assume that
the origin is inside of 2. Since M and S" is diffeomorphic through radial correspondence Rj;.
Then the k-th curvature measure can also be defined as a measure on each Borel set 5 in S™:

COLA) = [ Wi,
R (B)

We note that Cp(M,S™) is the k-th quermasintegral of €. Similarly, if M is strictly convex, let
T1,...,7n be the principal radii of curvature of M, P, = op(r1, -+ ,7). The k-th surface area
measure of € then can be defined as

S( B) = /ﬁ Prdo,.

for every Borel set 8 in S™.

Curvature measure problem: Given a C? positive function f on S™. For each 0 < k < n,
find a convex hypersurface M as a graph over S", such that C,,_(M, 3) = [ 5 fdo for each Borel
set 8 in S™, where do is the standard volume element on S™.

The problem is equivalent to solve certain curvature equation on S™. If M is of class C?,
then

(6.57) Crn—i(M, ) :/ ade:/okgda.
R (B) B

57
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where g is the density of dF respect to standard volume element do on S™. The problem of
prescribing (n — k)-th curvature measure can be reduced to the following curvature equation
(6.58) Ok (K1, K2y ey ) = M, 1<k<n on §"
9(x)

Here we encounter a difficulty issue around equation (6.58): the lack of some appropriate a priori
estimates for admissible solutions due to the appearance of g(x) (which implicitly involves the
gradient of solution) make the matter very delicate.

Since equation (6.58) is originated in geometric problem in the theory of convex bodies, the
purpose of this paper is to find convex hypersurface M (as a graph over S") satisfying equation
(6.58). The followings are our main results.

THEOREM 6.1. Suppose f(xz) € C2(S"), f>0,n>2,1<k<n—1. If f satisfies the
condition

X
X

then there exists a unique strictly convex hypersurface M € C3®, o € (0,1) such that it satisfies
(6.58).

)_% is a strictly convex function in R\ {0},

(6.59) X5 £

When k£ =1 or 2, the strict convex condition (6.59) can be weakened.

THEOREM 6.2. Suppose k = 1,0r 2 and k < n, and suppose f(z) € C?*(S") is a positive
function. If f satisfies
X
| X
then there exists unique strictly convex hypersurface M € C** « € (0,1) such that it satisfies
equation (6.58).

(6.60) \X|nT+1f( )*% is a convex function in R"T1\ {0},

We first recall some relevant geometric quantities of a smooth closed hypersurface M c R**+,
which we suppose the origin is not contained in M.

A, B, ... will be from 1 to n+1 and Latin from 1 to n, the repeated indices denote summation
over the indices. Covariant differentiation will simply be indicated by indices.

Let M™ be a n-dimension closed hypersurface immersed in R”*!. We choose an orthonormal
frame in R"™! such that {ej,ea,...,e,} are tangent to M and e, 1 is the outer normal. Let the
corresponding coframe be denoted by {wa} and the connection forms by {wa p}. The pull
back of their through the immersion are still denoted by {wa},{wa g} in the abuse of notation.
Therefore on M

Wn+1 = 0.
The second fundamental form is defined by the symmetry matrix {h;;} with
(661) Win+1 = hijw]‘.

Since M is starshaped with respect to origin, the position vector X of M can be written as
X(z) = p(x)x, x € S", where p is a smooth function on S". Let {ey,...,e,} be smooth local



6. PROBLEM OF PRESCRIBED CURVATURE MEASURE 59

orthonormal frame field on S”, let V be the gradient on S™ and covariant differentiation will
simply be indicated by indices. Then in term of p the metric of M is given by

9ij = P*8ij + pip;-
So the area factor
1 _ _1

g = (det gij)? = p'"(p* + |Vp|*) 2.

The second fundamental form of M is
_1
hij = (0° +Vp[?) "2 (%615 + 2pip; — ppij)-

and the unit outer normal of the hypersurface M in R**! is

pr —Vp
VPR + Vol

The principal curvature (K1, Ko, ..., k) of M are the eigenvalue of the second fundamental form
respect to the metric and therefore are the solutions of

det(hij — kgij) =0.

(6.62) N =

Equation (6.58) can be expressed as a differential equations on the radial function p and
position vector X respectively.

(6.63) Ok(r1, iz s tin) = £ (% + [Vp[?) T2, on ST,
where f > 0 is the given function. From (6.62) we have

< X,N >=p*(p* + |Vp[) /2,

X
(6.64) it ) 06 = [X] () < XN 5, X €

DEFINITION 6.1. For 1 < k <mn, let 'y be a cone in R" determined by
I'e={AeR": o1(A\)>0,.., or(A\) >0}
A C? surface M is called k-admissible if at every point X € M, (K1, k2, ..., kn) € [g.

The following three lemmas had been proved in [60], for the completeness we provide the
proofs here.

LEMMA 6.1. If M satisfies (6.64), then
mingn f
( Ck
n
In particular, if M is conver and p is the radial function of M, then there is a constant C
depending only on max f and min f such that

(6.65) mazsn|Vp| < C.

1/(n—k . maxsn f\1/(n—k
)M )S%;H|X|§I%%X|X|§(T)/( ).

n
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Proof: Let Bgr(o) be a ball of smallest radius so that M C Bgr(0), then at the maximum
point X; of | X|, R = |X1|. Through some geometrical considerations, we have

X1

) > Ck|Ixy |
This is
maxsn f\1/(n—k)
X < (—————= .
e |X] < ()

The first half inequality can be shown in a similar way.
The gradient estimates follows from C° estimates and convexity. In fact, the gradient esti-
mates for general admissible solutions are also true, which was proved in [60]. [

Set F' = 0,1/ ¥ equation (6.63) is written as
FA) = F(A1, . An) = [0 (02 4 9p2) R = K (x,p, Vp).
The following is the uniqueness result of the problem.

LEMMA 6.2. Suppose 1 <k <n, A(p;) € Tk, i = 1,2. Suppose p1, pa are solutions of (6.63).
Then pP1 = pP2.

Proof Suppose the contrary, po > p; somewhere on S™. Take ¢ > 1 such that
tp1 > po on S", tpr = p2 at some point P € S™.
Obviously, A(tp1) =t~ tA(p1), and therefore F(A(tp1)) =t F(A(p1)). It is clear that
K(z,tp1,V(tpr)) = t /¥ K (x, p1, V1)
— R (1)) <t F( (1) = P(Atp1):
It follows that
F(A(tp1)) — K(z,tp1, V(tp1)) 2 0, F(Xp2)) — K(x, p2, Vp2) = 0.
Hence
Ltpr — p2) > 0,

where L is the linearized operator. Applying the strong maximum principle, we have tp; —ps = 0
on S™. Since n > k, from equation (6.63), we conclude that ¢t = 1. [

The following lemma will also be used in this paper.

LEMMA 6.3. Let L denote the linearized operator of F(\) — K(x,p,Vp) at a solution p of
(6.63), w satisfies Lw =0 on S™. Then w =0 on S™.

Proof Writing F(z,p, Vp, V2p) = F(\), we have
F(z,tp,V(tp), V2(tp)) = F(A(tp)) = F(A(p)/1).
Applying % 41> We have

Fy2,V%(p) + Fy,Vp+ Fpp = — > AiFy, = —F.

7
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It is easy to see that
K (2,tp,V(tp)) = t"/*K (2, p, Vp).
Applying %} 41+ We have
Kv,Np+ F,p=—n/kK(x,p,Vp).
It follows from and that
Lp=—-F(\) +n/kK(z,p,V)=(n/k—1)K(x,p,Vp) > 0.

Set w = zp. We know that
0= Lw= L(zp) = L'z + zLp,

where L'z = pFye2 pV22+ﬁrst order term in z. Notice that Lp > 0, we derive from the maximum
principle that z = 0, namely, w = 0. [ |

We first prove C? estimates for equation (6.58) under the convexity of solution. For the
mean curvature measure case (k = 1), a gradient bound is enough for a C? a priori bound by
the standard theory of quasilinear elliptic equations. For the rest of this section, we assume
k> 1.

For the C? estimates for admissible solutions of (6.58), it is equivalent to estimate the upper
bounds of principal curvatures. If the hypersurface is strictly convex, it is simple to observe
that a positive lower bound on the principal curvatures implies an upper bound of the principal
curvatures. This follows from equation (6.58) and the Newton-Maclaurin inequality,

This is the starting point of our approach here. To achieve such a lower bound, we shall use the
inverse Gauss map and consider the equation for the support function of the hypersurface. The
role of the Gauss map here should be compared with the role of the Legendre transformation
on the graph of convex surface in a domain in R™. Since M is curved and compact, the Gauss
map fits into the picture neatly. This way, we can make use some special features of the support
function. We note that a lower bound on the principal curvature is an upper bound on the
principal radii. And the principal radii are exactly the eigenvalues of the spherical hessians of
the support function. Therefore, we are led to get a C2 bound on the support function of M.

Let X : M — R"! be a closed strictly convex smooth hypersurface in R**!. We may
assume the X is parametrized by the inverse Gauss map

X: S - RvL
The support function of X is defined by
u(z) =<z, X(z) > at zeS"

Let eq,e9,...,e, be a smooth local orthonormal frame field on S, we know that the inverse
second fundamental form of X is

hij = ui; + U(Sij,
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and the metric of X is .
gij = Y _ hihj.
=1
The principal radii of curvature are the eigenvalues of matrix
Wij = Ujj + udij.
Equation (6.63) can be rewritten as an equation on support function wu.

detWZ‘j 1 _1
—— | () =G(X)u"* on S",
O'n—k(Wij)] (z) = G(X)

where X is position vector of hypersurface, and

(6.66) F(Wi;) =

G(X) =X+

Equation (ref3.2) is similar to the equation in [57], where a problem of prescribing Weingarten
curvature was considered. The position function and the support function have the following
explicit form.

= Zuiei +ux, on xze&S"

It follows from some straightforward computations,

(6.67) X = uye; + ui(ei)l 4w + ux; = uje; — xuidy + wx + uep = Wiey,
ZXZZ = Z Wine; + Wi(e; )]
i,l=1
n
(668) = Z[Z VVll]iez Z Wzl x(szl Z Z I/Vll i€ — T Z Wiy
=1 [=1 i,l=1 i=1 [=1

The following is a key lemma.

LEMMA 6.4. If G(X) is strictly convex function in R\ {o}, then

(6.69) max(Au + nu) < C,
where the constant C' depends only on n, maxgn f, mings f and |V f|co and |V2f|co. In turn,
(6.70) |V2p| < C.

Proof: Since we already obtained C! bound in Lemma 6.1, to get (6.70), we only need to
prove (6.69). Let

n
H = Z = Au+nu
I=1
and assume the maximum of H attains at some point z, € S*. We choose an orthonormal frame
e1, €2, ..., e, near x, such that w;;(x,) is diagonal ( so is Wj; = u;; + ud;; at z,). The following
formula for commuting covariant derivatives are elementary:

(Au)ii = A(uy) + 2Au — 2nuy;.
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So we have

(6.71) H; = (AU)“ + nuy; = A(W) —nWy, + H.

Let F = 8§V([,W) At z, the matrix F¥ is positive definite, diagonal. Setting the eigenvalues of
Wz‘j at To aS )\(W ) = (/\1,)\2, ceey An)),

1, on 1 on—1(Al)) O'nO'n_k_l()\‘i)]'

F@'i _ 7(
kon_k On—k Un—k2

The following facts are true (e.g., see [57]).

ZF’LZ “—F ZFZZ Cn k

;r\._\

Now at z,, we have
(6.72) H; =0, H;; <0

Through this section the repeated upper indices denote summation over the indices, and our
calculation will do at x,. Using the above calculations we have

0o > Z FUH; = ZFH = ZF"A i) nzn:FW +H§:F
=1 =1

Jl

(6.73) > Z FUA(Wyi) — nF + (CP 8% H.

From the equation (6.66)
FiiWy, = [G(X)u"*),  FIWyy + F95 W Wy = [G(X)u™+]y.

From the concavity of F, we get

=1

combining this with (6.73) we have the followmg mequahty at x,
n
(6.74) yu"t)y —nF + (CPF) v H < 0.
l:l
Now we treat the term [G(X )u_%]”,in the following the repeated indices on «, 8 denote sum-

9%G

mation over the indices from 1,2, ...n + 1. Denote G, = aaX—Ga, Gap = pxapxs-

1
[G(X)IF%][ = GaXlau*% + G(X)(_E)Ufiflul,

n
SIGX)uFlu = GapXP X u™F + GoXfu
=1

2 11 1
—CGaXfu F Ly + e 1)G(X)u* 2| Duf? — %G(X)u—%—luu.
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Using (6.67) and (6.68), it follows that at z,
Z[G(X)u_%]” = Gaﬁef‘elﬂﬂfﬁu—% — [Gaz®u™
=1

2
(6.75) —%(Gae?u,m)uﬁ*1 +

=
+

=

( +1)G(X)u*%*2\pu|2++%G(X)u* .

| =
=

Using (6.75), at z, (6.74) becomes

==

1
Gaﬂe?elﬁﬂfﬁu_% — [Gaaco‘u—% + —G(X)u_%_l]H —nF 4 (C" " %H

k
2 1.1
(6.76) —%(Gae?ulﬂfll)u—%_l + %(% + 1)G(X)u_%_2]Du\2 + —l—%G(X)u_% <0.

If G(X) is strictly convex in R"*1\ {0}, then exist a uniform constant ¢, > 0 such that

n
Z Ga,ge?‘elﬁ >co, 1=1,2,..0.
a,B=1

Since Y, Wi > 1 e obtain H(z,) < C. n

n
Proof of existence theorem I: For any positive function f € C?(S"), for 0 <t < 1 and
1<k<n-—1,set fy(z)=[1—-t+ tf_%(m)]_k. We consider the equation
(677) O-k(’%la K2, .ees /{n)(ﬂj) = ft(gj)pl_n(pQ + |vp|2)_1/2’ on Sna
where n > 2. We find the hypersurface in the class of strictly convex surface. Let I = {t €
1
[0,1] : such that (6.77) is solvable}. Since p = [C*]” "2 is a solution for ¢t = 0, I is not empty.

By Lemma 6.1 and Lemma 6.70, p € C''(S") and is bound below. That is equation (6.77) is
elliptic. By the Evans-Krylov theorem p € C%%(S") and

(6.78) lollcasn < C,

Where C depends only on n, maxsn f,ming» f and |V f|co and |V2f|co, and . The a priori
estimates guarantee I is closed. The openness is from Lemma 6.3 and the implicit function
theorem So we have the existence. The uniqueness of the solution for ¢ € [0,1] is from Lemma
6.2. This complete the proof of Theorem 6.1. [ |

REMARK 6.1. We suspect the strict convexity condition (6.59) can be weakened. For the
cases k = 1,2, this is verified in Theorem 6.2. The proof of Theorem 6.2 is different from the
proof of Theorem 6.1 in this section. Due to the weakened condition, we are not able to obtained
a positive lower bound for the principal curvatures directly. Instead, we will use special structure
of the elementary symmetric function oo to get an upper bound of principal curvatures for convex
solutions of (6.58).

In the rest of this section, we will prove the C? estimate for the scalar curvature case under
the convexity assumption of the solution. We shall make use of some explicit structure of os.
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We consider the following prescribed scalar curvature measure equation
X
(679 MO0 = [X] ) < XN >, X €
Now we state the mean curvature estimate for the above equation on the convexity of solution
surface.

LEMMA 6.5. Let f be a C? positive function on S™ and M be a starshaped hypersurface
in R respect to the origin, if M is a convex solution surface of equation (6.79) and for the
function p = |X| on S™ the following estimates hold

(6.80) loll < C,
where the constant C' depends only on n, k, ming» f and || f|c2.

Proof: C! estimates were already obtained in Lemma 6.1 in the section 2. We only need to
get an upper bound of the mean curvature H.
Let

(6.81) F(X) = f(m% ¢(X) = |X |7V F(X),

then the equation (6.79) becomes

(6.82) 092(K1, K2, ooy kin)(X) = 0(X) < X, ep41 >,, on M,

Assume the function P = H + %|X|? attains its maximum at X, € M, where a is a constant
will be determined later. Then at X, we have

(6.83) Pi=H;+a<X,e; >=0,

(6.84) Py = H;i +all — hi; < X, enq1 >].

Let FJ = %{i?”}), and choose a suitable orthonormal frame {ej, es, ..., €, } in a neighborhood

of X, € M such that at X, the matrix {h;;} is diagonal. Then at X,, the matrix {F¥} is also
diagonal and positive definitive. At X,
n n n n
(6.85) Y FiP; =Y F'Hy+a) F'—a<X,en1>» Fihi <0,
ij=1 i=1 i=1 i=1
from this inequality we shall obtain the mean curvature estimate.

In what follows, all the calculations will be done at z, € M.
First we deal with the term )" | F" H;;. From (6.83) and (5.15), we have

n n n n n
D OFUH =Y FUY hjjia) = > FTY (hiigy + hiih3; — hyihi)
i=1 i—1 =1 =1 =1
n .o n .o n .o
= Flhi; + AP FPhy — HY  FUh,
=1 =1 =1

where |A]? = >0 k2.
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Then we treat the term >, F%h;;;;. Differentiate equation (6.82) twice, by (5.11)-(5.14),

n n

Do Flhigy =) [0(X) < Xener >+ Y Wi — Y hywhu

ij=1 j=1 J,k#l J,k#l

n n
=Ap < X,epi1 > —I—Qqu)jhjj < X,e; > +¢Z < X,enp1 >jj

j=1 j=1
+ > W= > hgrkhu + Z e
J,k#l 7.kl
Now use (5.11)-(5.16), we have
n n
Z<X,6n+1 > ZZ[hu<X,€z >1;
i=1 il=1

n n
- Z[Z hii < X, e > +hig — hi; < X, eng1 >]
i=1 I=1

n
=Y H<Xe>+H—|AP <X, eny1 >
=1

n
= —az <x,e; > +H— |A|2 < X,eni1 > .
i=1
In turn, by equation (6.82) we have the following estimate

n
> Flhijj > —|APoa(hij) + 6H + A < X, enp1 >
ij=1

n n n

(6.86) —|—22¢jhjj < X,ej > —agbz <x,e > —a’ Z <z, e >2
j=1 i=1 i=1

It is easy to compute that

ZF” — (n—1)H, Zn:F”hu = 202(hij),

i=1
(6.87) Z Fh% = Hoo(hij) — 303(hij), |A]> = H? = 209(hij).
Combining the (6.85)-(6.87), at x, we get the following

a(n — 1)H + ¢H + 2 ¢ihii < X,e; > +A¢ < X, ent1 > +3Hos(hij)
=1

(6.88) < 209(hij)* 4+ 2a < X, ent1 > 0a(hij) + [ag + a? Z<Xel
i=1
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Let Fa, Fap be the ordinary Euclidean differential in R"*1, use (5.11)-(5.14), we compute
n+1

¢i = —(n+D|X["" < X e; > P(X) + [X[7HD Y " Fux
A=1
n n+1
Ap=> ¢ =H[n+1)|X|"" < X,enp1 > F — [X[7TD Y " Fyuefl, ]
i=1 A=1
n n+l
—2(n+ DX N < X e > FaX —n(n+1)| X[~ F
i=1 A=1
nt+l n n
HXT N N T FapX XS 4 (n+ D)0+ 3)|X|TIFY T < Xe P
A,B=1 i=1 i=1
Now we use the convexity of the solution, we have
o3(hij) 20, 0< hy < H.
If a is suitable large, we get the following mean curvature estimate
(6.89) max H < C(n, max f, min f, [V f|co, V2 f|co).
This finishes the proof of the Lemma. [ |

Since C? estimates in Lemma 6.5 only valid for convex solutions, in order to carry on the
method of continuity, we need to show the convexity is preserved during the process. This in
fact is a consequence of Theorem 4.2. We state it as

THEOREM 6.3. Suppose M is a convex hypersurface and satisfies equation (6.64) for k <n
with the second fundamental form W = {h;;} and ]X\nzlf(%) is conver in R"1\ {0}, then

W is positive definite.

We now use Theorem 6.3 to prove Theorem 6.2.

Proof of Theorem 6.2. The proof is the same as in the proof of Theorem 6.1 by the
method of continuity, here we make use of Theorem 6.3. The openness and uniqueness have
already treated in the proof of Theorem 6.1. The closeness follows from a priori estimates in
Lemma 6.1 and quasilinear elliptic theory in the case of £ = 1 and the a priori estimates in
Lemma 6.5 in the case of k = 2, and the preservation of convexity in Theorem 6.3. [ |

Notes

For the curvature measures, the problem of prescribing Cj is called the Alexandrov problem,
which can be considered as a counterpart to Minkowski problem. The existence and uniqueness
were obtained by Alexandrov [5]. The regularity of the Alexandrov problem in elliptic case
was proved by Pogorelov [106] for n = 2 and by Oliker [100] for higher dimension case. The
general regularity results (degenerate case) of the problem were obtained in [59]. Apparently, the
existence problem for curvature measures of C,,_j for general case k < n has not been touched
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(see also note 8 on P. 396 in [110]). Equation (6.58) was studied in an unpublished notes [60]
with Yanyan Li. The results in this chapter were obtained in [63].

It seems that the estimates in [26] and [62] can not be obtained through similar way. The
uniqueness and C' estimates were established for admissible solutions in [60]. But C? estimates
for admissible solutions of equation (6.58) are not known (except for £k =1 and k = n, the first
case follows from the theory of quasilinear equations, and later case was dealt in [100, 59]).
Since the Alexandrov problem (Gauss curvature measure problem) has already been solved
[5, 106, 100, 59|, Theorem 6.2 yields solutions to two other important measures, the mean
curvature measure and scalar curvature measure under convex condition (6.60).

Large part of the study of curvature measures have been carried on for convex bodies. There
are some generalizations of these curvature measures to other class of sets in R"*! (e.g., [44]).
From differential geometric point of view, the notion of (n — k) — th curvature measure can be
easily extended to k-convex bodies. Since for k < n, admissible solution of (6.58) is not convex
in general. By Lemma 6.2, for k¥ < n, the prescribing curvature measure equation (6.58) has
no convex solution for most of f. This means some condition must be imposed on f for the
existence of convex solutions. We believe that for any smooth positive function f, equation
(6.58) always has an admissible solution.



Part 2

Fully nonlinear equations in confformal
geometry



CHAPTER 7

Some properties of the Schouten tensor in conformal geometry

We now switch our attention to conformal geometry. Let (M, g) be an oriented, compact
and manifold of dimension n > 2. And let Sy denote the Schouten tensor of the metric g, i.e.,

1 , R,
%= g (chg_z(n—l)’g>’

where Ric, and R, are the Ricci tensor and scalar curvature of g respectively. The following
decomposition formula reveals why the Schouten tensor is the main object of study in conformal
geometry:

(7.1) Riem = A; © g + W,

where W, is the Weyl tensor of g (which is conformally invariant), and ® denotes the Kulkarni-
Nomizu product (see [15]).
We define op-scalar curvature of g by

ok(g) == orlg™" - Sy),

where g1 - S, is defined, locally by (g~ - Sg)é = gik(Sg)kj. When k = 1, g1-scalar curvature is
just the scalar curvature R (up to a constant multiple). It is natural to consider manifolds with
metric of positive k-scalar curvature. However, the surgery might be not preserve this positivity.
In fact, we consider a stronger positivity. Define

F; = {A: (/\17)\27"' a>\n) GR”|0'3(A) > O,Vj < k}

A metric g is said to be in T} if 0;(g)(z) > 0 for j < k and z € M. Such a metric is called
a metric of positive I'y-curvature, or a I'p-positive metric. When k£ = 1, it is just the metric of
positive curvature. From now on, we only consider the case k > 2.

We want to analyze the Schouten tensor and derive some of geometric and topological
applications.

We note that positive I'j-curvature is equivalent to positive scalar curvature, and the con-
dition of positive I'j-curvature has some geometric and topological consequences for the mani-
fold M. For example, when (M, g) is locally conformally flat with positive I'j-curvature, then
(M) = 0,V1 < i < § by a result of Schoen-Yau [115]. We will first prove that positive
['g-curvature for any k > 5 implies positive Ricci curvature.

THEOREM 7.1. Let (M, g) be a Riemannian manifold and x € M, if g has positive (nonnega-
tive resp.) I'i-curvature at x for some k > n/2. Then its Ricci curvature is positive (nonnegative

70
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resp.) at x. Moreover, if I'y-curvature is nonnegative for some k > 1, then

—n

k
o 2%k-m o
Ricy 2 5 e—ny a9

In particular if k > 5,

Ricy > Gi—1) f af(Sy)-g.

A direct consequence of Theorem 7.1 is

(2k —n)(n —1) <n>—i }

COROLLARY 7.1. Let (M™,g) be a compact, locally conformally flat manifold with nonnega-
tive T'k-curvature everywhere for some k > n/2. Then (M, g) is conformally equivalent to either
a space form or a finite quotient of a Riemannian S*~'(c) x S' for some constant ¢ > 0 and
k =n/2. Especially, if g € I‘,Jg, then (M, g) is conformally equivalent to a spherical space form.

When k < n/2, we have the following vanishing theorem.

THEOREM 7.2. Let (M,g) be a compact, oriented and connected locally conformally flat
manifold. If g is a metric of positive I'y-curvature with 2 < k < n/2, then for any ["TH] +1-k <
p<n—([2]+1-k)

HP(M) = 0.

We first prove two lemmas. Here, we assume that k& > 1.

LEMMA 7.1. Let A = (A1, A2, -+, A1, A\n) € R™, and define

SA 2(’0—1)(, y ) )

If Sy € fg‘, then

n

, (2k —n)
. >~ ;|
(7.2) I o DR

i=

In particular if k > 5,

el

1
al (Sa).

min \; >

i=1,n (n—2)(k—1)

(2k —n)(n —1) <Z> -

Proof: We first note that, for any non-zero vector A = (ay,--- ,a,) € I' implies o1(A) > 0.
This can be proved as follow. As A € f;‘, 01(A) > 0. If 01(A) = 0, there must be a; > 0 for
some 7 since A is a non-zero vector. We may assume a, > 0. Let (A|n) = (a1, -+ ,an—1), we
have o1(A|n) > 0. This would give 01(A) = o1(A|n) + a,, > 0, a contradiction.

Now without loss of generality, we may assume that A is not a zero vector. By the assumption
S € f;: for k > 2, so we have > " ;| A; > 0.

Define

Aog=(1,1,---,1,0;) e R" I xR
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and we have Sy, = (a,--- ,a,b), where
5 = (2k —n)(n — 1)’
2nk — 2k —n
so that
(7.3) 0k(Sa,) =0 and 0;(Sp,) >0 for j <k —1.

It is clear that d; < 1 and so that a > b. Since (7.2) is invariant under the transformation A to
sA for s > 0, we may assume that » ;" | A, = tr(Ag) =n — 14 0 and A\, = min—1,... , A;. We
write

Sy = (a1, -+ ,ap).
We claim that
(7.4) An > k.
This is equivalent to show
(7.5) an > b.

Assume by contradiction that a, < b. We consider Ay = tAg + (1 — t)A and
Sp =87, =tSr, + (1 —t)Sa = ((1 —t)a+tar, -, (1 —t)a+tay—1, (1 — )b+ tay,).
By the convexity of the cone I'}" (see Proposition 1), we know
Sy eTy, foranyt e (0,1].

Especially, f(t) := 05(S:) > 0 for any ¢ € [0, 1]. By the definition of é, f(0) = 0.
For any vector V = (vy,--- ,vp), let (V]i) = (v1,-+ ,0i—1,Vi41, - , V) be the vector with
the i-th component removed. Now we compute the derivative of f at 0

n—1

F1(0) = (ai = a)or—1(S0li) + (an — b)a—1(So[n).

i=1
Since (Spli) = (So|1) for i <n —1and Y ;" ;a; = (n — 1)a+ b, we have
£1(0) = (an = b)(ok-1(S0ln) — ok-1(So[1)) <0,

for o5_1(So|n) — 0k—1(50|1) > 0. (Recall that b < a.) This is a contradiction, hence A,, > J. It
follows that

2%k —n
in A\ >0g=——=> \.
im0k 2n(k —1) ;

Finally, the last inequality in the lemma follows from the Newton-MacLaurin inequality. [ |
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Remark. 1t is clear from the above proof that the constant in Lemma 7.1 is optimal.
We next consider the case Sy € T'}.
2

LEMMA 7.2. Let k =n/2 and A = (M1, , \,) € R" with Sy € T}, Then either \; > 0 for
any v or
A=A+ ,00)
up to a permutation. If the second case is true, then we must have on (Sp) = 0.
Proof: By Lemma 7.1, we only need to check that for A = (Ay, -+, A\y—1,0) with Sy € fg,
Ai=N;, Vi, j=1,2--- 2k -1

We use the same idea as in the proof of the previous Lemma. Without loss of generality, we may
assume that A is not a zero vector. By the assumption Sy € Fg for k > 2, we have Z?;ll A > 0.
Hence we may assume that Z?;ll Ai =n — 1. Define

Ao=(1,1,---,1,0) e R"
It is easy to check that
(7.6) Spo €T, and  ox(Sy,) = 0.
That is, Sp, € 1_“; If X’s are not all the same, we have

n—1

> (hi—1)=0,
=1

and
n—1
> (Ai-1)2>0
=1

Now consider Ay = tAg+ (1 —¢)A and
1 1 1
Sy = Sp, =tSp, + (1 —1)Sp = (5 +t(A —1),--- 5+ t(An—1 — 1), —5).

From the assumption that A € T}, (7.6) and the convexity of T}, we have

(7.7) Sy el fort>0.
For any ¢ # j and any vector A, we denote (A|ij) be the vector with the i-th and j-th
components removed. Let A = (%, ,%, —%) be n — 1-vector, A* = (%, e ,%,—%) be n — 2-

vector. It is clear that Vi # j, 4,7 <n—1,
ok-1(S0ld) = o _1(A) > 0,

O'k72(50”l‘j) = O'k,Q(A*) > 0.
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Now we expand f(t) = 0;(S;) at t = 0. By (7.6), f(0) = 0. We compute

n—1

F0) = Y (N = 1ok-1(Sold)

i=1

n—1
= op1(M)) _(Ni—1)=0
i=1
and
F10) = > (= 1) = Dog-a(Solij)
i#]
= op (AN (N —1)(N - 1)
i#]
n—1
= —op2(A)> (A —1) <0,
i=1
for op—2(So0[ij) = ok—2(A*) > 0 for any i # j and >, ,;(A; —1) = (1 — A;). Hence f(t) <0 for
small ¢ > 0, which contradicts (7.7). ]
Remark. From the proof of Lemma 7.2, there is a constant C' > 0 depending only on n and
2
o (Sa)
m such that
2
min \; > Co 3 (Sy).
1 2
Proof of Theorem 7.1. Theorem 7.1 follows directly from Lemmas 7.1 and 7.2. [ |

COROLLARY 7.2. Let (M, g) is a n-dimensional Riemannian manifold and k > n/2, and let
N = M x S! be the product manifold. Then N does not have positive I'y,-curvature. If N has
nonnegative I'y-curvature, then (M, g) is an Finstein manifold, and there are two cases: either
k=mn/2 ork>n/2 and (M,g) is a torus.

Proof: This follows from Lemmas 7.1 and 7.2. [

Proof of Corollary 7.1. From Theorem 7.1, we know that the Ricci curvature Ric, is nonnegative.
Now we deform it by the Yamabe flow considered by Hamilton, Ye [132] and Chow [38] to obtain
a conformal metric g of constant scalar curvature. The Ricci curvature Ricj is nonnegative, for
the Yamabe flow preserves the non-negativity of Ricci curvature, see [38]. Now by a classification
result given in [119, 34|, we have (M, g) is isometric to either a space form or a finite quotient of
a Riemannian S"~!(c) x S! for some constant ¢ > 0. In the latter case, it is clear that k = n/2,
otherwise it can not have nonnegative I'p-curvature. [ |
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Let U be a coordinate chart around a point x € M and consider the space of | — jets of
metrics with respect to the chart U. Let J'(p) = ({gi}, {09}, - ;10%9i}a|=1), Where o is
a multi-index. Let J,g +(p) be the subset of J !(p) consisting of elements with positive o;-scalar
curvature for all j < k. It is clear that Sy = J,f’ 4+ X R, for the curvature tensor depends only
on 2-jets. Now we have

PROPOSITION 7.1. The set J? , (p) is contractible.
Proof: From the proof of Theorem 1 in [48], we only need to check that the set
A= {v:(d5,0,v) € J/%A_(p)}

is contractible. The Christoffel symbols and their derivatives for any element in A are I‘fj =0
and

1
alrfj = 5(6laigjkalajgik — 0,095

And the Ricci curvature and the scalar curvature are

1
Rij =5 Z(@lﬁjgu + 00191 — 01019i5 — 0i0;gu)

l

and
R = Z Bjaigij — 6j8jg,-,-.
1#]
Hence the Schouten tensor is
1
Sij = 5 > (010;9i1 + 0:01915 — 0iDigi; — 00 9u)
!
1
_72(71 — 1) Z 83'3@'9@'3' — 8j8jgii.
i#j
By Proposition 13.4, the set A is convex, hence contractible. [ |

We now prove Theorem 7.2. The proof here follows similar arguments as in the proof
of Theorem 7.1. This type argument gives a general condition under which A € F;: implies
Gnp(A) > 0 is reduced to a combinatoric problem.

Let A = (A1, A2, -+ ,\y) € R™ be an n-tuple. For any ;7 = 1,2,--- ,n, we set A|j =
(A, A1, Aj4+1, 0+, Ap). Assume that 2 < kK < n/2, 1 < p < n/2. Define a function
Gnp:R" = R by

P n
Gup(A) = min {(n=p)3 "X+ 3 Ay}
J=1 J=p+1
where (i1, -+ ,i,) is a permutation of (1,2,---,7n) and the minimum is taken over all permuta-
tions. Gy, is related to a geometric quantity arising in the Weitzenbock form for p-forms (see
(7.16)).
We define some special n-tuples, which will be used crucially. Let I, = (1,1,---,1) € RP
and s > 0. Define n-tuples by

Enp= In—p,—1I,) and Efz,p = (Ln—p, —5Ip).
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It is trivial to see that Gy, p(Ey, ) = 0.

LEMMA 7.3. For any s > 0, if B}, € f,—:, then E7_
En,p € f;_:, then Enfgvpfl S F;.
Proof: First, it is easy to check that Ej_; ) € I} | implies By _9p1 € iy, If E; ., € I
(resp. Fz), then E;_, , € I}, (resp. Fz_l). Hence, we only need to deal with the case that
ok(Ey ) = 0. Assume by contradiction that oy_1(E};_; ) = 0. Since ox(E;, ) = ox—1(E,_; )+
ok(En_1, ) = 0. Together with E;_; € f;h it implies E;_, , € f,j.
We may repeat this argument to produce a sequence of integers m such that E, , € fz and
or(Ey, ) = ok(Ey,11,) = 0. This process must be stopped somewhere since —s/j, is not in f,j.

We then obtain an integer m such that ox(Ey, ) = ok(E}, 11 ,) =0 and Ej, ) € Il . Now

0= Uk(EZH—l,p) = O'k—l(Ezz,p) + O'k:(Efn,p) > 0,

+ +
1p €Ty and By 5, € T If

), we have ox(Ep,_4 ,

this is a contradiction. B
To prove the last assertion in the lemma, note that we already have E, 2,1 € F:—r Now,

0 < op(Enp) = ok(En—2p-1) — 0k—2(En—2,p-1)-

It follows that
0k(En—2p-1) > 0p—2(En—2p—1) > 0.

LEMMA 7.4. For 3 <p<n/2, if

-2 4—/n—2 4
(7.8) R TP = pr2
then Ep, , & fz. Forp=2,
n—+/n

2 7
then Ey o & ng. In particular, if k = ["T‘H] +1—p, then B, & f:.
Proof: If p = 2, it is easy to compute

ok(En2) = orx(In—2) —204-1(In—2) + or—2(In—2)

n—2)!
= k(!(n — ;)!{(n —2k)* —n} <0,

k>

if k> Y
If p > 2 and E,, € I'y, applying Lemma 7.3 (the last assertion) repeatedly, we have

Ey_opta2 € Fz. However, one can compute
0k(Bn—opra2) = ox(ln—2pt2) +or—2(ln—2p12) — 205-1(In—2p12)
(n—2p+2)! 9
= -2 4 — 2k)° — -2 4) <0
Hin—2p 1ok =+ o=+ 4) <0,

for k satisfies (7.8). A contradiction. [ ]
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LEMMA 7.5. Let 0 < s < 1 andp < n/2. IfE}, € f;: with oy (Ey, ,) = 0, then for any
A €T} with o1(A) > 0
Gnp(A) > 0.
Proof: First note that o1(E;, ) > 0. By Lemma 7.3, we have o4_1(E;,

n—l,p—l) > 0. USing the
identity >, ox—1(Alj)A; = kog(A) we have

(7.9) 0= koy(Ey,) = (n—plog—1(E5_1,) — spok—1(E5_1 1)
Now rearrange A = (A1, A2, -+, \) such that A\; > Ay > -+ > \,. It is obvious that
n—p n
N=pd N+n-p Y. N
j=1 j=n—p+1

We want to show that it is positive for A € ﬁ with o1(A) > 0. Consider a function f(t) =
or((1—t)E; ,+tA). Denote Ej , = (e1,ea,--- ,e,). By the convexity of T, we know f(t) > 0.
Since f(0) = 0, we have f’(0) > 0 which implies

0 < Zak 1(E5 ) ZO'k 1(E5 pli) A — on(Ey )
n—p n
= op-1(En 1y, Z)\ + ok-1(Ep_1p-1) Z Aj
J=1 j=n—p+1
(7.10)
n—p
j=n—p+1
or—1(L;
= M{spZ)\ + (n—p) Z A}
J=1 Jj=n—p+1
From Lemma 7.3 we have oy_1(E,_;,) > 0. Hence, (7.10) implies that
n—p n
(7.11) spY A+(n—p > A0
i=1 j=n—p+1

From assumption that o1(A) = 377 Aj > 0, we have >-'"7'A; > 0. Therefore, (7.11) implies
that G, p(A) > 0. |

LEMMA 7.6. Assume that for some1 <p < § and2 <k <n/2, E,, € f,i— with oy, (Enp) = 0.
If A €T, then Gy p(A) > 0.

Proof: Since the positivity of G(A) does not change under a rescaling A — pA, we may assume
that o1(A) = 01(Eyp). As in the previous lemma, we consider the function f(t) = ox((1 —
t)Enp + tA). We have f/(0) > 0. The argument given in the previous Lemma implies that
Gnp(A) > 0 or Gy p(A) = 0. Hence, we only need to exclude the latter case. Assume by
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contradiction that G, ,(A) = 0. We have f/(0) = 0. Since f(0) = 0 and f(t) > 0 for any
€ [0,1], we have f”(0) > 0. By our choice of E,,, it is clear that G, ,(E,,) = 0. This,
together with Gy, p(A) = 0, gives

n—p n
(7.12) pY (ei=X)+(n—p) > (e;—N\)=0.
=1 i=n—p+1
Here we denote E,, , by (e1,e2,--- ,e,). The normalization o1(A) = 01(E, ) gives
n—p n
(7.13) dlei—=x)+ D (ei— ) =0.
=1 i=n—p+1
(7.12) and (7.13) imply
n—p n
(7.14) Z(el — /\1) = Z (ei - )\z) =
i=1 i=n—p+1
Let Ay = (e1 — A1, ,en—p — Ay—p) and Ay = (En—p+1 — AM—pt1,- -+ ,en — Ay). (7.14) means
that o1(A1) = 01(A2) = 0. Now we compute f”(0)

(7.15)

0< f"(0) =Y on-a(Enplif) N — e) (N — ;)
i#]

= 2o 2(Fn—ap-1)01(A1)o1(A2) + op—2(En—2p—2)02(A1) + 0p_2(En_2,)02(A2)}

= op-2(Bazp2){ot(A1) - i(ei —X)}+ ona(Bazp){oi(Aa) = D (ei—N)%}
=1

n—p+1
n—p n
= —0p2(Bn2p-2) Y (€= N)” —on_a(Bn2p) > (ei— )
i=1 i=n—p+1

By Lemma 1, we know that o;_2(Ep_2p—2) > 0 and oj_2(Ep—2,) > 0. Hence, (7.15) implies
that

e; = a;, for any i.

This is a contradiction, since A € F;“ and E,, & F;: by assumption. [

PROPOSITION 7.2. (i). Suppose that op(Eyp) < 0 for some 2 <k <n/2 and 2 <p < n/2.
If A e T; with o1(A) > 0, then Gy, q(A) >0 for any p < g <n/2.

(ii). Suppose that oy(Enp) = 0 and E,,, € fz for some 2 <k <n/2 and 2 <p<n/2. If
A €T}, then Gy g(A) >0 for any p < q < n/2.

Proof: 1t is easy to see that o1, (E}, ), as a function of s, is decreasing. Hence there is a s € (0, 1)
such that o (E;, ,) = 0 and (i follows from Lemma 7.5. (ii) has be proven in Lemma 7.6. [ ]
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Combine with Lemma 7.4 and Proposition 7.2, we have

COROLLARY 7.3. (i) Let p and k satisfy

n—2p+4—yn—2p+4
5 )
Then Gpp(A) > 0, if either A € Fz' or, A € fz with o1(A) > 0. In particular, if A € T, then
Gnq(A) >0 for any "%ﬁ <q<n/2.
(ii) If A €T, then Gnp(A) >0 for any [2H] +1—k <p <n/2.

k>

We now prove a vanishing theorem of cohomology group of locally conformally flat manifolds
of positive I';, curvature.

PROPOSITION 7.3. Let (M™,g) be a compact, locally conformally flat manifold with g € Fz.
Then
(a). the gth Betti number by =0 for

[";1]+1—kgq§n—<[";1]+1—k>.

(b). if k > n_2 then by =0 for any 2 < g <n—2.

(¢). If k = "= and by # 0, then (M, g) is a quotient of S*"2x H?. Here H? is a hyperbolic
plane of sectional curvature —1 and S™~? is the standard sphere of sectional curvature
1.

B

B

Proof: Recall the Weiztenbock formula for p-forms w
Aw = trV?%w + Ruw,

where
Rw = Z w; Ni(er)R(ej, e)w.
=1
Here e; is a local basis and i(-) denotes the interior product A = dd* + d*d is the Hodge-de
Rham Laplacian. In local coordinates, let w = wy A --- Aw,. Then

P n
(7.16) Rw = (n—p)Z)\i+p Z Ai | w,
=1

i=p+1

where \’s are eigenvalues of the Schouten tenser S;. Under the conditions given in (a) or
(b) in the proposition, Corollary 2 implies that R is a positive operator. It is clear from the
Weiztenbock formula that H9(M) = {0} for such ¢ considered in (a) and (b) in the proposition.
Hence (a) and (b) follow.

Now we prove (c). By assumption, there is a non-zero harmonic 2-form w. In this case, R
is non-negative. From the Weiztenbock formula, one can prove that w is parallel. Now one can
follows the argument given in [90] to prove that the universal cover M of M is S*"2 x H?. m
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Notes

Theorem 7.1 was proved in [70]. Theorem 7.2 was proved in [63] when g is a metric of
positive I'g-curvature with k& < n/2. When k = 1, the above was proved by Bourguignon [19]
(see also [96]). The condition in Theorem 7.2 is optimal. For example, the Hopf manifold
S?m=1 x 8! is in I';,,_; and has non-vanishing H'. In the case of positive scalar curvature,
there is a developing map of M to Q C S™ by Schoen-Yau [115]. A substantially deep results
regarding the Hausdorff dimension of S™ \ 2 was proved in [115]. If g € I'y, see a recent result
of Chang-Hang-Yang [28] on improved estimate on the Hausdorff dimension of S™ \ Q.



CHAPTER 8

Local estimates for elliptic conformal equations

In this chapter, we are interested in the following conformally invariant fully nonlinear
equation for g € [go],

ox(g) _ n
(8.1) Ul(g)_f, 0<I<k<n.

Equation (8.1) is related to the deformation of conformal metrics. If g = e=2%gg, the Schouten
tensor of g can be computed as
[Vul?

2

V2u+ du ® du — go + Sgo-

Equation (8.1) has the following form:
|[Vul?
2

(8.2) Tk

<V2u + du ® du — go + Sgo> = fe 2=Dv g < <k <n,

o]
where f is a nonnegative function.

When of k£ = 1, [ = 0, equation (8.1) is the Yamabe equation. Equation (8.1) is a type
of fully nonlinear equation when k£ > 2. To solve the problem, one needs to establish a priori
estimates for the solutions of these equations. It is known that such a priori estimates do not
exist in general. On the standard sphere there is a non-compact family of solutions to equation
(8.1). As in the Yamabe problem, the blow-up analysis is important to rule out the exceptional
case. In order to carry on the blow-up analysis, the crucial step is to establish some appropriate
local estimates for solutions of equation (8.1).

The main objective of this chapter is to prove local gradient estimates for the conformal
quotient equation (8.1). We will also deduce local C? estimates from the local gradient estimates.

A metric g is said to be admissible if g7 - S, € I‘;: for every point x € M. If g = e~ 2%gy, we
say u is admissible if g is admissible.

THEOREM 8.1. Suppose f is a positive function on M. Let u € C3(B,) be an admissible
solution of (8.2) in B, the geodesic ball of radius r in a Riemannian manifold (M, go). Then,
there exists a constant ¢y > 0 depending only on v, ||gollc3(p,) and || fllci(p,) (independent of
inf f), such that

(8.3) sup{|Vul?} < ¢1(1 4 e72inferu),

/2

From Theorem 8.1, the “blow-up” analysis usually for semilinear equations, for example,
harmonic map equation, Yang-Mills equation and the Yamabe equation, works for (8.2). It is

81
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an interesting phenomenon, since typical fully nonlinear equations do not admit such blow-up
analysis.

COROLLARY 8.1. There exists a constant €9 > 0 such that for any sequence of solutions u;
of (8.2) in By with

(8.4) / e "dvol(go) < eo,
B

either

(1) There is a subsequence u;, uniformly converges to +00 in any compact subset in By, or
(2) There is a subsequence w;, converges strongly in Cllo’?(Bl), VO < a< 1. If f is smooth

and strictly positive in By, then u; converges strongly in C}.(B1), Ym.

Local gradient estimates

We devote the proof of local gradient estimates (8.3). The local C? estimates has already
been proved in Lemma 8.3.

We recall some notations. Let A = (A1,...,\,) € R". The k-th elementary symmetric
functions is defined as

11 <<k

Set 0g = 1 and o4, = 0 for ¢ > n. o} can be extended as function on real symmetric n x n
matrices. A real symmetric matrix A is said to lie in I‘: if its eigenvalues lie in I‘:.

Let AZ = ()\1,"' ,)\i,"' ,)\n) = ()\1,)\2,"- ))\i—la)\i+17"' ’)\n) and Aij = ()\1,"- ,)\l’,

Nj, oo An) for i # j. Therefore, o,(A;) (04(Aij) resp.) means the sum of the terms of

o4(A) not containing the factor A; (A; and A; resp.).

Proof of local gradient estimates in Theorem 8.1.  We first reduce the proof of the local gradient
estimates to Claim (8.14) below. This is an easy part of proof, which works for more general
form of F. The difficult part is the verification of Claim (8.14), which will be carried out in the
next section.

We may assume 7 = 1. Let p be a test function p € C§°(B;) such that

p = 0, inBy, p=1, in Byp,
|Vp(x)] < 200p2(z), |V2p| <100, in By.

(8.5)

Set H = p|Vu|? , we estimate the maximum of H. Assume that H achieves its maximum
at xg. After an appropriate choice of the normal frame at zg, we may assume that W =

2
(wij + wiuj — WTUI(;U + S;j) is diagonal at the point, where u; and u;; are the first order and
second order covariant derivatives respectively. Let w;; be the entries of W, we have at xo,
(8.6) Wi = Wi + uf — %]Vu\Q + Sii, Ujj = —UjUj — Sz'j, Vi 7& 7,

where §;; are entries of Sy, and u; = Vu = %'
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By the choice of the test function p, we have at zg

(8.7) |Zuilu1] < 100p~ Y2 |Vul?.
=1

We may assume that H(zg) > 10242, that is p~ /2 < 10(}A0 |V, and |Sy,| < Ayt {Vul? for some

constant Ag to be chosen later, otherwise we are done. Thus, from (8.7) we have

& Vul?
(8.8) 1> | < ‘Ao|(xo).
=1

We denote \; = w;; and A = (A1, Ag, -+, Ap). In what follows, we denote C' (which may vary
from line to line) as a constant depending only on || f||c1(pg,), k, n, and ||gollcs(z,) (I fllc2(s))
and [|golc4(p,) in the next section). By Proposition 13.4 and (8.8),

(8.9) 0> FYH;; = F { <—2pippj + Pij) Val* + 2pwju + 2puu%‘l} :

The first term in (8.9) is bounded from below by 10° >is1 Fi|Vul?.
By interchanging covariant derivatives, the second term in (8.9) can be estimated as follows,

Z Fijuijlul > Z Fijuijlul — C|Vul? Z F
i’j7l i7j7l i

ij ij Vul? ii
= D {F7(wij)iw — F7 (uu; — |2|5ij)lul} ~C|Vu*y F

i7j7l i
(8.10) - Z Fu —2 Z Fujuju + Z Flaugupu — C|Vul? Z F¥
! i,gil ikl z
- Z e (fru — 2f|Vul?) — 2 Z Fluguu; + Z Fluguu; — C|Vul? Z j
! il il P
|Vaul*

Z —C(1+6_2u)|Vu‘2—ZF”T
: 0

To obtain the local estimates, we need the following Lemma.

LEMMA 8.1. There is constant Ao depending only on k, n, and ||gol|c3(p,), such that,

.. _3 ..
(8.11) > Fluguy > Ay *[Vul* Y FY

il i>1

Assuming the lemma, local gradient estimate (8.3) can be proved as follows.
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As >, F% > 1, inequalities (8.9), (8.10) and (8.11) yield

.. 9 2 3 3
0 2 —10°Vul* Y F7 - Ce*p|Vul’ + (‘(njxo) 4o ) pIVal' 3 F
(8.12) ! j

y ) 2)2 _3
> ZF” {—105nVu|2 — Ce2infu)yy |2 4 <_(nj{—0) + A, 4) p[Vu\‘l} )
J

Choosing Ag large enough so that Ay > 2((n + 2)?)* and multiplying (8.12) by p, we get
H* <C(1+e ™M) H,

thus
Vu(z)? < C(1+ e 2Meemity  for z € By .

Therefore (8.3) of Theorem 8.1 is proved, assuming Lemma 8.1.
Proof of Lemma 8.1. Set u;; = u;; + S;;, we estimate that,

(8.13) > Fluguy > 5 > Flig — CA*%WU‘LIZF :

1,5, il
Hence, to prove the Lemma we only need to check the following

Claim: There is a constant Ay depending only on k, n, and ||gol|c3(p,), such that,
(8.14) SO > AgS S PVl
il i
From (8.6), the left hand side can be expressed as
> Py = 37, Flag, + Dizl FluZuf

B15) = SR (@ (9 — )} = 3O - 200h + A Tul +

i

[Vau|*
Vuly

The Claim (8.14) and (8.15) yield

LEMMA 8.2. There is a constant Ao depending only on k, n, and ||gol|c3(m,), such that,
(8.16) SO > A0S S PRVl 4 A).
il i

We note by the Newton-MacLaurin inequality, it then follows that

g _5 177 177 g
(8.17) S FiEd > A, f okl 022’%( ) 4 vt SR,
i)l l i
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Proof of Lemma 8.2. Let I = {i| A2 > 9|Vu|*}. Tt follows from (8.15) that
y 1 g
(8.18) > Pl > 3 > RN
il iel
Note that for i not in I, \? < 9|Vu|*. Therefore, (8.16) follows from (8.18) and Claim (8.14).
|

We verify the Claim (8.14).
Proof of Claim. Set I ={1,2,---,n}. Recall that at =g, by (8.8), we have for any i € I,

1
;i (wii — (|Vul* —ud)) - Zl: Syuy| = |zl:uilul| < X0|vu|3.

This implies

2
(8.19) i (uis — (V| —u?)) | < A—O\VUF’.

Set 09 = Ay /4, Sometimes, for simplicity of notation, we denote W;; by A;. We divide I into
three subsets I, Is and I3 by
I ={ieT|u?>6|Vul?}, IL={icl|u<dlVu]®& a3 > 5|Vul*}
and
Iy = {i € IT'|u? < 6|Vul? & 2 < 65|Vul*}
For any ¢ € I, by (8.19) we can deduce that
[Vaul?

(8.20) :

i — < 203|Vul?* < 2623 |Vul?

For any j € I3, since \; = u;; + u? — |Vul?/2, we have

2 _1
(8.21) A+ VulTl o vul? = 245 1| Vul?.

In particular, A; > 0 if i € I} and A\; < 0 if j € I3, for large small Jy.
We verify the Claim (8.14) by dividing into two cases.
Case 1. |I3] =0.
First we note that this case includes the case k = n. If @2 + u?(|Vu|? — u?) > 62|Vul|* for

all i € I, the Claim follows from (8.15) easily. Therefore we may assume that there is ig such
that &foio < (53|Vu\4. Recall that @; = uy; + S;i;. Since I3 = 0, we have ig € I;. Thus,

(8.22) g0 < 0g|Vult  and > do|Vul?.

ioio
Assume that ip = 1. By (8.19) we have uf > (1 — 2d)|Vu|? and A\; > 0. Now it is clear that
(|Vu|? - u?) > (1 —2680)|Vul? for all j > 1, and there is no other j € I, j # 1 satisfying (8.22) if
Ay is large enough. Hence, for any j > 1, @;; > d3|Vu|* Hence, we have

(8.23) ;s (|Vul® —uf) > 62| Vul|t  for any j > 1.
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If there is jo > 2 such that \;, < A1, by Lemma 13.3 we have FJ0jo > F!l By (8.23)

n n
y L1 g
> Fliig > 63| Vul* Y F > 558\Vu|4 > P
il

=2 i=1

Hence, we may assume that A; > A for any j > 2. It follows that A = (A1, Ao, -+, \y) € T
By Lemma 13.3 we have Fjj)\? > Fn)\l2 for any j > 2. And we have |Vu|? — 2u? > 0 for any

j > 2. Note that A1 > (3 — 262)|Vu|? by (8.20), altogether we have

it ’VU| 1712 - )‘3 1 212 — 2
ZF >ZF” )_ZF“A-E ‘ FI= > (7= 6) ZFﬂyvm .
4,0 7j=2 7j=1 j=1
Case 2. |I3] # 0.
By (8.21), for j € I3 we have
2 1 4
(8.24) )‘j — QUJ‘)\J’ > (Z — 250)|Vu| .

For j € Iy, it is clear that )\? — 2u§)\j = (N — uj2)2 — u? > —32|Vult. Set F' = maxjer, F¥, we
have

(8.25) D PN = 2uf)N) > —6p|Vult Y FE
j€l> 7

Observation: The Claim is true if > c 01, FI5 > (14 ¢y)F! for some co > 0 independent of
.

The Observation follows from (8.19)—(8.25), since
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D FEG =" FEA = 20\ + i Vul® +

il i

= Y FU - 2uiN) + [Vul? Y Fi 4 FIVul?
. 1 1 4

i

(4 3+ r —2ua + L 2

[Vul*
1)

>
el i€ly i€l3
i 1Vl 2|VUI2 [Vu|* [Vu|* i
(8.26) > ZF( L 2u ZF” + (1 —3262) 1 ZF
i€y J€I3 7
4 4 4
> F1|vj’ _Fl’vu‘4+ZFJ]|VI’ +(1_325(2)>|VZ’ ZFna
JEI3 7
> FIW;| +(1—325§)WZ| Y F
i
1 |Vl .
> (50 0 — 3202)—— 1 > R

i

We note that, if |I3| > 2, (8.20) and (8.21) implies that for any ¢ € I; and j € I3 we have
Ai > Aj. So F" < FJJ by Lemma 13.3. Hence diels FJJ > |I3|F' > 2F" and the Claim follows
from the Observation. Therefore in the rest of proof, we may assume |/3] = 1 and may take
I3 = {n} . We divide it into three subcases.

Subcase 2.1. |I3| =1, |[;| > 2.

Since F' < F™" we may assume that FJJ < 1F1 for any j € I5. Otherwise, defgu@ Fii ~2
%Fl and the Claim is true by the Observation. From Lemma 13.3 and (8.20), F// < F!
implies that A; > inficr, Aj > (5 — 262)|Vul?. It is clear to see that u? < (1 — &o)|Vul?, for
|I;] > 2. By the Observation we may assume F"" < 2F!. From these facts, together with
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(8.20) and (8.25), we estimate

§ 2 ~2
F uil
il
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>

v

v

AV

Y

n—1 B 4

D PO = 2ulNi + M| Vul® + Wf')
ZF“(A? —2u2); + Ni|Vul?) + Vi” F#
3 =1

n—1

. 02 .
ANES DY Syl 50)+1ZF”—3240ZF”}

zeh i€l i=1

1
|V’U,‘4 - F7,7, 3252 ’VU‘ ZF“

=1

ZF“ 2 |Vu ZF”

Subcase 2.2. |I3| =1, || =1and k <n —2.

In this subcase, Iy = {2, 3,

,n —1}. As in Subcase 2.1, we may assume that A\; > A for

any j € I». First we assume that there is a jo € Iz such that Ay, € F;_l. By Lemma 13.3, we

have FjOJO)\?O > Fll/\%.

Using (8.20) and (8.21), we compute

v

>

FU (O —2|Vul*\)

> ) FR(T = 2uf + N[Vl +

§ it ~2
F Uzt
il

|[Vul*
1)

n—1

1 2 2 [Vaul* 2
5 D FON A F +ZF” o T EIVa

j=2 i=1

11)g, |4 2 Vul* s i |Vl y
F Vul”+ FJ‘”OA ,H T Y P = 3263Vt y R
= i

1 y y
> g|vu|4 > R 3253 V|t Y D F
7 7

So the Claim will follow if we pick Ag large enough.
Hence, we may assume that for any j € I, ox—1(A1;) < 0. From this fact, we want to show

that

(8.27)

Assume that Ay

Ok—1(A1pn) <

n—2

m()\l + [AnD)or—2(A1n).

= minjey, Aj. From

0> ok—1(A12) = ok—1(A12n) + Anok—2(A12,)
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we have o;_1(A12,) < [An|ok—2(A12n). )Recall that A, < 0.) As 0 < Ay < Aj for any 3 < j <
n — 1, by counting the terms, it’s easy to see that

n—2
Uk—l(Aln) < mffk—l(/\mn)‘
Altogether gives that
n—2 n—2
Uk—l(Aln) < mak—l(/\ln) < m‘)\nbk—Q(Aln)

n—2

G _o(A1y,).

=~ n_k_l()\1+’)‘n‘)0k 2( 1n>

We now want to make use of (8.27). By (8.63) we have

F'' = F{[oi(Ain)ok-1(A1n) = 011 (A1n)ok(A1n)]
(8.28) +An[01(A1n)ok—2(A1n) — ok (A1n)or—2(A1y)]

AR (011 (A1) ok—2(A1n) — ok—1(A1n)or—a(A1n)]}-
We have a similar expansion for F™". Hence, we obtain
Fr— Y = PO = M) [o1(A ) ok—a(Arn) — 0k (A1) o2 (A1y)]
+(A1 4+ M) o1 (Arn)ok—2(A1n) — ok—1(A1n)or—2(A1n)] }-

By the Newton-MacLaurin inequality, there is C; > 0 depending only on n, k£ and [, such that
o1(An)ok—2(A1n) — 0k (A1n)o1-2(A1n) > Croi(A1n)ok—2(A1n),
o1-1(A1n)ok—2(A1n) > 0g—1(A1n)or—2(A1n).

(8.29)

(8.30)

Since A1 + Ap < 460|Vul? < 2602 and o7_1(A1,) A2 < C’fl__IQUZ(AM), where Cfl__ll is the binomial
constant. Combining this fact with (8.30), if §yp > 0 small enough, we have

C
(8.31) (A1 + An)[oi—1(Ain)og—2(A1n) — ok—1(A1n)o1—2(A1n)] > —710l(/\1n)0k—2(1\1n)-
Together with (8.29), (8.27), if d9p > 0 small enough, we get
Frn— F1 > CLP* (A = A\y)or (A1) og—2 (A1)

(TL —k— 1)01 * 11
— oA _1(A1n) > CoF
=2 o1(Ain)ok—1(A1n) = CoF,
where the last inequality follows from the expansion (8.28) of F''!) the fact that )\, < 0 and
Ao 1(A1n) < 2X30; (A1) < QCL__IQUI(AM). Hence, we have F™ > (1 + C)F'! and the
Claim follows from the Observation.
Subcase 2.3 |I3| =1, [[}|=1and k =n — 1.
Again, we may assume that A\; > A1 for any 2 < j <n — 1. Note that QU? < |Vul? for any
2 < j<n-—1. Also as in Subcase 2.2, if 55 > 0 is small enough,

(8.32) (I +1Dor1(A1n) + (M1 4+ Ap)log(Ar,) > 0.
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It follows that

i
L

(01(A)op—1(Aj) — or(A) N1 (Aj))A?

<.
— [\

3

= A2 {o1(A) (on—2(A1jn) + (M1 + An)on—3(Arjn) + M Anon—s(A1jn))

<
I

—on-1(A)(o1-1(Ajn) + (A1 + An)or—2(A1jn) + AMAnoi—3(A1jn))}
= o(A{[ok(An)o1(A1n) — (B + D)okr1(A1n)] + (A1 + An)[ok—1(A1n)o1(A1n)
(8.33) —kor(A1n)] + M\ [ok—2(A1n)o1 (A1) — (K — 1)ok—1(A1n)]}
—okp(M{[o1(A1n)o1(A1n) — (L + D)orr1(A1n)] + (A1 + An)[o1-1(A1n) o1 (A1y)
—loi(A1n)] + MiAn[oi—2(A1n)o1 (A1n) — (I = 1)or—1(A1n)]}
= —(n—2)A\\on—2(A1pn)or(A)
+0p-1(A)[(1+ Dor1(A1n) + (M + An)lor(A1n) + (= DA Anoi—1(A1n)]
AtAnl{(n = 2)o1(A)on—2(A1n) — (I = )on—1(A)or—1(A1n)}
> Al — = 1)or(A)an_a(An).

A\

From (8.33), we get

i~ i [Vaul*
ZF i} = ZF”(/\? —2ul); + \j|Vul® + )
il 7j=1
n—1 N ‘VU|4
> Z; FI(\2 = 2u2); + \|Vul* + —)
=
(834) n—1 N n—1
> D FIN = F*Y (0i(M)ok-1(Ag) — ox(M) N1 (A))A
j=2 j=2
> F*A|A|(n—1—=1)oy(A)op—2(A1y)
1
Z F*(Z — 250)’VU|4UZ(A)O}L,2(A1”).
Since A\; > A\ for any j = 2,3,--- ,n — 1, it is easy to see that o,_2(A1,) > ﬁan_g(A]‘) for
any j =1,2,--- ,n. It follows that F*o;(A)o,—2(A1,) > ﬁ >, F'. Hence, (8.34) implies
) 1 1 y
Fu~2 >_ - (Z_9§ 4 Fu.
The proof is complete. u

REMARK 8.1. The gradient estimates are also valid for a general equation with term *.
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Finally, Corollary 8.1 follows from Theorem 8.1 and the next Proposition.

PROPOSITION 8.1. There exist constant g > 0 and constant c., > 0 (depending only on €g)
such that any solution u of (8.2) in By with

/ e "dvol(go) < €
By

satisfies
inf u > —cg,.
By 2

Proof: We make use of a rescaling argument as in [112], together with Theorem 8.1, to prove
this Proposition.
Assume by contradiction that there is a sequence of solutions w; of (8.2) in B such that

/ e "idvol(go) -+ 0, asi— oo
By

and

(8.35) inf u; - —o00, @ — 0.
By 2
Consider the function (3/4 —r)?supg e ™ : (0,3/4) — [0,00). As the function is continu-
ous, there is 7§ € (0,3/4) such that

3 \ 2 3 2
< — ré) supe "™ = sup < — r) supe” "™,
4 B i 0<r<3/4 4 Br

T

Moreover, there exists 2§ € B,, such that e~ nui(z)) = supp e~ui(2) | Tet sh=(3/4—18)/2.
0
From the definition,

(8.36) sup e "< sup e ™M < d4em MM

Bsg (5) Big+ro(25)
where m; = u;(z{). Consider the rescaled function v'(y) = ui(expztiJ eMiy) —m; in By-migi. vt
satisfies equation of type (8.2).

By (8.36), we have,
/ oY / e "™ =0, asi-— o0
By (25)

e miso

and v'(0) = 0, v(z) > —Llog4. From (8.35), one may check that e ™is{ > ag > 0 for any i.
Now by Theorem 8.1, sup v’ is uniformly bounded in B, -m, s /2 This is a contradiction. [ |

We now treat second derivative estimate for equation

[Vol?
2

(8.37) f(e* (V0 + dv ® dv — g+S,)) = h.
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LEMMA 8.3. Suppose that f satisfies conditions (13.12), (13.13), and (13.15), and suppose
that v € C* is an admissible solution of (8.37) with h =1 in B,.. Then, there evists a constant
¢ > 0 depending only on r, to and |g|lc(p,), such that

(8.38) IV20|(z) < e(1 +sup |Vol?), forz e B, /s.
By

In general, if h € CYY(B,) (not necessary constant), if ZZ v A > 5> 0 for all X € T', then
there is constant ¢ > 0 depending only on r, 0, ||gllca(p,), and HhHC2(B ), such that

(8.39) IV20|(z) < c(1+sup|Vo|?),  forx € B, .
By

Proof. Choose r’ small such that there is a local orthonormal frame in each geodesic ball B,(x)
for all z € B2.. We only need to verify (8.38) for such B,/ (z), which we will still denote B,.

3
We may also assume r = 1. Let p be a smooth nonnegative cut-off function in By, p=11in B 1
and p = 0 in By \ Bz We only need to get an upper bound for p(T2v + |Tw|?) for any unit
vector field T'. Since B2 x S"~! is compact, we may assume the maximum attained at some

point g € B2 and T = 61 for some orthonormal frame {ej, - ,e,} in By. Set

G = ,0(1111 + |U1‘2).

So 9o is a maximum point of G. By the C' bound assumption, we may assume vy; > 1+ |vy]?
and v11(yo) > £ |vij(v0)], Vi, j. Now at yo, we have

(8.40) 0=G,(y) = %G + p(vi1j + 2viv15)  for any j

and

PPii — 2pipi
Gij = —F—5 7 P2 LG A p(vinij + 2015015 + 2010145).
For any fixed local orthonormal frame, we may view S, and S; as matrices. We denote S;;
and Uj; the entries of g715, and Q‘ng respectively. By the ellipticity assumption on f, (F¥)
is positive definite at U = g—lsg. Since yg is a maximum point of G,

0 > > FiGy

4,521
 opii — 200 y
> ) F”{WG + p(vijin + 200015 + 2010551)} — CG Y FY,
ij>1 i

where the last term comes from the commutators related to the curvature tensor of g and its
derivatives.
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By (8.40), (13.16) and the concavity of f,
(8.41)
0 > i PP~ 20iP5 Fid (v + 2u1501; + 201015) — CGS " F
= Z 2 +p Z (Uﬂ'n + 2v14v15 + vlvli]) — Z
=1 P ij>1 i>1
B 900 B
= S PP PRI G p(e Uy — vivg + \W\ 8ij — Sij)n
ij>1 p
—2v 1 2 i
+2pv1v15 + 2pv1 (e Uij — vivj + §|VU‘ 5@' — Sij)l} — CGZF

1>1

2 ? —2v —2v 1
= Y F”{’Op] 20ifi ¢y 4 ple 2" (Uij)11 — 2v1e 2" (Uij)1 + (§!V’U|25z‘j = Sij)n
3,521

_ 1 .
—21}116 QvUij — 'Uz'Ujll - UjUill + 2U1(—U¢Uj + §|VU|25ij - Szj)l]} - CGZF”

i>1
5 \VA
> Z pii PP — pzp]G + pe=2(hy1 — 2v1hy) + ZF”[pv%l - C(1+ | p\) G]
i,j>1 i>1 p
—2Ctypv11 ZFii,
i

where ¢y is the number in (13.15).
From our construction of p, |Vp(z)| < C’p% () for all z € B;. We have

Z i PPig —22Pz‘ij > —CZF”EG
i,j>1 P =1 P
If A is a constant, h; = h1; = 0. By assumption vy > z—lpG at yo. It follows from (8.41) that at

Yo, G < C. So (8.38) follows
If h e CYY(B,), and Zl a)\ ) >§>0forall \eT, (8.39) also follows from (8.41). |

1. Conformally invariant uniformly elliptic equations

In this section, we establish a local gradient estimates for solutions ¢ = e~?%gy of equation
(10.103) in Chapter 10.

THEOREM 8.1 (Local gradient estimates). Suppose F' is concave and uniformly elliptic with
ellipticity constants Mg, Ag. Let By be a unit disk in a compact Riemannian manifold M and u
a C? solution of the following equation

[Vul?
2

(8.42) F <V2u + du ® du — go> —e Nf(x), zebB
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for a C' function f : Bi — R. Then there is a constant C > 0 depending only on Ao, Ao, go such
that

(8.43) Vul(z) < O+ [Fllergye ™), for any x € By,
Combining Theorem 8.1 and Theorem 10.4, we deduce the following.

COROLLARY 8.2. Let Bi be a unit disk in a compact Riemannian manifold M and f €
CY(By). Suppose u is a solution of equation (8.42), then there is a constant C > 0 depending
only on Ao, Ao, 90, || fllc1B,, inf B, u, such that

In particular, (8.44) is true for any solution of (10.103) when p < 3.

We remark that the local gradient estimates (8.43) does not true for p = n—1. The operator
G, we are considering here is only Lipschitz, which we will deal with by a smoothing argument.
Actually we can prove the local gradient estimates for a more general class of uniformly elliptic
fully nonlinear conformal equations.

We first prove the local gradient estimates for C? uniformly elliptic operator F. Let F :
R"” — R is a C? symmetric function and consider the following equation

2 ~
(8.45) F (V2u +du ® du — |V2u| 90> = f,
for some C' function f. We denote the left hand side of (8.45) by F(W) and set
8’[1}1']"

where wj; is the entry of the matrix W. As mentioned above, F(W) = F(A), where A is the set
of eigenvalues of W.

PROPOSITION 8.1. Let By be a unit disk in a compact Riemannian manifold M and u a C3
solution of (8.45) for a C' function f: By — R. Let F : S — R be a C? function satisfying

(1) F is an uniformly elliptic with ellipticity constants Ao and Ag
(2) F is concave.

Then for any p € C3(By) with 0 < p(x) < 1, there is a constant C > 0 depending only on Ao,
Ao, [Ipll&:(B1)|| and go such that

(8.46) max{p(2)|Vul(2)} < C(L+ max{p() |V (2)]}).

Proof of Proposition 8.1. The Proof follows closely the argument given in [71] and [72]. As in
[71], we first reduce the proof of the Lemma to the following claim.

Claim. There is a constant Ag depending, such that
g _5 g
(8.47) D O FE > AgS > F |Vl
ij i

where 4;; = u;; + Sij.
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For convenience of the reader, we sketch the reduction. Let p be a test function p € C3(By).
We may assume

(8.48) IVp(z)| < 2bop™?(z) and  |V?p| < by, in By,

for by > 1. Set H = p|Vu|?. Our aim is to bound maxp, H. Let 29 € By be a maximum point
of H and assume that W is a diagonal matrix at the point xy by choosing a suitable normal

coordinates around zg. Set \; = w;; and A = (A1, Ag, -+, Ay). Since W is diagonal at xg, we
have at zg

1 . .
(8.49) Wi = Ui + UZQ — §|VU|2 + Siis Ujj = —UUj — Sl'j, \4) 75 7,

where §;; are entries of Sy,. We may assume that

H(xo) > bEA2,
for some large, but fixed constant Ay > 0 which will be fixed later. We may also assume that
(8.50) [Sgo (o) < Ag'[Vul?(zo).

Otherwise, we are done. The fact that the derivatives of H at x¢ vanish imply

n
E Uz
=1

Applying the maximum principle to H, we have

3
(xg) < NAU| (xg) for any i.
0

(8.51)

(8.52) 0> FiUH;; = FY { (—2’)? + Pij> IVl + 2puwiju + 2puuUﬂ} :

The first term in the left hand side of (8.52) is bounded from below by —10nbyAg|Vul?>. By
using equation (8.45) and inequality (8.51), the second term can be bounded by

Z Fijuijlul > Z Flul -2 Z Fiiuilului + Z F“ujlujul - C‘VU|2 Z Fii
l il 1,1 %

1,5,

(8.53) 4
712 i |Vl 2
> —If —QTZ% F TO_C|VU|’

where C' > 0 depends only on gg and Ag. See also (2.20) in [71]. It is easy to see that the third
term is bounded by the Claim. Hence if the Claim is true, from (8.52) we have

- V4 _5 g
(8.54) 0> —C|Vul? — p|Vf]* - pZF“% +pAg S > FUVult
Multiplying (8.54) by p, we have
0< > Fi(A,

from which we have (8.46).

5
8

— AgHH? — CH - p*|V [,
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Now we prove the Claim. By (8.49), we have

ZF“’G’ZQI _ ZF“ ~2 +ZF”u2ul

1,0 7 1#£l
(8.55) = Y FHag +ul (Ve — i)}
i
Vaul*
= ZF“( - — 2utwi; + wig| Vul? + | 4’ ).

Set g = Ay Y4 < 0.1. We divide the set T = {1,2,--- ,n} as in [71] into two parts:
L={iel|u?>66|Vu?} and L ={iecl|u?<d|Vul|’}.

It is clear that I; is non-empty.

Case 1. There is jj satisfying
(8.56) ﬂ?]’ < 62|Vu|*  and u? < 60| Vul?.

[Vul?
2

We may assume that jo = n. We have |wp, + | = |finn + u2| < 280|Vul? by (8.56).

From (8.51) and (8.49), we have

[Vul?

‘wii — ‘u” + UZQ - ‘VU’Z + Sii‘ < 3(58[Vu\2,

for any i € I;.
Using these estimates, we repeat the derivation of equation (2.38) in [71] to obtain

. il 4 4 "o i ’
where F! := max;es, F. Recall that I; is necessarily non-empty. We assume 1 € [; with
FY = F1. The concavity of F implies that
(8.58) Fmo> i
for wy1 > wy,. Hence, from (8.57) we have
|VU|4 n—1

> Flay > —1663|Vult + (1 — 3267) o
il i=2

—1
> (1 — 3262 — 6462 @ i\; ) Z
=2

A (n —2)Xo |Vul* =
2 2 0 0 i
> <1 — 3205 — 640, (= 2))\0> e 1 ;:2 F".

Case 2. There is no j € I satisfying (8.56).
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For this case, the proof is the same as in [72]. We repeat it here for completeness.
We may assume that there is ip such that ﬂ?m-o < 82|Vul*, otherwise the claim is auto-
matically true. Assume ig = 1. As in Case 4 in [71], we have u? > (1 — 250)|Vul? and

W%+ i ([Vul* = uf) > 65|Vul* for j > 1. From equation (8.55), we have

SO = 3F{a e (Val - )
il %

> > FU(ig + ud(|Vul* — uf))
i>2
> 5|Vul' Y F > g Vulty

i>2 i>1
The latter inequality follows from the uniformly ellipticity of F'. This finishes the proof the
Claim and hence the Proposition. [ |

We have a direct corollary.

COROLLARY 8.3. Suppose F is a C? concave and uniformly elliptic operator with ellipticity
constants Ao, Ng. Let By be a unit disk in a compact Riemannian manifold M and u a C?
solution of equation
[Vul?

2

for a C* function f : By — R. Then there is a constant C > 0 depending only on Ay, Ao, go such
that

(8.59) F <V2u +du ® du — go> =e 2f(z), €D

(8.60) IVul*(z) < C(1+ ||fHC1(Bl)e_2mel “),  for any x € By,
Proof: We pick p € C2(By) such that p(z) = 1,Vx € B% and 0 < p(x) < 1,Vx € B;. (8.60)
follows directly from (8.46) with f=e2uf. [

In what follows in the next sections, we will only need Corollary 8.3 as we will work on smooth
operator F'. We note that estimates (8.60) and (8.44) are independent of the smoothness of F'.
Theorem 8.1 can also be proved by certain appropriate approximations.

A sketch proof of Theorem 8.1. Since v € C?, u is in fact C>* by the Evans-Krylov theorem.
We may find two sequences of smooth functions {u;} and {fi}, such that u, — u in C**(By),
fk — f in 00’1(31), and

Vug|? _
’ 2k’ 90+Sgo> >e 2ukfk'

We now construct a sequence of smooth concave Fj : & — R such that Fj converges to F
uniformly in compacts of § and Fj is uniformly elliptic with ellipticity constants % and 2Ag.
We may assume

F (Vzuk + dug, ® duy, —

[Vul?

2

+ 1

Fr.(\) > F()\), VA <sup|VZu+du® du— 90
By
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By the symmetry of Fj, BF’“g)i'_"’l) = 8F’“(8/\ D for all i ,J. Set M = A. Let Ry(x) be the
scalar curvature of gg, and let @ be the solution of Ay = W Ry +n— W in By

with 4y, = u; on 9Bj.
We consider the following Dirichlet problem

|V1)k’2
2

Fy, <V2vk + dv, ® dvg — go + Sgo) = fke_Quk, in By,

(8.61)
v = Uk, on 0Bj.

By the concavity of Fy,
Fr(\) < Aoy(\) — nA + F(1,---,1).
We have

A(Avk+Ro—n+w>

Y

-9 Fp(1,---,1
A<Avk—n2\Vvk|2+Ro—n+k(A)>

fke—Quk
‘ VUk ‘2

> F (V%k + dvy, ® dvy, — 5 %0+ Sgo> .

Y

In turn, we have v, < 1 in By. On the other hand, we have

V|2 Vg |2
F <v2uk+duk®duk—‘ ;‘” go+sg0) > F<V2uk—|—duk®duk— 7“2”“‘ go+sgo)

V|2

= F <V2’Uk + dv @ duy, — go + SQD) .
This gives v; > ug in By. From this, we obtain a C° bound of v;, and a bound of |Vuy| at the
boundary dB;. Using the same proof of Proposition 8.1, we can obtain a bound of |Vuvi| on By
(simply let H(x) = |Vug|? and estimate at the maximum point if it is not on the boundary). At
this end, we obtain

(8.62) [okllcr sy < €,

for some constant C' depending only on [|f| o1y, lullc1(p), A, A and independent of k.

The standard barrier construction wy similar to the one in Step 3 in Chapter 9 of [23] (page
91), with the modified operator F(w+) = Fi(V2wy + dvy @ dvy, — [Vonl® k' go + Sy, ), will give a
C? bound near boundary. The global C? estimate follows easily along the lines of proof in
Proposition 3.1 in [71] (see also proof of Lemma 3 in [64]). Higher regularity estimates follow
from the Krylov Theorem [88]. We note that global C? and higher regularity bounds of vy on B
may depend on higher smoothness assumptions on uy and fx. But by Theorem 10.4 and (8.62),
we have the following the interior C>“ estimates of vy,

[vkllc2a) < C,

for all compact subset 2 in B, where C depending only on dist(2, 0B), |luk|c2.0(p,) and || fillc1(5,)-
In any case, we can establish the existence of the Dirichlet problem (8.61) by using the method
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of continuity for equation

V|2
2

F <V2vk + dv, ® dvy, — go + Sgo> = tfre 2" 4 (1 — ) ff,

where Fy(\) = tFy(\) + (1 — t)o1(A) and ff = oy (v%k + dug @ duy, — YL g0 + Sgo). Now
by Proposition 8.1, we have for any p € C3(By) with 0 < p < 1, there exists C independent of

k and wu such that
(8.63)

max{|p(a) Voi 2(2)} < C(1+ (maoe{p(e) £ (@) Vs (@)} + maie{p(a) ¥ fu) e 24))

By (8.62) and Theorem 10.4, v, — vg (after passing a subsequence) in C*%(By), vy converges
to vg = u by the uniqueness. Therefore, there is a constant C' > 0 depending only on Ay, Ag,
and the geometry of B such that

max [Vul*(2) < C(1+ | fllergye> ™).
2

This finishes the proof of Theorem 8.1. [ |

As for Corollary 8.1, the following is a direct consequence of Theorem 8.1.

COROLLARY 8.4. Let By be a unit disk in a Riemannian manifold (M, go) and p < n/2.

There exists a small constant g > 0 depending only on (Bi,go) such that for any sequence of
solutions u; of (10.103) in By with

/ e " dvol(go) < eo,
B

either

(1) there is a subsequence u;, uniformly converging to +o00 in any compact subset of By, or
(2) there is a subsequence w;, converging strongly in Cfo’g(Bl).

Notes

The equation we treat in this chapter is a fully nonlinear version of the Yamabe problem.
We refer to the works of Trudinger [123], Aubin [11] and Schoen [111] on the Yamabe problem.
Equation (8.1) was introduced by Viacolovsky in [126] for 2 < k < n, [ = 0. When [ = 0,
these local estimates were proved in [71]. For general | < k < n, the estimates were obtained
in [66]. Claim (8.14) in [71] was renamed as H, condition in [91], where it was used to get
local gradient estimates for conformal invariant equations in a general form. It is obvious in [71]
that local estimates follows from Claim (8.14) for general conformally invariant equations. In
[91], it was proved that if F(g71S,) satisfies Claim (8.14), F(tg~1S, + (1 —t)R,g) also satisfies
Claim (8.14 for 0 < ¢ < 1. This is a useful fact in a deformation process.

We note that local estimates are a special feature of conformally invariant equations (which
is generally not true for elliptic fully nonlinear equations). The negative sign in front of |Vu/|?
in equation (8.1) plays an important role. The equation is similar to the Monge-Ampere type
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equation arising from reflector antenna, local second derivative estimates were proved for reflector
antenna equation in [130] for n = 2 and in [75] for general dimensions.



CHAPTER 9

Method of moving planes and conformal equations

The main theme of this chapter is the application of the method of moving planes to con-
formally invariant fully nonlinear elliptic equations. We want to investigate the following con-
formally invariant equation:

(9.64) FA(S5) = 1.

where g € [g], S; is the Schouten tensor of g, A(S) is the set of the eigenvalues of S; with
respect to g, and f is a certain function on symmetric matrices we will specify. If we write
4

g = un-2g for some positive smooth function u, the Schouten tensor S; can be computed as

2
(9.65) Sg=———u"'Viu+

2 2 2
— ozt | Vg ul"g + Sg.

n
(n_2)2u_2 Vg U ®Vgu — (n—2)
Equation (9.64) is indeed a second order nonlinear differential equation on u.

We now specify conditions on f so that (9.64) is elliptic. Let G be an open symmetric
convex cone in R", that is, for A € G and any permutation o, o - A = (A1), ; Ag(n)) € G-
It is clear that (1,1,---,1) € T". Set G = {S | S is a symmetric matrix whose eigenvalues
(A, ,A\n) € G} We assume condition (13.11). Since the regularity of f is not an issue
here, we assume that f is a smooth function defined in G C er , and satisfies condition (13.12).
Condition (13.12) implies that f is elliptic in G. A metric § is called admissible if g71S; € G for
every point in M. This is equivalent to say that A(S;) € G for every point in M. We further
assume a concavity condition (13.13) on f. Since we are concerned with equation (9.64), it is
necessary that there is v € G such that f(y) = 1. The symmetry and the concavity of f imply
f(t,---,t) > 1 for some ¢t > 0. Therefore, we assume condition (13.15) on f.

Our first result is concerned with a Harnack type inequality.

THEOREM 9.1. Suppose that f satisfies (13.12), (13.13) and (13.15). Then there exists a

constant C' > 0 such that for any admissible solution uiz |dz|? of (9.64) in a open ball B3g, we
have

C
(9.66) r%ixu(a:) . %12111%1u($) < =k
As an application, the following global regularity and existence for equation (9.65) on a
general compact locally conformally flat manifold (M, g) will be proved via fundamental work

of Schoen-Yau on developing maps in [115]. Here, we need an additional condition (13.18). We
note that (13.18) implies (13.15).

101
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THEOREM 9.2. Let (M, g) be an n-dimensional smooth compact locally conformally flat man-
ifold with g admissible. Suppose that f satisfies (13.12), (13.13) and (13.18), and (M, g) is not
conformally diffeomorphic to the standard n-sphere. Then there exists a positive constant C > 0,
such that

(9.67) lulls + [l les < C.

4
Furthermore, there is a smooth admissible solution un=2g satisfying equation (9.64).

Theorem 9.1 will be proved by contradiction. Before going to the proof, we want to give a
sketch of our idea first. Suppose that the inequality does not hold. Then there exists a sequence
of blowup solutions for equation (9.64). We then rescale the solutions. The main step is to give
C"! estimates for these rescaled solutions. Actually, the C''-norm of the rescaled solution will be
proved to be uniformly small, and then the C? estimates or higher-order derivatives follows by
the concave assumption accordingly. Therefore, the rescaled solutions converges to a constant
in C%“ and that will yield a contradiction to assumptions (13.12) and (13.15).

Obviously, the crucial step is the C! estimate of those rescaled solutions. Here, as in section
2, the method of moving planes will be employed to obtain a local gradient estimates. As in
previous works, we first extend our rescaled solutions to the whole space R", and obtain a
viscosity super-solution. Then, we apply the Kelvin transformation twice on those extended
super-solutions. Finally the local gradient estimates follows from the application of the method
of moving planes.

It seems a new idea to obtain the local gradient estimates via the method of moving planes
for the fully nonlinear elliptic equation. For geometric fully nonlinear elliptic equation with the
concave assumption, the local gradient estimate is generally the crucial step to obtain the a priori
bound for solutions. Here, our proof relies on the conformal invariance of the equation. This
leads us to suspect that for conformally invariant fully nonlinear elliptic equation, the concave
assumption alone should be enough for the a priori bound. This is partially confirmed in our
proof of Theorem 9.1 here. We shall study this problem for general manifolds later.

Since we use of Kelvin transformations repeatedly in our proof, we shall keep our notations
as clean as possible.

Suppose u is a C? function. Recall that the Schouten tensor S(u) related to the metric

4
un=2|dz|? is the matrix whose (i, j)-th component is defined by

a4 2 2n 2 2 2
Sij(l”) =u n2 (*n _ 2“ Ug;z; T+ mu UiUy — mu | v ul 6ij)-

Let A(S(u))(x) = (M1, .., An) denote the eigenvalues of (S;j(x)). Assume that u satisfies

SAS(W))(z) =1
(9.68) { AMS(u))(z) € G for z € B3g(0),

where B, (p) is the open ball with center p and radicals r > 0.

Proof of Theorem 9.1. By scaling invariance of the equation, we may assume R = 1. The
inequality (9.66) will be proved by contradiction. Suppose it does not hold. Then there exists a
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sequence of solutions u; such that

(9.69) max v; - Minu; > i
Let
M; = max u; = u;(7;),
By
_ _ _ 2
and x; € By with B(x;,r;) C By and |z; — Z;| = 14, where r; = M, "7, By (9.69), M; — +00
as ¢ — +o00. Set
2

vi(y) = M, uz(xz Mi_my)

T; = x; + M 27

(9.70)

Then |y;| = 1 and v; satisfies

JA(S (vi)) (@ )) 1, w3
9.71 for |z| < M"7°.
o7  {stotn 2 ol < M,

2
For simplicity, we let L; = M,"~* and choose l; — +00 as i — +oo such that

(9.72) 1? < L,
and
(9.73) 2 <.

We extend v; to R™ via the Kelvin transformation, i.e., 9;(y) is defined by

. L\ 1y

Then v;(y) also satisfies (9.71) for |y| > I;.
2
For |y| = L;, we have ||l;‘2| < 1 and then,

On the other hand, by (9.73), v;(y) satisfies,

By(0) T ME LT\ L
Therefore,
(9.74) vi(y) > Bi(y) for |yl =
Set
. vi(y) lyl <1,
(9.75) vi(y) = ¢ min(vi(y), oi(y)) L <|y| < L,
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By (9.74), ; is a continuous function defined in the whole space R™ and one may try to prove
that o0, is a viscosity super-solution. But, we will not pursue this fact in our proof. We will
rather keep both v; and 9;(y) as solutions of (9.71) in the regions {y | |y| < L;} and {y | |y| > I;}
respectively.

In what follows, we want to prove the first derivatives of v; are uniformly small in the ball
B(g;, %) In fact, we will prove for each j =1,2,...,n and 6 > 0,

(9.76) ‘ duiy)

<6< 1+ sup
dy; ‘ 2

k+j YEB(U),3)

'(y)‘

Oy,

for all i > ig = io(8), and |y — ¢;| < 1. Without loss of generality, we may assume j = 1, and
Ji = (—=1,0,...,0). To obtain (9.76), we apply the Kelvin transformation twice on ;. In the
rest of the proof, in order to keep the simplicity, we will abuse some notations if there is no
confusion. For any small 0, we first make the inversion 77 with respect to the ball B(es, 1) and
denote the Kelvin transformation of o; by u;, that is,

e r — €
(0.77) (o) = o - P75 (220 ).
where es = (62,0,...,0). From now on, u; will be the one defined in (9.77). So u;(x) satisfies

(9.71) except the small ball {z | |z — es| < 2I;'}. We choose i large so that the small ball is

contained in the ball B(es, £6%). We also denote Y and Y as the image of {y | l; < |y| < L;}

and {y | |y| > L;} under the inversion 7. Next, we denote T5 to be the inversion x — —%5, and
||

*

uf(y) to be the corresponding Kelvin transform, that is,
2—n Y__ e
—n| Y = P — %0
9.78 uwi(y) = ly)> " | =5 —es Vi | ————5 +es|.
( ) z( ) | | |y|2 1 |ﬁ—6’6|2

We also denote Z and Z to be the image of Y and Y under Tj respectively. Clearly, Z and Z
lie in a small ball with center (5%, 0,...,0). Note that the composition Ty o T} (y) — y in C? for

B(y;, ) as § — 0. Hence

0 ﬁ — € O 52
9.79 — | =5 tes | =(1,0,---,0) + ,
( ) oy Mnyz —e5]? ’ ( ) @
and
(9.80) o <|?/|2 wE @ ) = 0(8%)

for y € B(y;, 3). Both (9.79) and (9.80) can be computed by straightforward way.

Now we fix 7 and 0 and apply the method of moving planes to u;. We use the same notations
as in section 1, for any A € R we set £y = {y | 1 > A} and y* to denote the reflection of y € ¥
with respect to the hyperplane y; = A. Since ] (y) has a harmonic expansion at oo, we list here
for the convenience of reference (see [50]).
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LEMMA 9.1. For any A < (n_a%, there exists R = R(\) depending only on min(1 + |a;|, \)
such that for x = (x1,y’) and y = (y1,y’) satisfying
1 <ynLr1+y <2\ |yl > R
we have
ui (z) < ug(y).

Before we start the process of moving planes by using Lemma 3.1, we note that ag,a; and R
in Lemma 9.1 could be large, because it also depends on i and §. By our construction, u!(y) is a
positive C? function except at ZU Z. But u}(y) is a super-harmonic function in the distribution
sense. Therefore, for any small neighborhood N of Z U Z,

(9.81) u; (y) > g}é u; > ¢ =cop(i,0) >0

for y € N. Thus, by Lemma 3.1, A can be chosen negatively large so that
(9.82) wi(y?) < ul(y) for ye .
As usual, we set
Ao = sup{A | uf(y") < ui(y) fory € Ty and N < A}.

We claim if § is small enough, then

: 1 ax
> . —
)\o_mln( 4’(n—2)a0>

Clearly, by the continuity, we have

(9.83) Wy, (y) == uj(y) — u’i"(y)‘o) >0 for yeXy,.
We claim
(9.84) wy, (y) >0 for y e Xy,.

Recall that w),(y) is continuous in ¥, and is C? in X),\Z. Now suppose yy € Xy, such
that

(0.85) g () = 0.

If yo & ZU Z, by the strong maximum principle wy,(y) =0fory & ZU Z. Let v} (y) denote
the double Kelvin transformation of v;(y) through the conformal mapping 75 o T7. Note that

v (y) = u;(y) for ye RM\Z U Z,

2

where R\ Z is connected. Since wy,(y) =0fory g ZU Z, by the unique continuation, we have

(9.86) v (™) =i (y) for ye T\ Z.
For y € Z, by (9.86) and (9.83),
(9.87) vF (yM) = v (y) > ui(y) > ui(y™) = vf (y™).

Thus, v} (y) = uf(y) for y € Z, which implies
(9.88) vi(y) < 0i(y) for I; < ly| < Li.
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By (9.74), this is a contradiction. Thus, yo € Z U Z.
If yo € Z and v;(yo) < @i(yo), then v;(yo) = vi(y°) and by (9.83), v (y) > uj(y) > uj (y™) =
v (y*0) for y € ¥),\Z. Thus, the strong maximum principle again yields

vl (y) = v (y°) for ye ) \Z.

And it is reduced to the previous case. Thus, v;(yo) > vi(yo). Set 07 (y) be the corresponding
double Kelvin transformation of ¢;. Clearly, 9] (y) is defined only on Z U Z. By (9.83), 0} (y) >
uy (y?°) for y € Z and the equality holds at o, which implies

(9.89) o (y) = ul(y) in Z.

Therefore
vi(y) < wvily) for I; <|y| < L.

But 9;(y) = v;i(y) for |y| = ;. Hence (9.89) yields u}(y) = ul(y*) for y € A(Z U Z), which
is reduced to the previous case. Therefore yo ¢ Z. But yo € Z also leads to (9.89) by the
strong maximum principle, which in turn yields a contradiction again. Hence the claim (9.84)
is proved.

Once (9.84) is established, it is easy to see Ag > min(—1, @ “1) ) follows from Lemma 9.1

by the standard argument of the method of moving planes. We omlt the details here.
By the Hopf boundary lemma, we have
ai

x o1
——ui(y) =20 for y1 < mm(—z, (n—2)ao

o

).

We want to prove 8%1 uf(y) > 0 for y; < —%. If not, then there exists yo = (yo,1,() such
that yo1 < —3 and 8y1 uf(yo) = 0. Then we do the Kelvin transformation u;* as,

n—2 2
*k ) oY
(9.90) U (y) = () v ( ; y) ,
|y |y|?

where 79 = $|yo|. Obviously, the singular set of u}* is in the half-space {y | y1 > 0}. Then we
can apply the method of moving planes to show

(9.91) u**(y’\) <wu*(y) fory e Xy and A <0,

7

by Lemma 3.1 and by the fact & 8 (yo) = 0. The same argument as the proof of (9.84) yields
that (9.91) holds for A = 0 too. ThlS implies

ui (y) < uj(y) fory € By and A = yo 1.

But it yields a contradiction to 8 uf(yo) = 0. Hence 82 ui(y) > 0 for y1 < —7.

By the expression of (9.78), using (9.79) and (9.80), we then have
6 n
(9.92) = 5, 0i(y) < 0(0")ui(y) + 0(8%) 3

oy P

o -~

—U;
Oyg
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for |y — ;| < % We can repeat the process by taking es = (—42,0,...,0). In this case, u} has
singularity near (—5%, 0,...,0). So, we can move the plane from the right-hand side and obtain
the following inequality,

9 - B n
g7 i) < 0()5i(y) +0(5%) %

0

Oy,

i

(9.93)

for |y — u;| < % Note that v;(¥;) = max)y<; vi(y) = 1. Since u; is increasing in y1, we obtain
1

(9.94) vi(y) <2 for |y —gil < 5.

Thus, together with (9.92) and (9.93), (9.94) yields

o "9
\fmvxw' < 0() (1 n kzﬁay,g”i(y))

for |y — y;| < . Therefore (9.76) is proved.

After (9.76) is established, we have v;(y) uniformly converges to the constant 1 in C! for
ly — 4i| < 4. This gives 01(S(v;)) convergent weakly to 0 in |y — %;| < 3. On the other hand,
by (13.17) in Lemma 13.6, 01(S(v;)) > C > 0in |y — 4| < 3 as f(S(v;)) = 1. This yields a
contradiction. The proof of Theorem 9.1 is complete.

We note that we only used (13.17) in our proof, not the full concavity condition (13.13).
Though (13.13) implies (13.17) by Lemma 13.6. Q.E.D.

Now we establish the global gradient estimate of logu via the method of moving planes. It
is well known that once gradient estimates are available, C? estimates of logu will follow easily.
Then higher-order derivatives follow readily the Krylov-Evans theory.

PROPOSITION 9.1. Let (M, g) be an n-dimensional smooth compact locally conformally flat
manifold. Suppose that f satisfies (18.12), (15.13) and (13.18), and (M, g) is not conformally
diffeomorphic to the standard n-sphere. Then there exists a positive constant C > 0, such that

(9.95) max u < C, ||Vlogu| = + ||V*logul|p~ < C.

Theorem 9.2 is a consequence of the proposition.

Proof of Theorem 9.2. First we prove the C? bound of the solutions. We by Proposition

9.1 we only need o prove u has a positive lower bound. It is sufficient to prove maxy; v has a

positive lower bound. We now use an observation from Viaclovsky [127]. We would like to note

that this is the only place where the admissible condition of S, is used. At any maximum point
4

_ 4 4
xg of ug, uy, "*Sy(x0) > uy, "7 Sg(xo). Therefore,

4 _ 4
1= f(u, " (z0)g ™" (20)Sy(0)) = f(uy, "~ (20)g™" (20)Sg(x0))-
4
Since g~1Sy (o) is admissible, and K = {g~!-Sy(x)|z € M} is compact, by (13.19), u, "> (z¢) <
Cy for some constant Cy. Therefore, the C° and C' estimates are proved. By Lemma 8.3, we
have C? estimates. Then it follows from the second condition in (13.18) that f is uniformly
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elliptic. The higher-derivatives follow from the Krylov-Evans Theorem and standard elliptic
theory. So, the a priori estimates (9.67) is proved for the case when Q # S".

The existence of solutions can be obtained by using the degree theory following the argument
of Li-Li in [91]. We define a deformation

£ = F(L=t)A+tar(Ne), for t € [0, 1],
! (2= ) f(o1(Ne) + Hlor(N),  fort € [1,2]

with the corresponding cone

G, — ANeT{ | (1 —t)A+tar(Ne € G}, for ¢t € [0, 1],
¢ I, for t € [1,2],

where e = (%, %, cee %) in G. Obviously, f; in the deformation satisfies the assumptions of

Theorem 1.3 and fi(to,...,to) = 1, where ¢y as in (13.15). By a priori estimates (9.67), the
C3-norms of solutions are uniformly bounded. Therefore, the degree remains the same during
the deformation. Since the degree for the Yamabe problem (i.e. for fs) is —1 (see [113]), the
degree for our equation is —1. The existence of solutions follows. [ |

Proof of Proposition 9.1. We should first use the theory of Schoen-Yau in [115] to set up the
situation where the method of moving planes can work. Let (M ,§) be the universal cover of
M with 7 : M — M be a covering and § = 7*(g) is the pull-back metric of g. By applying
the theory of Schoen-Yau on locally conformally flat manifold, there exists a developing map
®:(M,§) — (S", o) where o is the standard metric on S”. The map ® is conformal and one to
one. Let

(9.96) Q= ().

Then 2 is an open set of S™. In our case, the scalar curvature of g is positive. Then Schoen-Yau'’s
Theorem tells us that the Hausdorff-dimension of 92 is at most "772

If Q@ =S", then M has an unique conformal structure, and solution always exists, which can
be derived from the solutions on §". Hence we consider 0f2 is not empty. Now fix a point p € M
and choose p = 771(p) such that dist(p, 9Q) > &y > 0. By composing a conformal transformation
on S™ and identifying R™ = S™\{North pole} through the stereographic projection, we may
assume p = (—1,0,...,0) and 9Q C {x | [z| > 5} for some § > 0. For the simplicity, we assume
0o ¢ 0. We still denote the conformal map: (M, §) — (R™, |dz|?) by ®. Set v(z) to be the
conformal factor:

®*(|dz|?) = v(@7(x)) 2.

Then i(z) = v(z)u(r®~(x)) for x € Q is a solution of

(9.97) lim a(x) = +o0.
=00

{ FONS@) (@) =1 and \(S(@)(z) € G for zeQ,
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Note that the boundary condition of (9.97) follows from [115], because M is compact. By
composition with a rotation, we may assume

(9.98) g;(—m,...,o):o if i1
i
(1,0,
10,0 >0

Let u* be the Kelvin transformation with respect to the unit ball, that is,
—n~ Y
w) =l ().
ly[?
Then u*(y) satisfies equation (9.97) in Q*, where Q* is the image of Q2 under the inversion
Yy — ﬁ, and 9Q* C B(0,0). Since oo & 99, u*(x) is C? at the origin and lim,_,g0+ u*(z) = +o0.
Because u*(z) has a harmonic expansion at co, we can employ the method of moving planes as

. . . 1
before (by Lemma 9.1). Hence, we conclude that u*(y) is increasing in y; as long as y; < —3.

Thus,
ou*

o

(-1,0,0,...,0) >0,
which by (9.98) implies

ou
~ o
By noting @(x) = v(x)u(r o ®~1(x)), we then obtain
(9.100) | v logu(p)| < ¢ for pe M.
Clearly, the gradient estimate (9.100) yields

(9.101) maxp v

(9.99) |7 4(—1,0,...,0)| (=1,0,...,0) < (n —2)a(~1,0,...,0).

. <C.
minys u
Together with Theorem 9.1, we get

maxu < C.
M

Then C? estimates follows Lemma 8.38. [ ]

Notes

The type of inequality in Theorem 9.1 was initially established by Schoen for the Yamabe
problem. A different proof was given by Chen and Lin [32]. In the fully nonlinear setting, the
inequality was first proved for f = oy by Li-Li in [91]. The proof given in [91] relies on the
local estimates, or the ” H,, condition”. Theorem 9.1 and Theorem 9.2 for general f were proved
in [64] and [92] independently. The proof here is from [64], where the main argument follows
from [32, 33] by employing the method of moving planes. It is clear that key ingredients of the
arguments in the proof of these results are the work of Schoen-Yau [115] on developing maps
for locally conformally flat manifolds and Alexandrov’s moving plane method.



CHAPTER 10

Deformation of the smallest eigenvalue of Ricci tensor

We now switch our attention to the smallest eigenvalue of Ricci tensor. The Ricci curvature
tensor of a Riemannian metric plays an important role in comparison geometry for Riemannian
manifolds, in particular the lower bounds of Ricci curvature. We are interested in conformal
deformations of the smallest eigenvalue of the Ricci tensor. Let (M™, gp) be an n-dimensional
compact Riemannian manifold and [go] its conformal class. And let Ricy, and R4 be the Ricci
curvature tenser and the scalar tensor of a metric g respectively. Define min Ric,(x) the smallest
eigenvalue of g1 - Ric, at © € M. Our problem is to find a conformal metric g = e~ *“gy such
that

(10.102) min Ricg(x) = constant.

The problem is equivalent to solving an interesting fully nonlinear uniform elliptic equation.
First we recall that the Schouten tensor of the metric g is defined by

1 . R,
Sg = m (R’LCQ — Q(n—l)g> .
Let A = (A1, A2, -+, Ap) € R™. Assume that \; < A9 <--- < \,. For an integer 1 <p <n —1,
define a function G, : R™ — R by

Go(A) = (n—p) S Ai+p> A
i<p i>p
For a symmetric matrix A, G,(A) = G,(A), where A is the set of eigenvalues of A. It is easy to
check min Ric = G1(g % - S,).

We may also ask if there is a conformal metric with a constant W, (g) := G,(g7 - Sy). Wp(9)
is also an interesting geometric object, which will be called p- Weitzenbdck curvature, for it arises
from the Weitzenbock formula for p-forms in a locally conformally flat manifold as we have seen
in Chapter 7. We will consider the following general equation

(10.103) Wy(9)(x) = f(z), VYxe M.
We first treat the case when the background metric has negative curvature, i.e., Wy(go) < 0.

THEOREM 10.1. Let (M, go) be a compact Riemannian manifold and 1 < p < n. Suppose
that Wy(go)(z) < 0 for any x € M, then there is a unique C** metric g € [go] for some o > 0
such that Wy(g)(z) = -1, Vax € M.

A geometric consequence of Theorem 10.1 is the existence of an extremal metric in the
conformal class with minimal volume. Although (10.103) has no variational structure in general,
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a solution of (10.103) does achieve the minimum of the minimal volume in a conformal class in
this case. The following is a simple consequence, see section 4 for other related results.

COROLLARY 10.1. Suppose that min Ricg,(z) < 0 for any x € M. Then there is a unique
conformal metric g* € [go] such that vol(g*) = minwol(g), where minimum is taken over all
g € [go] with min Ricy(x) > —1. The extremal metric g* is characterized by a unique solution to
equation min Ricg«(v) = —1,Vz € M.

We now turn to the case of the positive Ricci curvature.

THEOREM 10.2. Let (M, go) be a compact Riemannian manifold with Ricg, > 0. Then there

is a conformal metric g € [go],g € C**(M) for some a > 0 such that min Ricy(z) =n —1 for
allz € M.

The positivity of p-Weitzenbock curvature for 1 < p < n/2 plays an important role in the
investigation of the topological structure of locally conformally flat manifolds in [64].

THEOREM 10.3. Let (M, go) be an n-dimensional smooth compact locally conformally flat
manifold with Wy (go) > 0 and p < n/2. If (M, go) is not conformally equivalent to the standard
n-sphere, then there exists g € [go],g € C*%(M) for some o > 0 such that

(10.104) Wy(9)(xz) =1, Vze M.

Furthermore, the solution space is compact. That is, there is positive constant C' > 0, such that
(10.105) lullcze < C

for any C** solution g = e~ 2"gy of (10.104).

1. Fully nonlinear uniformly elliptic equations and Caffarelli’s estimates

In this section, we will deduce our problem to fully nonlinear uniformly elliptic elliptic
equations. We will make use of Caffarelli’s fundamental WP and C%® estimates in [22] (see
also Safonov’s work on C%“ estimates in [109]). Some of these results have been subsequently
generalized to certain type of equations of form F(V?u,Vu,z) = f(x) by L. Wang in [129] as
well as for the case of parabolic equations. As we will see that equation (10.103) involves Vu in
a delicate way, we need certain appropriate a priori estimates depending only on one side bound
of u (to be more explicit, e‘2mf“). This type of local gradient estimates have been established
in Chapter 8.

Let (M™, go) be a compact, oriented Riemannian manifold of dimension n > 2. Let [go] be
the conformal class of gg. For any g € [go], we denote Ricy, Sy the Ricci tensor and the Schouten
tensor of the metric g respectively. We write

Ry(x) = smallest eigenvalue of g ' Ricy(z),
ng(as) = largest eigenvalue of g ! Ricy(x),
S,(z) = smallest eigenvalue of g~ 1S, (z),
Sé(:c) = largest eigenvalue of g~ 'S, (x).
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It is clear that Ry and ’ng do not depend on the choice of coordinates. From the definition of

the Schouten tensor
1

_ : Ry
%= <R 2<n_1>>
we have the following relations
Ry(x) = (n—2)85(x) + tr(Sy(x)),
ng(a:) = (n— 2)8;(30) + tr(Sq(x)).

(10.106)

If g = e~?%gp, there is a transformation formula between two Schouten tensors

_ |VuPgo

(10.107) Sy = V2u+ Vu® Vu + Sy,

where all covariant derivatives are with respect to go. (The same convention will be used in the
rest of this paper, unless it is stated otherwise). Locally, denoting S;; the Schouten tensor of gg
under the frame, we have

[Vul?

(Sg)ij = wij + uiuj — =0 + Sij.

For any symmetric matrix A, we denote As(A) and A\;(A) to be the smallest and largest
eigenvalues of A respectively. And we denote 01(A) = tr(A). We obtain the equations for
constant Ry and ng respectively:

\V4 2

(10.108) Fulu) = ((n = 2)As + 01) (V20 + du @ du — 2“' g0) = e RS,
\V4 2

(10.109) F*(u) =: (n —2)\ + 01)(V2u + du @ du — | 2u\ go) = 6_2“7?,;.

Hence F, and F* are uniformly elliptic with ellipticity constants 1 and n — 1. It is clear that
F, is concave and F* is convex. We also note that F* and F are homogeneous of degree 1.

There are other similar fully nonlinear equations arising in the Weitzenbock formula for p-
form on local conformally flat manifolds. Let A = (A1, Aa, -+, \,) € R™ be the set of eigenvalues
of a symmetric matrix A. For an integer 1 < p < n/2, define a function G, : R” — R by

Gp(4) = Gp(A) =min{(n —p) Y X, +0 Y Ao},

k<p k>p

where min is over all permutations of 1,2,--- ,n. We define W,(g) the p-Weitzenbock curvature
of g by
Wy(g) = Gp(g_l - Sg).

It is easy to check Ry = W) (9). The p-Weitzenbock curvature is as much interest as the scalar
curvture, at least for locally conformally flat manifold. For example, from the Weitzenbdck
formula one can easily show that a locally conformally flat manifold with positive p-Weitzenbock
curvature has vanishing g-cohomology group for n/2 —p < ¢ <n/2+p (for p < n/2).
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We may also ask whether we can find a conformal metric with constant W),. The corre-
sponding equation is
[Vul?

2

gg) = constant - e 2.

(10.110) Gy <V2u + du ® du —

Equation (10.110) is also uniformly elliptic. It is easy to see that (10.110) is concave for p <

5. From the transformation formula (10.107), one can check that Equation (10.110) is also
conformally invariant. Hence, in general there is no compactness for equation (10.110).

We also define for p > n/2 a function G, : R” — R by

Gp(A) = Gp(A) = max{(n —p) Y X, +p ) A},
k<p k>p
where max is over all permutations of 1,2,--- ,n. We still define W,(g) = Gp(g~' - Sy). It is
clear that ng = Wy-1(g). We can also consider equation (10.110) for p > n/2. For p > n/2
equation (10.110) is still uniformly elliptic, but it is convex. Since G} is homogeneous of order
1, we may rewrite equation (10.103) as the following equivalent equation by setting v = e*

VeP s

(10.111) Gp(V?0 + Sgov) = p(n = p) =+ *.

The function G, is only Lipschitz, when p # n/2. (Remark that when p = n/2, equation
(10.110) is equivalent to the Yamabe equation.) One can find a sequence of smooth functions
{F}} such that Fj, uniformly converges to G in any compact domain of R™ and homogeneous
1 outside the unit ball in R", i.e., Fy(x) = |x|F(|i—|) for |x| > 1. Furthermore, for p < n/2
(p > n/2) Fy is concave (convex).

One may consider a more general class of conformal equations. Let S be the space of
symmetric 2-tensors on M. Let F : § — R a real continuous function. We consider the
following general equation

(10.112) F <e_2“(V2u + du @ du — |V;’290)> = f(=),

for some function f: M — R. F is uniformly elliptic with constants A\g and Aq if there exists
two positive constants Ag and Ag such that for any W € S

M|N|| < F(W + N) — F(W) < Ag|[N|| VN >0,

here by N > 0 means that N is nonnegative definite and || N|| = supy,—; [Nv|. If F' is uniformly
elliptic, we call equation (10.112) a uniformly elliptic fully nonlinear equation with ellipticity
constants Ag and Ag. There are many typical uniformly elliptic fully nonlinear equations. Our
equation (10.110) is similar to the Pucci equation, see [22]. Let M¥ be the Pucci’s extremal
operators, namely for two given constant 0 < A\g < Ag and W € §

M-(W) = X Z ei + Ao Z €i,

e; >0 e; <0

MEW) = Ao Y eit+Xo Yy e

e; >0 e; <0
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where e; = e;(IW) are the eigenvalues of W. One can also consider

2
M (e72"(V2u + du ® du — V2u| g)) = 1,

(10.113) oo
M+(e_2u(V2u+du®du—‘ :| g)) = L.

M~ is concave, while M™T is convex.

We now deduce C?“ estimates for equation (10.103) from the work of Caffarelli [22] assuming
the gradient bound and a lower bound of u. The crucial part in Caffarelli’s perturbation theory
for uniformly elliptic fully nonlinear equation F(V?u,z) = f(x) is the C! interior estimates for
F(V?u,x9) = constant. He obtained such fundamental estimates for concave or convex operator
F (note that here concavity and convexity of F' can always be switched by F(A) = —F(—A)).
Though Caffarelli proved these estimates in [22] for equations with flat metric, his arguments
work under general Riemannian metrics. And the generalization of Caffarelli’s estimates by L.
Wang [129] to uniformly elliptic equations of form F(V?u, Vu,u,x) gives the following C*
estimates for equations of type (10.110).

THEOREM 10.4 (C?“-estimates). Suppose F is a uniformly elliptic concave operator with
elliptic constants Ao, Ag. Let By be a unit disk in a compact Riemannian manifold M and
f,h € CY(By). Suppose g = e~ 2“gy with |Vu|p, < A is a solution of equation

[Vul?

2

(10.114) F <V2u + du ® du — gg) =e 2f(z), =€ By,

then there exist o > 0 and C > 0 depending only on o, Ao, A, |[ullco(p,) and go such that

(10.115) lullcaes,) < C.

In fact, we may directly apply Caffarelli’s estimates [22] to obtain C%® estimates for equa-
tions of type (10.111). Let B; be a unit disk in a compact Riemannian manifold M and
f,h € CY(By). Suppose g = e~ gy = v~ 2gy with ’%‘Bl < A is a solution of equation

Vo@)? | f()
o(w) o)’

Since F' is concave, by Theorem 6.6 in [23], the equation

T € Bj.

(10.116) F(V?0(z) + v(2)Sgy(x)) = h(z)

F (V20 4 Sy (0)v) = constant,

has C! interior estimates for any zg € B;. It follows from Theorem 7.1 in [23] that equation
(10.116) has interior W?P estimate for any n < p < oo since |VU| < A. This in turn gives C1# a
priori bound for the solution v of equation (10.116) for all 0 < B < 1. Finally estimate (10.115)
for v = e* follows from Theorem 8.1 in [23] since the right hand side of equation (10.116) is a
C” function now.
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2. negative curvature case

In this section, we discuss the negative curvature case, where the geometry is rich. By
[49] (n = 3) and [94] (general dimension n > 3), every higher dimensional manifold has a
metric with negative Ricci tensor. It is clear that such a metric also has negative W, for any
1 < p <n—1. Hence every higher dimensional manifold has a metric with negative W,. The
conformal deformation will yield interesting geometric information about the extremal metrics
in a given conformal class.

Proof of Theorem 10.1. First we take the sequence of smooth F} considered in the previous
section. For each F} we consider the following equation

2u (2 [Vul?
(10.117) Fy | (e*(V u+du®du—ng) =-1.
For large k, from the condition of the Theorem, we have

Fi(Sg,)(x) <0, Vxe M.

We first prove the existence of solutions to equation (10.117). Here we use the method of
continuity. Let us consider the following equation
|2

(10.118) Fi(u) == Fy, (e%(vzu + du ® du — WQU go)) +t— (1 —t)Fp(Sy) =0
and define J = {t — [0,1]| (10.118) has a solution for ¢t}. It is clear that 0 € J. First, we
prove the openness of J. Let tg € J. By the maximum principle, we know that there is only
one solution w of (10.118) for t = t9. Let L be its linearization. We want to show that L is
invertible. By the maximum principle again, we know that the kernel of L is trivial. Note that
L might be not self-adjoint. To show the invertibility of L, we need to show that the cokernel
of L is also trivial. However, one can readily check that the Fredholm index of L is zero, and
hence the cokernel of L is trivial. Now the openness follows from the implicit function theorem.
Then we show the closeness. Let xy and x1 be the minimum and maximum of u respectively.
By the maximum principle, we have

utan) o 1= (L= DF(Sy)(x0)
(10.119) > T Sy (o)
and

e2u(x1) t— (1 _t)Fk(SQO)(xl)
(10.120) < — e

Hence, we have C° bound of u independent of ¢.
By a global estimates proven in Proposition 10.1 below and Theorem 10.4, we have the
closeness. Hence we have a solution wuy of (10.117) with the bound

1 9 1
. <et < :
—min Fy(Sg,) (o) —max Fj(Sg,) (z0)

In viewing of (10.121), we use again the global estimates and Theorem 10.4 to obtain a C*
uniform bound of uy for some o > 0. Hence uy converges (by taking a subsequence) to u. It is
clear that e~2%g, satisfies (10.103). [ ]

(10.121)
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PRrROPOSITION 10.1. Let u be a solution of
Vul?
‘ 5 | 0) fe 2u

with C* function f. Suppose that F is uniformly elliptic and is homogeneous of degree 1. Assume
that v has C° bound. Then u has a C' bound and a C*“ bound.

(10.122) F(Vu + du® du —

Proof: Since we already have full CY bound, the proposition can be proved using standard
Pogorelov type of trick, for example, as in [78]. Let v = e" and consider the following equivalent
form of (10.122)

Vv |Vol? _
)

(10.123) F < .

Without loss of generality, we may assume that v < 1. Set H = 62¢(”)\V1}]2. Here ¢ will be
fixed later. Let zg be a maximum point of H. At x(, we have
(10.124) > (2upvks + 2¢/ (0)vi| Vol*) = 0, for any i.

k
Without loss of generality, we may assume that v; = |Vu|, v; = 0 for any other i and that v;; is
diagonal at z9. Hence, (10.124) is equivalent to v1; = —¢/(v)|Vv|?. Set w;j = v;;— ‘V;;'Q(Sij +vS;;.
The maximum principle, together with (10.124), implies
(10.125) 0> Z FY (v j0k; + vkvkij + ¢ (0)0if|Vol* + 000" (0)|V)? + 26 (v)v;v0k)

By (10.124), it is easy to check that

ii 11 11/ 47 2|VU|4
ZFJUkivkj > F oo = Fo (6 (v)) ’

v
Z F”Uk:vkij = Z F”vkvijk + Z F”Ukva;?k

L WUP
> ZF”Uk(wij + o

5@' + USij)k — C’maxv|Vv|2

) — C' max v|Vv|?

_ i v} Vol3
> 2u(fo l)k—i-ZF 1)1(—22}12—&(1))‘ v’

_ 1 Vol
> _ 1 2 / 1 _ 2
> 2fpvp — 20" |V (21) + ¢'(v)) E F 5 C maxv|Vvl|?,
&)Y Fiug Vo> = ¢(0) > FY(uwy + N s usi) Vo2
ij = ij oy i ij

[Vol*

— C'maxv|Vo|%,
2v

> ¢ (v)fo [ VolP + ¢/ (v) Y F”
¢"(v) > Fv;| Vol = ¢ (v) F V],

2¢/(v) Y Fvjopop = 2¢' (0) F ofor = =2(¢ (0)*F! Vol .
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Here C' is a positive constant depending only on the Riemannian curvature of the background
metric and it varies from line to line. Therefore, we have

> (9" (0) ~ (§@)IVel + o ST F= 4 6(0)[Tel! — Cmax o] VP

+2frop — 207 | Vol? + ¢/ (v) fo~ Vo 2

(10.126)

Choose )
¢ = —5 log t(ct — 2),
for a large constant ¢ > 0 so that cminv > 3. One can easily check that for any ¢ € [min v, co)
1

" / 2 _
¢ (U) - (¢ (U)) - t2(Ct— 2)2 >0
and . )
—(; +0(t) = Het—2)
In view of (10.126), we have
1

Vol — (£, C) [Vl

>
~ 2(maxv)?(cmaxv — 2)

Now we have a global bound of |Vv|, which depend only on gg, f, minv and maxwv. The C*
bound follows from Theorem 10.4. [

REMARK 10.1. The condition Wy(go)(z) < 0,Vz € M in Theorem 10.1 can be weaken to
Wy(go)(z) < 0,Yx € M and Wy(go)(zo) < O for some zo € M. In fact, under the weaker
condition, one may produce a metric g € [go] with the stronger condition holds. This can be
done using the short time existence of the fully nonlinear flow

[Vul?

u = Gp(Viu + du ® du — V;

The short time existence follows from standard nonlinear parabolic theory, and the strict nega-
tiwity of Wy, (g) (which is equal to u) follows from the strong mazimum principle.

go)ezua u|t=0 - 0

REMARK 10.2. It is of interest to characterize when the condition in Theorem 10.1 is true
by some conformal geometric quantities. The difficulty here is the lack of variational structure
for this type of equations. We note that when p > %, if the Yamabe constant Y ([go]) of (M, go)
is mon-positive, then the condition in Theorem 10.1 is satisfied unless (M, go) is conformally
equivalent to a Ricci flat manifold. This simple observation follows from the solution of the
Yamabe problem and the fact that if the scalar curvature vanishing identically, for p > 3,
G, <0 and G, vanishes identically if and only if the metric is Ricci flat.

REMARK 10.3. It is also an interesting problem to consider the equation Wy(g) = —1 on
a complete, non-compact manifold. The arguments in the proof of the existence of Dirichlet
problem (8.61) can be extended to deal with a given boundary condition at the infinity for equation
Wy,(g) = —1 on a complete non-compact negatively curved manifold.
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As a direct consequence of Theorem 10.1, we have

COROLLARY 10.2. If there is g € [go] with Ri(x) < 0 for all x € M then there is a unique
C?*% metric g* € [go] for some o > 0 such that Rye(x) = =1,Vo € M. Similarly, If there is
g € [g0] with ng(m) < 0 for all z € M, then there is a unique g. € [go] and g. € C**(M) for
some o > 0 such that Ré*(x) =-1,Vz e M.

Corollary 10.2 can be applied to consider minimal volumes in conformal classes. Set

¢ ={g € lgllR}(x) > ~1,vx € M},

C_={ge [go]|73; x) > —1,Yx € M},

(z) >
C™ ={g € [90][Ry(2) < —1,Vz € M},
C_={ge [go]\ng(m) < -1,V € M}.
Define

V'(lo]) = inf wvol(g), V([g0)) = nf wol(g),

V*([go]) = sup vol(g),  V'([go]) = sup vol(g),
geC— geC_
where vol(g) is the volume of g.

LEmMA 10.1. Let g1,9,92 € [go]- If Rj(x) <0, and R (v) < Rj(x) < Ry(w),Vx € M, then
vol(g1) < wvol(g) < wol(ga), any one of the equalities holds if and only if the metric is equal to g.
Similarly, ileg(:c) <0, and ngl (x) < R;(az) < ng(:c),Vx € M, then vol(g1) < wvol(g) < vol(gz2),
any one of the equalities holds if and only if the metric is equal to g.

The Lemma is a simple consequence of the maximum principle applied to equations (10.108)
or (10.109). From the lemma, we have the following relations

V2([90]) = V*([90]) = V'([g0]) = V'([90))-

And we can show that the minimal volumes V*([go]) and V!([go]) are achieved.

COROLLARY 10.3. Suppose that Ry, (x) < 0 for anyx € M. Then there is a unique conformal
metric g* € [go] such that vol(g*) = V*([go]) with Ry (x) = —1,Vox € M and

V*([90]) = V*([g0]) = V'([90))-

The equality holds if and only if there is an FEinstein metric in [go]. If Rim () < 0 for any
x € M, then there is a unique g* € [go] such that vol(g.) = V!([go]) with ng* (x) =—1,Vz € M.
In this case, we have

V*([90]) = V*([g0]) = V'([g0]) = V'([g0))-

For the study of minimal volumes in general Riemannian manifolds, we refer to [55] and
[17].
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3. positive curvature case

Now we consider conformal classes with metrics of positive Ricci curvature. Let [go] be such
a conformal class. After a suitable scaling, we may assume that Ricy, > (n — 1)gg. Define
[90]+ = {g € [go] | Ricg > (n — 1)g} and Vimax(M, [go]) = sup,eig,), volg(M). This definition is
motivated by Gursky and Viaclovsky [77]. From the Bishop comparison, we know

(10127) VmaX(M’ [90]) < UOl(Sn),
the volume of the unit sphere.

PROPOSITION 10.2. Let (M, go) be a compact Riemannian manifold with Ricg, > (n—1)go.
If Vinax (M, [go]) < vol(S™), then there is a conformal metric g € [go]+ with
Ry=n—1

Proof. Consider the sequence of approximating function Fj, as in Section 2 with a normalization
condition that Fi(1,1,-,1) =n — 1). We first want to find a solution to the following equation

2
(10.128) Fy, (62“’(V2u+du®du— |V2u|go)) =n-—1,

for large k. Define
Vinax([90]) = max{vol(g) | g € [go] with Fi(g~" - Sg) =n —1}.

It is easy to check that limy oo V¥, ([g90]) = Vinax([g0]). Hence for large k we have

(10.129) VE (lg0]) < vol(S™).
To show the existence of solution of (10.128), we consider a deformation, which is similar to
a deformation considered by Gursky and Viaclovsky in their study of o;-Yamabe problem.
1
Fy, <V2u + du ® du — §|Vu|29 +(t)Sy + (1 — ¢)g>
(10.130)

where (t) : [0,1] — [0,1] is a C! function satisfying 1/(0) = 0 and ¥(t) = 1 for t > 1/2. We
now prove that there is a solution of (10.130) when ¢ = 1, provided that V£, (M, [g]) < vol(S™).

When t = 0, it is easy to check that (10.130) has a unique solution v = 0 and its correspond-
ing linearization has no nontrivial kernel. Hence its Leray-Schauder degree is non-zero. If the
solution space of (10.130) for any ¢ € [0, 1] is compact, then using degree theoretic argument,
we are done. Assume by contradiction that there is no compactness. Assume without loss of
generality that there is a sequence of solutions g; = e~2?%ig of (10.102) with ¢t = 1 such that u;

does not converge in C*®. In view of Theorem 8.1 and Corollary 8.2, we have either

(a) infps u; - —o0, or
(b) infy u; — +o0.
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The latter is easy to be excluded as follows. At the minimum point of u;, we have
eQinfuiFk(Sgo) — Fk(62infui50) < (n _ 1),
which certainly implies that inf u; is bounded from above uniformly. Hence we are left to exclude
(a). Let x; be the minimum point of u; and assume that z; — z¢ as i — co. Consider a scaled
function
@; = u(exp,, €;x) — loge;,

where €; = expu;(x;). It is clear that 4; > 0 satisfies a similar equation on B(0,¢; Yre/2) c R”
with a scaled metric, where ¢ is the injectivity radius of (M, g). The set B(0,e; 'ro/2) with

the scaled metric converges to R™. By local estimates and local C? estimates in [64] for a more
general concave case one can show that ; converges to an entire solution v of

1
(10.131) Fi(V*v 4 dv® dv — §\WPan) =(n—1)e %
and
(10.132) VE (9) > liminfvol(e~2ig) > vol (R, e~ % ggn),

where ggrn is the standard Euclidean metric. By a classification result of Li-Li in [92], we know
that (R”, e 2Yggn) is equivalent to S™. Hence V¥, ([go]) > vol(R™, e~ * grn) = vol(S™). This
contradicts (10.129). Therefore, we have a solution us of (10.130) for large k.

Now we consider the sequence {ur}. As above, we can show first that u; has a uniform
upper bound. If uj has a uniform lower bound, Corollary 8.2 implies that the sequence {uy}
has a uniform C%® bound. And hence we have a limit uy which is a solution we desire. Hence
to prove the Proposition, we only need to exclude the case that min uy — —oo. Assume that we
are in this case. By a similar argument presented above, after considering a suitable rescaling

we have a limit C% function v, satisfying

1
(10.133) Gn-1(V*0 +dv® dv — §\VU\29Rn) =(n—1)e %
and
(10.134) VE ([go]) > liminf vol(e2%ig) > vol(R™, e~ 2" gga).

The contradiction follows from the following Lemma. We finish the proof of the Proposition. =

PROPOSITION 10.3. Let p < n/2 and g = e *“ggn be a C? function on R™ such that
Gp(g718,)(z) = ¢,Vx € R,

for some constant c¢. Then v = 0 if ¢ < 0 and u(z) = logw if ¢ > 0. That is,
2\ /("*CP)P

(R™, e=2%gRn) can be compactified as a standard sphere if ¢ > 0.

Proof: The proof follows [92] closely. The only difference is that the operator there is required
to be C'!. Here our operator G, is Lipschitz only. However G, is uniformly elliptic and concave.
We will show in Lemma 10.2 below that the Hopf lemma holds for our equation. Then the
argument in [92] can be applied to our equation.

[



3. POSITIVE CURVATURE CASE 121
LEMMA 10.2. Let Q be a bounded domain in R"™ and p < n/2. If (10.110) has two solutions
w and v with w > v and w(zg) = v(xg) for some xo € 0N, then xo € 0. Furthermore,

ow ov
%(l’o) < 5@0)7

unless w = v. Here v is the outer normal of 0Q2 at xy.
Proof: For any function, set
A" =Vu+du®ds — %]Vu\zgo + Sgp-
Since (), is concave and homogeneous one, we have
Gp(AY — AY) < Gp(AY) — Gp(AY) = e 2 — 2V < 0.
Let @ = w — v. Now we can write G,(A" — A") as follows
Gp(AY — AY) = ajj(x)Wi; + bi(z)w;

with XAoId < (a;j(x)) < Agld and b;(z) bounded for any i. Therefore, we can apply Theorem 5
on page 61 and Theorem 7 on page 65 in [104] to prove the Lemma. [

REMARK 10.4. Proposition 10.3 does not hold for p =n — 1. For example u = kx1 for any
k > 0 is a solution of
\V4 2
F(u) = Gp1(V*u + du ® du — | ;“
The same example indicates that without the concavity of F, Proposition 8.1 and Theorem 8.1
are not true. It is easy to check that F(ug) = 0. On a domain Q C {z1 > 0}, we have uy > 0.
But |Vug| =k — oo.

go) = 0.

PROPOSITION 10.4. Let (M, go) be a compact Riemannian manifold with Ricg, > (n—1)go.
If Vinax (M, [g0]) = vol(S™), then (M, g) is conformally equivalent to the standard unit sphere.

This Proposition is a direct consequence of the following

PROPOSITION 10.5. Let (M, g) be a compact Riemannian manifold with Ricy > n — 1. If

vol(M) is close to wy, the volume of 8™, then, the Yamabe constant of (M,[g]), Y (M,][g]) is

close to n(n — 1)w,21/n, the Yamabe constant of S™.

Proof: Let us first recall the well-known Yamabe constant of (M, g), which is defined by

Y (M, [g]) := inf (/vn2n2dvol(g))_nn2 {4Z : ; / |Vo|2dvol(g) + /RgUdeol(g)}

By a result of Ilias [83], which is based on a result of Gromov (see also [16]), we have

n(n —1)w/™ </vn2"2>(n_2)/2 < <Uo°;?g)>2/n {42:; / Vo2 +n(n —1) /’()2},
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for any v € H?(M). Note that R, > n(n — 1). Therefore, we have

—2/n
for any small § > 0, provided that vol(g) is close to wy,. -

By the results of Colding (see [39],[40] and [103]), we know that the condition in Proposition
10.5 is equivalent to the one of following three other conditions:

1) radM is close to m,
2) M is Gromov-Hausdorff close to 8™,
3) the (n + 1)th eigenvalue of the Laplacian, A\,41(M), is close to n.

Proof of Proposition 10.4. Viax(M,[go]) = vol(S™) implies by definition that there is a se-
quence g; € [go]+ with lim; o vol(g;) = vol(S™). Proposition 10.5 implies that Y (M, [go]) =

Y (M, [gi]) = n(n— l)wi/n, the Yamabe constant of S™. Hence, the Yamabe constant of (M, [go])
equals to the Yamabe constant of the standard sphere. By the resolution of the Yamabe problem
by Aubin [11] and Schoen [111], (M, [go]) is conformally equivalent to the standard sphere. m

Proof of Theorem 10.2. Theorem 10.2 follows from Propositions 10.4 and 10.2. [ |

REMARK 10.5. It is interesting to know weather Vi s achieved as in the negative case.
One can show that if Vinax s achieved by g, then R is constant.

Now we prove Theorem 10.3.
Proof of Theorem 10.3. Tt follows the exact same arguments in the proof of Theorem 3 in [64],
since that proof works for general uniform elliptic concave equations as well, as we note that
Wp(g) > 0 implies the positivity of the mean curvature when p < 3. We only give a sketch here.

Step 1. We define a deformation
(10.135) filg) = tWy(g) + (1 — )Ry = 1,
where g = e 2%gg. Equation (10.135) (V¢ € [0,1]) is still uniformly elliptic and concave.

Step 2. (Harnack inequality) There is a constant C' > 0 such that for a solution u of (10.135)
in B3r we have
(10.136) minu + maxu > 2log R — log C.
Br Bar

Here Bp is the ball of radius R in R™. (10.136) can be proved as in [64] using the method of
moving planes.

By scaling argument, we may assume that R = 1. Assume by contradiction that (10.136) is
not true. Then there exists a sequence of solutions of (10.135) in B3 such that

(10.137) min u; + maxu; < —i.
By B
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Let m; = ming, u; = u;(%;), and let x; € By with B, (z;) C By and |z; — ;| = r;. Here r; = e™i.
In view of (10.137), we know that 7, — 0 as i — oco. Consider a new sequence of functions v;
defined by

vi(z) = wilz; +rz) —my

and set Z; = x; + 7;7;. It is clear that v; satisfies (10.135) in {|z| < r; '} and |g;| = 1. ;From
(10.137), we extend v; by the Kelvin transformation to the whole Euclidean space as in (2.8) of
[64]. Now applying the method of moving planes as in [64], which in turn follows closely from
[33], we can show that v; converges to 0 in B 1 (9i). This is a contradiction. Note that though
we are dealing with the Lipschitz operators, the method of moving planes works by using the
fact that f; in (10.135) is uniformly elliptic and concave.

Step 3. Consider a solution u of equation (10.135). First, it is clear that we have that the
scalar curvature of g = e~2%g is positive. Hence we can apply the result of Schoen-Yau in [115]
to embed the universal cover M of (M, g) into 8" by a map ® conformally. Therefore we can
use the method of moving planes (again make use of uniformly ellipticity and concavity of f)
to obtain as in [64] that

|Vu|(z) < C, for any x € M,

for some constant independent of u, provided that (M, go) is not equivalent to S™. It follows
that

(10.138) maxu — minu < C,

for some constant independent of w. (10.138), together with the Harnack inequality (10.136),
implies that

minu > C,

for some constant independent of u. Hence by Theorem 10.4, we know that the solution space
of equation (10.135) is compact.

Step 4. From Step 3 we can apply the degree theory. We may use a result of Li in [93], a
variation of the original Leray-Schauder theorem. We also refer to Nirenberg’s lecture notes
[98] on the exposition of the degree theory in nonlinear differential equations. When ¢ = 0, the
topological degree for equation (10.135) is —1, which was proved by Schoen [113]. Since the
solution space is compact, the topological degree for equation (10.135) with ¢t = 1 is also —1.
This finishes the proof of the Theorem. [ |

REMARK 10.6. As in Remark 10.1, the conditions in Theorem 10.2 and Theorem 10.3 can
be weakened to the assumption that the corresponding curvature of the background metric is
nonnegative and positive at some point. The same argument using the short time existence of
the corresponding curvature flows as in Remark 10.1 can produce a metric g € [go] with the
positive curvatures.

Notes
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The results in this chapter were obtained in [74]. One of the interesting aspect of the equations
treated here is that our geometric problem is deduced to a Pucci type fully nonlinear uniformly
elliptic equations with respect to the Schouten tensor. These equations have been studied ex-
tensively in Euclidean domains, in particular in connection to stochastic optimization. With
the breakthrough of the Krylov-Safonov’s Harnack estimate [89] for non-divergent elliptic equa-
tions, it followed the fundamental Evans-Krylov theorem [42, 88] on the Holder regularity of
the second derivatives.



CHAPTER 11

Conformal curvature flow

In this chapter, we want to deform the metric in the conformal class [go] of a fixed background
metric gy along some curvature flow to certain extremal metric. The conformal curvature flow
equation has some advantage such that it enable us to analyze the extremal metric, in turn to
obtain some geometric information (which will be dealt with in the next chapter).

We consider the following general fully nonlinear flow:

ig = - <log o) logrkz> g
(11.1) dt o1(g) n)
9(0) = go,
where

_ (f(fl g)log Uk(g) (g )1)d9>
Tkl = exp
) fo_l
is defined so that the flow (11.1) preserves [ o;(g)dg When I #n/2 and &, )5 when | =n/2. We
have the following result for flow (11.1).

THEOREM 11.1. For any smooth initial metric go € T, flow (11.1) has a global solution
g(t). Moreover, there is h € Cy, satisfying equation (12.5) such that for all m,

Jim [lg(t) — hllcmay = 0.

A real symmetric n X n matrix A is said to lie in Fg if its eigenvalues lie in F,j. Let A;;
be the {7, j}-entry of an n x n matrix. Then for 0 < k < n, the kth Newton transformation
associated with A is defined to be

Ti(A) = op(A) — op_1(A)A + - + (—1)F A

We have

1
Ti(A)) = 05 G A Aigs

where (5;1 ;’“3 is the generalized Kronecker delta symbol. Here we use the summation convention.

By definition,

1 21...0 ; 60’k A
or(A) = 1305 Ang - Aug, - Te-1(A)j = — A(@j)'
For0 <l <k <n,let
Ty1(A)  Ti1(A)
Tt (4) = =00~ oAy

125
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It is important to note that if A € Flj, then Tk_u_l(A) is positive definite.
1

The operator F(A) = <Z’;((ﬁ))> g elliptic and concave in F;. For simplicity of the notation,

we will denote ‘;’;((ﬁ)) by Z(A).

LEMMA 11.1. A conformal class of metric [g] with [g) T # 0 does not have a C*' metric
g1 € f;: with ox(g1) = 0, where f;: is the closure of T} .

Proof: By the assumption, there is a smooth admissible metric go with ox(go) > 0. Assume by
contradiction that there is a C1! metric g with ox(g1) = 0. Write g1 = e~2%go, so u satisfies

[Vul?

(11.2) Ok <V2u +du®du— ——g+ Sg> =0.

Let
[Vul?
2

A Set u; = u,up = 1, we may assume u; > ug + 1 since uj + ¢ also satisfies (11.2) for any
constant ¢. Let v = e " —e 0 hy =te ™ + (1 —t)e ", uy = —log hy and W = V2u + duy @
duy — Mg + S,. As in [127], one can check that W; € T} and (a;;(W;)) positive definite
(nonnegative definite for all 0 <t < 1 (0 <t <!). We have the following
Lag(Wh) o !
(11.3) 0> op(Wh) — ou(Wp) = Z(/O 7V + S0V + o
ij l

_ 9ax(W)

W = (Viu+ du® du — 90), and ay (W)=

8wij

for some bounded functions d and ¥, I = 1, ...,n. This is a contradiction to the strong maximum
principle. [ |

The follow Proposition is a uniqueness result.

PROPOSITION 11.1. Let (M, go) be a spherical space form. If g € [go] N Fz is a solution of
(12.5), then (M, g) is also a spherical space form.

Proof: The Proposition is a special case of a Liouville type result in [92]. But it can be proved
in simpler way, following the similar argument as in [128]. After transfer the equation to R"
as in [128], the method of moving plane in [50] can be used as in [128] to show that the
solution is symmetric at some point. We may assume the solution is symmetric about the origin
and its value and gradient at the origin are same as the standard solution (after a rescaling
if necessary). Since both are radial functions, expanding the solution to the power series, if
some of the derivatives of the solution does not match the standard solution at the origin, then
the difference of two solution is either non-negative or non-positive in a neighborhood of the
origin since it is a function in one variable only and analytic (since they satisfy analytic elliptic
equation). But, this contradicts the strong minimum principle, as the difference of two solutions
satisfies certain elliptic equation. This implies that all the derivatives are the same at the origin,
which in turn gives the uniqueness by the analyticity again. [ |
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For any 0 < k < n, let

(0 n_l% /Mak(g)dg, k#n/2,
k\g) =

Eny2(9), k=mn/2.

LEMMA 11.2. The flow (11.1) preserves Fi. It also decreases the functional Fi. In fact, the
evolution equations for log ‘;—’; and Fi are

(11.4) %log Z’;((gg)) - %tr{:fk_l,l_l(sg)vg log Z‘;((g))} + (k — 1)(log Z’;((gg)) —log Ty
and
(11.5) Zﬁk(g) —% /M(:;((g)) — k1) <10g Z’;((j)) — logrk,l> o1(g)dg.

Proof: We prove dfl = 0 for [ # n/2, the proof for the case [ = n/2 is the same using fn/g = En/a-
On any locally conformally flat manifold, from the computation in [126],

d n — 2l 4 d

o atgavlg) = ™ /M 7(g)g™" % gdvollg)
2 -n L ok(g) _ _
= 5 /M o1(9)g (log () logry,; | dvol(g) = 0.

The first identity follows from simple direct computation, we omit it. We verify the second
identity. When k # 3,

d 1 L d
afk() = 2/Mak(g)g 73949

— _;/M or(g) <log Z((g)) — log Tk,l) dg
_ ! / 7k (9) <1og 7(9) —10grk,z) o1(g)dg

2 Jur oug) oi(g)
1 [ okg) < ok (9) >
—— —r lo —logrk; ) o1(g9)dg.
2 Gy 7o (o8 gy — o) o
By [20], the above also holds for k£ = 7. [ ]

If g = e 2. g, one may compute that

2
or(g) = e%"ak <V2u +du® du — |V;\ go) .
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Equation (11.1) can be written in the following form

du Ok 2 |Vu|2 )

2— = log— (Viu+du®du— +2(k — Du — logr
(11.6) dt & o < 90 ) +2(k = Du —logry,(9)

u(0) = wup.

The short time existence of flow (11.1) follows from the standard implicit theorem as gg € F,j.
We want to prove the long time existence and convergence.
Let
T* = sup{Tp > 0 (11.1) exists in [0, Tp] and g(t) € ['; for t € [0.1p]}.

ProPOSITION 11.2. There is a constant C > 0 independent of T' such that
(11.7) |Vu| <e¢, and |Vu|<ec.

PRrOOF. The gradient estimate follows from Schoen-Yau’s theorem on developing maps on
locally conformally flat manifolds and the method of moving planes as in the proof of Proposition
9.1 (see also [132]), we won’t repeat it here. We now prove the second derivative boundedness.

Set

[Vul?
——90)-
By equation (11.6), F' = 2u; — 2(k — l)u — logry;. We only need to consider the case k > 1,
therefore we only need to give a upper bound of Au which dominates all other second order
derivatives. Consider G = Au + m|Vu|? on M x [0,T], where m is a large constant which will
be fixed later. Without loss of generality, we may assume that the maximum of G on M x [0, T
achieves at a point (xo,tp) € M x (0,7] and G(zo,t9) > 1. We may assume that at (xo,to)

F = log%(v2u+du®du -
aj

1
(11.8) 200(W) > G > 501(W),
where W = V2u + du ® du — |V; I go- Consider everything in a small neighborhood near xy. We
may consider W as a matrix with entry w;; = wu;; +uu; — %|Vu]25ij +5(90)ij- In the rest of the
proof, ¢ denotes a positive constant independent of T', which may vary from line to line.
Since G achieves its maximum at (xo, tp), we have at this point

(11.9) Gr=> (un + 2mugwy) > 0,
l
and
(11.10) Gi = (uyi+ 2mugu) =0, Vi.
l

(11.10) and (11.7) imply that at (xo, to)
(11.11) 1> uni| < cG.
l

By the Harnack inequality (11.7), we may assume that

(11.12) |uh~j — uijl] <c and |uijkl — uijlk| < c@.
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We may assume by choosing coordinates that the matrix (w;;) at (zo,%p) is diagonal. At the
maximum point, G;; is non-positive definite. Set F = %. Since g(t) = e 2*Mgy € T}, we
know that the matrix (F¥) is positive. Hence in view of (11.9)-(11.12) and the concavity of F
we have

o
v

Z FijGZ‘j = Z Fij(umj + 2muliulj + 2mulijul)

Y

Z F ] (wiju + 2mugug; + 2mugjug) — CZ Fi@
’]’l 7
1
= —CZ FPG+Y " Fi{wiu — (uiu; — §|VU!252‘3‘ + 5(g0)ij)u
(11.13) bk
1
+2mugiug; + 2mw;jiu — 2mug (uiug — 7|Vu|25ij +5(g0)ij)i}

AF+2mZFlul—|—ZF“ uZ +2(m —1) ZF”uh—cZF“G

> AF+2mZFlul—i— —G? ZF”+2 -1 ZF”%—CZF"G

Vv

From equation (11.6), F' = Qut—2(k—l)u—log7“( ). In view of (11.9) and (11.10), (11.13) yields

0 > —2(k-1G+ = ZF“G2+2 -1 ZFU cZF”G
(1114) > - (l{i—l AU+ZF“G2—|—2 _1 ZFM _CZFZZG

1 .
> {—2(k—1 2(m—1)) F'y - FYG?
> {-2(k-DG+2m-1)) H”Zi: (G
We claim that for large m > 0
L ii i, 2
(11.15) 5 G ZF +2(m — 1)ZF w2 > 2(k —1)G.
It is easy to check, from the Newton-MacLaurin inequality, that
S Fig = o1 (W)or(W) = (k+ Dorn (W) — or(W)or(W) — (I 4+ 1)or41 (W)

(11.16) k(W) o(W)
= ()W) - k+ 1) W) > Cn,k,zE(W%
a] Ok o]
and
(11.17) DFY = =k DZRW) — (=L DTV 2 Ch

Ok o] O'l(I/V)7
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where ¢, ; and ¢, 1 are two positive constant depending only on n,k and [. From these two
facts, we can prove the claim as follows. First, if

Cn kg 01(W)og_1 (W)
in o (W)
then the claim follows from (11.17) and (11.8). Hence we may assume that
Ul(W)O'k_l(W) S C;kl,
o (W) "

for some positive constant C;,k,z depending only on n,k and [. Together with the Newton-
MacLaurin inequality, it implies

> 4(k — 1),

o W) _ . oW) _. .
—r > >
() = kg () = ki)
which, in turn, together with (11.16) implies
2 o111 (W) 1 1

ZFiiwii > Cn,k,lW > cp o1 (W) > §C£,k,lG-
:

Hence, if we choose m large, then the claim is true. The Proposition follows directly from the
claim. [ |

PROPOSITION 11.3. Suppose [[ul|c2(ary is bounded independent of t € [0,T]. Then there is a
constant Cy > 0 independent of T such that

or(9)
a1(9)

(t) > Co, forte[0,00).

Proof: Here we will make use of Lemma 13.4. We consider H = log Z‘;((g)) —e " on M x[0,T]
for any 7' < T*. From (11.1) and (11.4) we have

dH 1 - 21 Ok(9)
dt - 2tr{Tk*1,l71(Sg)vg ]‘Og oy (g)

o G = L e ) log 24 ~logr(g)

)
= ST na(S)VEH +e ) (k= L+ e ) log 24~ logr(o),

Without loss of generality, we may assume that the minimum of H in M x [0,7] achieves at
(xo,t0) € M x (0,T]. Let H; and H;; are the first and second derivatives with respect to the

back-ground metric gg. At this point, we have %I <0,0=H;= Eij Fijwijl + e %y for all [,
and (H;;) is non-negative definite. Also we have (F*) is positive definite and
1 0 1 0

> Fluwy =
— Ok
Z7]

Recall that in local coordinates T,z]_ 11-1(Sg) = F'9 and

Y FU(VYyH =) FY(Hij+uiHy +uiHj = wHdy).
i,j .J !

(9) Owi; 7 oi(g) Owi



11. CONFORMAL CURVATURE FLOW

It follows that at the point,

(11.18)
1 i
0 > Ht—§ZFJHZ»j
i.j
L7 2, —u Lo uyqne 7k9)
— Etr{kal,lfl(Sg)Vge P+ (k—1+ 3¢ )(log g log r.1(g))
1 4] —u —u —u —u
= 52}”{(6 Jij +uile™); +ujle)i — wle™*)idi;}
irj
1 _, o
+(k -1+ 56 )(log cr];((g)) —logr(9))
e v i 1 —u orlg
= 5 ZF”{—W —wiuj + [Vu*65} + (k = 1+ 3¢ ")(log G’;((g)) —logrki(9))
1/7]
_ < Ul 1 Gt T2 . et or(g)
= zj:F {=wij + 855 + 5 |Vul*0i} + (k — L+ —-) (log ola) logT4.4(g))
e * i 1 _ or(9)
> LV T . — ZeTu —
> 5 ZF {=wi + Sy} (b = U 5o ™) log 2 - = log 1a(9))
e U i 1 u or(g E—1 Y
= TZF]S”‘f‘(k—l—f—ie )(log Ul((g)) —IOng’l(g))— 5 e s
7]

where S;; are the entries of S(gop). Since S(go) € Fg, by Lemma 13.4,

1

131

(1119) Fis, = (279 L a(”(g)}si-z(k—z)e2“<ak(90)>kl <"k(g>)kll.
Ok

(9) Owi;  oi(g) Owi; a1(90) a1(9)

By C? estimates, log 7 (g) is bounded from above, we have

= () G

+(k—1+ %e_“)(log Z’;((gg)) —logrk,(9)) — K 2_ le_“
or(g)\ ! arlg)
“ <Uz(9) > relos g T

for positive constants ¢, co and c3 independent of T'. It follows that there is a positive constant

¢4 independent of T' such that
or(9)
oi(g)
at point (zg,tp). Then the Proposition follows, as |u| is bounded by Proposition 11.7.

> Cy4,



132 11. CONFORMAL CURVATURE FLOW

PROPOSITION 11.4. If there is C independent of t such that |ul|c2(ary < C for allt € [0,T7),
then T = oo, and all the results in Theorem 11.1 are true.

Proof of Proposition 11.4. First, by Krylov’s theorem, the flow has C*® estimates. The standard
parabolic theory gives the longtime existence of the flow. Lemma 11.2 implies that

/OO/ (ox(9) _Tk,lUl(g))ngdt < o0,
0 M

which, in turn, implies that there is a sequence {t;} such that

[ (019) = rramto)?w)dg 0
M

as t; — oo. The above estimates imply that g(¢;) converges in C%“ to a conformal metric h,
which is a solution of (12.5).

Now we want to use Simon’s argument [117] to prove that h is the unique limit of flow
(11.1)(see also [8]). Since the arguments are essentially the same, here we only give a sketch.
First, with the regularity estimates established for flow (11.1), one can show that, for all m,

Jim ||(:;((§g)))) = Blleman =0,

for some positive constant 3. It is clear that ZI;((%}LL)) = (. By Proposition 11.3 and the Newton-

MacLaurin inequality, there is a constant ¢ > 1 such that ¢=! < o7(g(t)) < ¢. We want to show
that flow (11.1) is a pseudo-gradient flow, though it is not a gradient flow. The crucial step is
to establish the angle estimate (11.21) for the L? gradient of some proper functionals. We may
now switch the back-ground metric to h and all derivatives and norms are taken with respect
to the metric h.

The following is the version of Theorem 3 in Simon [117] for our flow (11.1) (which is a
infinite dimensional generalization of Lojasiewicz’ result).

PROPOSITION 11.5. There exist 6 € (0,1/2] and ro > 0 such that for any ||g — h||c2.« < 19

1/2
(11.20) (/M |ka!2(g)dvol(h)) > | Fi(g) — Fr(h)| 7.

Proof: Simon [117] proved such inequality for gradients of functionals. Our flow (11.1) is
different in the fact that the gradient is a fully nonlinear operator rather than a quasilinear one.
But as Andrews [8] observed, Simon’s argument can be carried through for Fj. The details
otherwise are identical, we refer to the proof of Theorem 3 in [117]. ]

Here we only give a proof for | < k < n/2. The proof for the other cases is similar by taking
consideration of the corresponding functionals.
Consider a functional defined by
_n—2k

Fralg) = ( / az(g)dg> - /M ok(g)dg.

VFri = —co((or(g) — Tri(g)oi(g))e” ™,

Its L2-gradient is
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where ¢ is a non-zero constant and 7 ;(g) is given by

fM or(g)dg
fM Ul(g)dg ’

which is different from r4;. But it is easy to check that ry;(t) — 7 () — 0 as t — oco. Since

% is very close to a constant for large ¢, from (11.5) we have

EFrag) < —C/M(:;((;])) — Tk) <1Og f;z;((;})) - 10g’f’k,l> o1(g9)dg
(

oi(g)dg /M

Tri(g) =

2

or(g)
oi(g)

( k;] — rral’ou(g d9>1/2 </ |— d9>1/2
< k(9) — ral*oi(g)dg v \dg|201(9)dg v
< v ou(g) > Mo dt
(/1

o]
) , 1/2 dg 1/2
o) = Fraoa)Paias) ([ 15 Paapas )
M

1/2 dg 1/2
—c</ |V}“k7l\2dh> (/ \;%lh) ,

where ¢ > 0 is a constant varying from line to line. The angle estimate (11.21) means that flow
(11.1) is a pseudo-gradient flow.

log

1(9)

(11.21)

IN

IN

Step 1. For a fixed constant ¢ty > 0, by Propositions 11.2, 11.3, Lemma 11.2 and the Krylov
theorem, we have that for any small £ > 0 there is a constant §; > 0 such that

lg(t) — hllcoe <e,  for t € [t,t+ to]

if ||g(t) — hllz2 < d1.
Step 2. Since there exist Ty > 0, ¢; > 0 and ro > 0 such that (11.21) and (11.20) hold. By the
continuity of Fj, in C*%, there exists 71 > 0 such that

(11.22) lg — hllc2a <71 implies |Fr(g) — Fr(h)| < ( 5

60951 > 1/0
We claim that for any [a, b] C [Tp, 00),
llg — hl|lc2.a <min{ro,r1} Vt€|a,b] implies

)
lg(t1) — g(ta)ll 2 < 51 Va <t <ty <b.
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From (11.21) and (11.20), we have for ant ¢ € [a, b]

(/ ol ) < S GIVAO)]re
C1
< |5 (B - Rm))|.

Integrating the previous inequality over [t1,ts] C [a,b] and by the monotonicity of F, we have

1 1
lg(t) = g(ta)llze < 51 Filg(t) - Fe(M < 501

The claim is proved.
Step 3. Now recall that there is a sequence t; — oo such that g(¢;) converges to h in C%. Hence
for any 01 > 0 there is ¢, such that ||g(t;,) — hl/z2 < 01/2. Set

70 = inf{7| ||g(t) — hl|cz.e <&, Vt € [ty,, 7]},
for 0 < ¢ < min{rg,r;}. It is clear from step 1 that 79 > t;, + to. We assert that 79 = oo.
Assume by contradiction that 7y < co. For any ¢ € [t;,, 70, from the claim in step 2 we have
lg(@) = hlirz < llg(ty) = Rllz2 + llg(tiy) — 9(t)ll 2
< 9.
This, together with step 1, implies that [m9, 70 +to] C {7 | ||g(t) — hl|c2.« < €,V € [t;,,7]}. This

is a contradiction.
The proof is complete u

Now we note that Theorem 11.1 is already verified for the case [ = 0, since Lemma 11.2
implies that the flow preserves the volume in this case. From the uniform global gradient bound
in Proposition 11.2, « is uniformly bounded independent of t. Then by Propositions 11.2 and
11.7, [Jullc2(ary is bounded independent of t. So Theorem 11.1 for the case [ = 0 follows from

Proposition 11.4. To prove Theorem 11.1 for general case [ < k < n, we only need to get C°
estimates for u. To do that, we will make use of the result for case [ = 0.

PROPOSITION 11.6. Let (M, go) be a locally conformally flat manifold with gy € FZ. We
have

a). When k > n/2, there is a constant Cg = Cg(n, k) > 0 depending only on n and k such
Q Q
that for any metric g € Cy.

/ or(g)vol(g) < Cquol(g)
M

(b). When k < n/2, there is a constant Cs = Cg(n) > 0 such that for any metric g € C.

/ or(g)vol(g) > Csvol(g)
M

n—2k

n—2k
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(¢c). If k =n/2 and gy is a metric of constant sectional curvature, then for any g € Ci
1
Enja(9) 2 —Cur(logvol(g) —logvol(go)),

where Cyr = [y 04 /2(90)dgo-
Moreover, in cases (a) and (c) the equality holds if and only if g is a metric of constant sectional

curvature.

Proof: When k > n/2, from [70] we know that (M, go) is conformally equivalent to a spherical
space form. In this case, it was proved in [126] that any solution of (12.5) for [ = 0 is of constant
sectional curvature. By the results of Theorem 11.1 for the case [ = 0 and [20] (k = %), for any
g € Cy, there is a metric g, € Ci of constant sectional curvature with vol(g) = vol(ge) and

(11.23) Fi(9) > Fi(ge)-
When k > n/2, (11.23) implies that

n—2k

_ _n—2k
vol(g)” » /Mak(g)dgévol(ge) n /Mak(ge)dge,

and the equality holds if and only if (M, g) is a space form. It is clear that

n—2k

vol(ge)™ = /M ok(ge)dge

is a constant depending only on n, k. This proves (a).
(c) was already proved in [20]. For the completeness, we provide a proof here. When
k =n/2, (11.23) implies that for any g € C% with vol(g) = vol(go)

gn/Q(g) <0.

For any g € C%, choose a constant a such that e=2%g has volume wvol(go). It is easy to check
that a = 1{logvol(g) — logvol(go)}. By definition,

Eupa(€9) = £4/(g) —a /M 0 j2(9)dg.

Hence, we have

Euale) > a / 00/2(9)dg
M

_ 1 </M o—n/z(g())dg()) {log vol(g) — logwol(go)}-

n
This proves (c).
It remains to prove (b). For this case, we only need to prove that

inf F =: By > 0.
Corfoollg)=1} k(9) Bo
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Assume by contradiction that Sy = 0. By Theorem 1 in [72], we can find a sequence of solutions
gi = e 2Uigg € C; of (3) with vol(g;) = 1 and o1 (g;) = B; such that lim; ., B; = 0. ox(g;) = B
means

Vo, |? .
(11.24) 0(V2u; + du; @ du; — | 21‘ 9o + Sgy) = Bie~2kui,
Consider the scaled metric §; = e 2% gg with @; = u; — ﬁ log 3;, which satisfies clearly that
Vi |2 i
(11.25) o (V20 + dit; @ di; — Vil go + Sgy) = e KT
and

vol(§;) = Bi?c — 0 as i — oo.
By Corollary 1 in [71], we conclude that
; — 400 uniformly as ¢ — co.
Hence m; := infy; 4; — +00 as i — oo. Now at the minimum point z; of @;, by (11.25),

| Vi)

1(Sgo) < ok(V?0; + dit; ® da; — go + Syy) = e kmi 0.

This is a contradiction to the fact gg € T;. [ |
Now we can prove the C° boundedness (and hence C? boundedness).

PROPOSITION 11.7. Let g = e 2“gy be a solution of flow (11.1) with o(g(t)) € T} on
M x [0,T*). Then there is a constant ¢ > 0 depending only on vy, go, k and n (independent of
T*) such that

(11.26) lu(®)llc2 < e, Vte[0,T).

Proof: We only need to show the boundedness of |u|. First we consider the case [ # n/2. By
Proposition 11.2 and the preservation of [ o;(g)dg, we have
|[Vul?

2

aq = / ey (V2 + du @ du — 90)dgo
M

(11.27)
< ¢ fM 6(2l—n)udg0.

If | < n/2, then (11.27), together with (11.7), implies that u < ¢ for some constant ¢ > 0. On
the other hand, in this case Proposition 11.6 gives

vol(g) < C /M 01(g)dg) 77 = eoC,

which, together with (11.7) implies u > ¢;, hence |u| < C in this case.

If I > n/2, (11.27) gives a lower bound of u. Suppose there is no upper bound, we have
a sequence of u, with Vu and V2u bounded, but supu goes to infinity (so does infu). Set
v = u — infu, so v is bounded and so is the C? norm of v. But, for § = e ?Ygg, we get
F}(§) tends to 0. Take a subsequence, we get oj(e=2""gg) = 0 with v* in C1! OT;. This is a
contradiction to Lemma 11.1.
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Then we consider the case | = n/2. In this case, &, /2(g) is constant. First it is easy to check
that g = e 2tg, € F+ when 0 < ¢ <1 (using the fact (1,---,1,—-1) € f?: when n even). In
particular, oz (g¢) >0 for ¢ > 0. From the expression of &, /z(g),

—sup(u) /M n(g9)dg < &,/2(g9) < —inf(u /M oz (g

| ostaris = /M 73 (g0)dgo.

~sup(t) [ o3 (an)dgn < Euale) < ~intw) [ oy (an)dn.

Le., inf(u) is bounded from above and sup(u) is bounded from below. By (11.7) again, u is
bounded from above and away from 0. Now we have proved boundedness of |u| in all cases.
Hence, we have obtained the C? bound for u (independent of T'). |

Since

So we have

Theorem 11.1 now is proved for the general case.

Notes

The results in this chapter were proved in [72, 73]. The conformal flow we discussed here is
a fully nonlinear version of the Yamabe flow treated by Ye [132]. When [ = 0, Proposition 11.1
was proved by Viaclowsky [126], the argument there applies directly to the proof of Proposition
XXXX. There is a general Liouville type theorem for conformally invariant equations in R",
proved by Li-Li in [91, 92] which implies Proposition 11.1 as a simple consequence.

The argument in the proof of global convergence follows from Simon [117]. Though Simon’s
argument originally designed for quasilinear flow, it was observed by Andrews [8]) that it can
be adopted to deal with certain fully nonlinear flows evolving convex hypersurfaces in R™. Here,
we adapted it to fully nonlinear conformal flow (11.1).



CHAPTER 12

Geometric inequalities

In this chapter, we are interested in certain global geometric quantities associated to the
Schouten tensor and their relationship in conformal geometry. We recall some geometric func-
tionals,

n—2k

(12.1) Fi(g) =wvol(g)” = /Mak(g)dg, k=0,1,....n,

where dg is the volume form of g. When k = 1, o;(g) is a constant multiple of the scalar
curvature and F(g) is the Yamabe functional. If we pick a fixed background metric go, let [go]
be the conformal class of gg. When (M, gg) is a locally conformally flat manifold and k # n/2,
the critical points of Fj, in [go] are the metrics g with

(12.2) or(g) = constant.

When k = n/2, fn( ) is a constant in the conformal class. In this case, there is another
functional defined by

(12.3) Ens2(g) / / o /2(g¢)udgydt,

where u is the conformal factor of ¢ = e gy and ¢, = e *"gy. Note that like Fj,, this
functional is conformally invariant. Unlike Fy, &, /o depends on the choice of the background
metric go. However, its derivative V&, 5 does not depend on the choice of go. The critical points
of &, /5 correspond to the metrics g satisfying (12.2) for k = n/2. Since any metric g € Fn /o 18

conformally equivalent to a metric of constant sectional curvature, in the rest of this paper, we
will choose the latter metric as a background metric go in (12.3) in this case.

The main objective of here is to establish a complete system of sharp inequalities for F;’s and
Eny2 (if n is even) on locally conformally flat manifolds. The methods we use to establish such
inequalities rely on the study of some fully nonlinear parabolic and elliptic equations associated
to these geometric quantities. There are three types of inequalities depending on the range of
k. More precisely, a Sobolev type inequality (12.4) is established for any k£ < § and a conformal
quermassintegral type inequality (12.7) for any k > n/2. And, for the exceptional case k = n/2,
we establish a Moser-Trudinger type inequality (12.8) for &, /5.

Before giving precise results, let us first recall some notations and definitions. Let

TF = {A= (A A2, An) R 05(A) > 0,V < k}.

138
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A metric g is said to be in I'} if 0(g)(z) > 0 for j < k and = € M (see [70]). For convenience,
we set 0g(A) =1 and o¢(g) = 1. We denote

Ce = {g € lgollg €T} },
where [go] is the conformal class of gg.
We now state our main results.

THEOREM 12.1. Suppose that (M, go) is a locally conformally flat manifold, go € F; and

geCr. Let 0 <I < k <n.
(A). Sobolev type inequality: If 0 < | < k < %, then there is a positive constant
Cs = Cs([go], n, k,1) depending only on n, k, | and the conformal class [go] such that

1 1
(12.4) (Fr(g)) =2 = Cs (Fi(g)) "2 .
If we normalize fM o1(g)dg = 1, then the equality holds if and only if

oi(9) n—2k
(12.5) =

oi1(9) s

There exists gg € Ci, attaining the equality. Furthermore,
1

n\ 7=2k [\ =2 (2 k—1
12. < ny — N\ (n—2k)(n—21)
(126 cs=cssn= () (7)) 6 ,

where wy, is the volume of the standard sphere S™.
(B). Conformal quermassintegral type inequality: Ifn/2 <k <n, 1 <[ <k, then

_1
l

(127) (Filg) s(’;)‘i@) (B!

The equality in (12.7) holds if and only if (M, g) is a spherical space form.
(C). Moser-Trudinger type inequality: If k = n/2, then

(12.8) (n —20)&,/2(9) > Cur {108; /M o1(g)dg — log /M Uz(go)dgo} ,

where

=
o~

wp [N
Cyur = / Un/2(90)d90 =on <n>
M 22 \3

The above inequality is also true for 1 > k = n/2, provided g € C;. The equality holds
if and only if (M, g) is a space form.

The geometric inequalities and the global estimates established in the chapter 10 will yield
some consequences. In chapter 8, it was proved that positive I'y-curvature for some k > n/2
implies positive Ricci curvature. Hence, when the underlying manifold M is locally conformally
flat, (M,g) is conformally equivalent to a spherical space form. Therefore, we restrict our
attention to the case k < n/2.
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Let Y; the Yamabe constant of [g], i.e.,

Yi(lg)) = inf (vol(g)) "% /M o1(g)dvol(g).

g€lg]
Let

Ci={gelgllgeTl]}.
We define a new conformal invariant for 2 < k < n/2 by

inf (vol(g))_n_n% / ok(g)dvol(g)  if Cr—1 # 0,
Y = 9€Ci_1 M
—0Q, lf Ck;—l = @

We note that if k > n/2 and Cr_1 # 0, then (M, g) is conformally equivalent to a spherical space
form (see [70]). Therefore, the only case k < n/2 is of interest to us in this situation.

THEOREM 12.2. Let (M, go) be a compact locally conformal flat n-dim manifold and k < n/2.
Assume that Yy ([go]) > 0, then there is a conformal metric g € Cy, such that
ak(g) = 1.
If Yi([go]) = 0, the either there is g € Cy such that oy(g) = 1, or there is g € CY1 in Ci, such
that o (g) = 0.

As an application of Theorem 12.2, we have the following

THEOREM 12.3. Let (M,g) be an n-dimensional compact, oriented and connected locally
conformally flat manifold and n = 2m. If g is a metric of positive I';,,_1-curvature and

(12.9) / om(g)dvol(g) > 0,
M
then (M, go) is conformally equivalent to S*™ .
The idea to prove Theorem 12.2 is to seek admissible solution of the following fully nonlinear
equation:

(12.10) or(g) = constant,

for g in the conformal class. In [29], Chang-Gursky-Yang proved that if Y7 and Y5 (note that
Y1 positive implies C1 # (), and in the case n = 4, [}, 02(g) = Y3 for all g in the conformal class)
are positive, then there equation (12.10) is solvable for n = 4, k = 2. This is an important result
because the existence is obtained without the assumption on Cy # (). Here we will deal with the
case for higher dimension, but on the locally conformally flat manifolds. The key is to obtain
some appropriate a priori estimates for (12.10) by making use of the positivity of Y.

Proof of Theorem 12.2. Let g = e 2gg € F;ﬁl. We modify the homotopic approach in [91]
to consider the following equation

_ 1/(k=1), —
(12.11) Jouw) = oultg ™'y + (1= )03/ (g7 Sg)g) = 1.

Let
T,={AeTi || th+(1-to/FVmrer)y.
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It is clear that Ty = I‘;_l and I'y = I‘,j. And for any t € [0,1], f; satisfies the conditions
Proposition 9.1 uniformly in . From the proof of Theorem 9.2, we may take g9 € Cr_1 with
or—1(g0) = 1 and the degree of o;_1(g9) = 1 is —1. From degree argument (e.g., see [91]), we
only need to show a priori bound on solutions of equation (12.11) for all 0 < ¢ < 1.

For g = e 2“gy, and for any local orthonormal frame (with respect to go), we let S;; be the
Schouten tensor of gy and let W, = (u;; + uiuj — %5@- + Si;). Equation (12.11) then can be
expressed as:

(12.12) o (tWy + (1 =)o/ V(W) 1) = e,
By (9.95) in Proposition 9.1, there is C' independent of ¢ such that
(12.13) infu > C, maX\Vu] <(C, and max\V2u] <C.

We now only need to obtain an upper bound of u. Set @ = u — maxy u. We have Wy = W,.
By (12.13), |aflc2(ar) < C for some C independent of t. @ satisfies equation

(1214) O'k(tWﬁ (1 _ t) 1/(k 1)(W1EI)) — e~ 2kmaxps u,—2ku
Expand
i k=i
(12.15) o (tWa + (1 — )oY Z( >tl 1—t)" "oy (Wa)o 1 (Wa).
1=0

Since Wy € I',_1, we have

- _k_
(12.16) e 2kmaxarve=2ki — o (1 + (1 — o/ FDWa)I) > thon,(Wa) + (1 — t)Fo 1 (Wa).

Since e® is bound from below and above, integrating the above formula over M with respect to
the metric § = e2%g, we get

(12.17) e M > ¢ (R + (1 - t)k((Vol(g))%_”_Q/ o1-1(g™1Sy)dvol () 7T)
M
for a constant independent of ¢, since infgec,(Vol(g))*™" [y, 01(G7'S5)dvol(g) is positive for
I < n/2 by Theorem 1 in [73]. This gives an upper bound of u. In turn [lul[c2(as) is bounded
independent of t. By the Krylov-Evans theorem and standard elliptic theory, [[ullcm s is
bounded for any m. The Theorem is proved for the case Y; > 0.
If Y = 0, By (12.13), u is bounded from below, and the first and second derivatives of u are
bounded independent of ¢. By (12.17), for any ¢ < 1, u is bounded from above (depending on
t). If supu — oo for some sequence t; — 1, from (12.14) we obtain a Cb! solution g € T} with

or(g) = 0.
If for some sequence t; — 1, sup u stay bounded, we obtain a solution g € FZF with

or(g) = 1.

These two cases can not be happen at the same time by Lemma 2 in [73]. ]
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We now prove the geometric inequalities. From the flow approach we developed in chapter
11, we have

PrOPOSITION 12.1. Let (
manifold with gy € Fx and 0
that

M, go) be a compact, connect and oriented locally conformally flat
<l < k<n. There is a gg € Cy satisfying equation (12.5) such

Firlge) < Filg),
for any g € C, with Fi(gr) = Fi(g). Moreover, if (M, go) is conformally equivalent to a space
form, then (M, gg) is also a space form.

Proof: The case [ = 0 has been treated in Proposition 11.6. We may assume [ > 1 in the rest
of proof. When (M, gp) is conformally equivalent to a space form, Proposition 11.1 implies that
any solutions of (12.5) are metrics of constant sectional curvature, and hence have the same Fj,
if they have been the same F;. Hence the Proposition follows from Theorem 11.1.

Now we remain to consider the case k < n/2 and (M, go) is not conformally equivalent to a
space form. We will follow the same argument in the proof of Proposition 11.6. Here we need
the local estimates in Theorem 8.1 for the quotient equation (12.5).

First we want to show
(12.18) inf  Fr(g) =: Bo > 0.

9€Ck, Fi(g9)=1
Suppose 39 = 0. By the result for flow (11.1), there is a sequence g; = e 2%igy € Cj with
Fi(gi) =1 and

o .
“E(gi) =B, lim B =0,
(o) 1—00

go with @; = u; — ﬁ log 3; satisfies

~ 12
(V2 + dils  diis — 120
o] 2

The scaled metric §; = e~ 2%

Ok

(12.19) go + Sg,) = e 2k,
By Proposition 1,

n—

21 ~ n—21
n < Fi(gi) = P20 -0 asi— oo,

Cvol(g;)

We want show that

m; = i]I\l/[fﬂi — 400 as i — Q.
This can be done follows: suppose there exist a constant ¢y and a subsequence (which we will
still denote as {m;}) with m; < ¢, Vi. At the minimum point z; of @;, we may pick a positive
constant b > 0 depending only on n and ¢y such that for any geodesic ball (with respect to go)
of radius r < 1,
(12.20) vol(By) > br",
and injectivity radius of gy is greater than 2be”. Now we take r = be™i, for x € B,, there is
x; € By, such that

e 0) — )| < [T
By gradient estimates in Theorem 8.1, since e™™i > ¢~%, Vx € B,,

|Vu(z)| < Ce™™,
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where C' depending only on go and co (note that f = 1 in (12.19)). If b > 0 is chosen small
, then for any z € B,, e "%(@) > %e*”mi. Together

—nco

enough (independent of 7) so that b < %

with (12.20),

bn+1
2

e

- 1
0 < vol(g;) > / e "idgy > 5677””1110[(3,“) >

T

N o

This is a contradiction. Therefore, we must have m; — +o0.

Now at the minimum point z; of @;, by equation (12.19),

|V, |?
2

Tk (S,0) < ZE(V2i1; + dit; ® dil; —
a1 al

go + Sgy) = e 2E=Umi ),

This is a contradiction to the fact gg € FZ.
Finally we prove the existence of an extremal metric in this case. From above argument, there

ZI;((;]Z)) = B;, with $3; decreasing and bound

below by a positive constant. As (M, gp) is not conformally equivalent to S™ by assumption, it
follows from Theorem 1.3 in [64] that the metrics converge (by taking a subsequence) to some
g which attains the infimum Clg. [ ]

is a minimization sequence g; € Cj, with F;(g) = 1, and

Proof of (B) of Theorem 12.1. The cases | = n/2 and k = n/2 were considered in [72] and [70].
Hence we assume that k # n/2 and [ # n/2. Let us consider

—2

Filg) = ( / Uz(g)dg>_z_; | ovlaia

Since Fj; is invariant under the transformation g to e~2%g for any constant a, Proposition 12.1
implies that for any g € C

Fii(g) < Fralgr) = C(n, k,1).

It is clear that C(n, k,l) depends only on n, k, .
Hence, we may assume that Let c¢o = Fj;(gr). From Proposition 12.1, we have

n—2k
(12.21) Suroelg)dg < Cln. k1) ([ 00(9)dg) e

C(”: kv l) (fM Ul<g)dg)’y (fM Jl(g)dg)
where v = #_22’“1) — 7. It is clear that v > 0 when [ > n/2 and v < 0 when [ < n/2.
We first consider the case [ > n/2. In this case, by Proposition 11.6 we have

E
l
)

n—21
/ o1(g)dg < crvol(g)™=
M

where ¢; = Fi(ge). It follows that

(12.22) ( / ol<g>dg)w < Juol(g) .
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Hence

_ n—2k

(Fe(g)V* = <vol<g) " /Mak(g)dgy1

C§ <vol(9)nn21 /M 01(9)d9>%

GO

The equality holds if and only if ¢ is a metric of constant sectional curvature.
Consider the case [ < n/2. In this case, by Proposition 11.6 again we have

IN

/ o1(g)dg > crvol(g)™=
M

where ¢; = Fi(ge). Since v < 0, we have (12.22). The same argument given in the previous case
gives the same conclusion.

Finally, since k > n/2, (M, go) is conformally equivalent to a space form ([70]). The existence
of the extremal metric which attains the equality case follows the uniqueness result in Proposition
11.1. And the constant C'(n, k,[) is easy to calculate. [

Proof of (A) of Theorem 12.1. Inequality (12.4) follows from (12.18) in the proof of Proposition
12.1. The existence of the extremal metric has also proved there. The inequality Cs < Cg(S")
will be established later (Theorem 12.4). The constant Cg(S™) can be computed easily. [ ]

Proof of (C) of Theorem 12.1. Let us first consider the case | < n/2. Let g € C, /5. Choose a
such that [, oy(e™2*g)dvol(e~?*g) = [, o1(g0)dgo. It is easy to see that

1
= 2l{log/ az(g)dg—log/ o1(90)dgo}-
n— M M

=
By Proposition 12.1, we have
Eaplo) = Euple™9)+a [ cuala)ds
a/ o/2(90)dgo
M

1
= / crn/z(go)dgo{log/ Uz(g)dg—log/ Uz(go)dgo}-
n—2Jyu M M

This proves the Theorem for the case [ < n/2.
Now we consider the case [ > n/2. 12.1. For any g € C; we choose

\Y

a= (/M n2(9)d9) 12 (9)
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such that 5n/2(€72ag) = &,/2(90). Recall that .7}”/2 = &, /2. By Proposition 12.1 again, we have

Flo) = o [ o)y

1
_ e—(?l—n)a/ Ul(e—Zag)d,Uol(e—Zag)
M

n— 21
6_(2l_")a/ a1(g90)dgo
M

1
= = _1 57 ©XP {(n —20) </M an/z(g)dg> - Sn/z(g)} /M a1(g0)dgo-

> -

- n—2
Since (M, go) is conformally equivalent to a space form in this case, the existence of the extremal
metric can be proved along the same line as in part (B) of the Theorem. Note that since n is
even, (M, go) is the standard sphere. The computation of Cysp is straightforward. [ |

We now address the question of the best constant in part (A) of Theorem 12.1. As in the
Yamabe problem (i.e., k =1 and [ = 0), for 0 <1 < k < n/2 we define

Vs (M on) = inf (7o) Filo) = inf (| ala)de) " [ oo

It is clear that Yy (M, [go]) = C’;"”_Qk. In this section we prove

THEOREM 12.4. For any compact, oriented locally conformally flat manifold (M, go), we
have

(12.23) Yk,l(M, [g()]) S Yk’l(8n7g‘5n),
where gsn is the standard metric of the unit sphere.

When k£ = 1 and [ = 0, this was proven by Aubin (e.g., see [11]) for general compact
manifolds. To prove Theorem 12.4 we need to construct a sequence of “blow-up” functions
which belong to C. This is a delicate part of the problem.

We need two Lemmas.

LEMMA 12.1. Let D be the unit disk in R™ and ds® the standard Fuclidean metric. Let
go = e2%ds? be a metric on D of positive T'j-curvature with k < n/2. Then there is a
conformal metric g = e~ 2*ds®> on D\{0} of positive I'y-curvature with the following properties:

1). ox(g) > 0 in D\{0}.
2). u(z) = uo(x) forr =|z| € (ro,1].
3). u(x) = a+logr for r =|z| € (0,73) and some constant a.

for some constants ro and r3 with 0 < r3 < rg < 1.
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Proof: Let v be a function on D and § = e~2Ygy. By the transformation formula of the Schouten
tensor, we have

1
S(9)i; = V?j(v +up) + Vi(v 4+ uo)V,(v+ ug) — i\V(v + ) |6i;
(12.24) = V?jv + VioVv + VoV u9 + V,;vViug
1
+(§|V’U|2 + VUV’LLU)(;Z']‘ + Sgo

Here V and V? are the first and the second derivatives with respect to the standard metric ds?.
Let 7 = |z|. We want to find a function v = v(r) with § € I'} and

where a = 1 near 0 and « = 0 near 1. From (12.24) we have

- 200 — o2 o o =2a\ xx; o
(12.25)  S(3)ij = Wéij+<r+ > ) T2”+S(go)ij+0(|VuOD;,

where O(|Vug|) is a term bounded by a constant C; depending only on max |Vug|. Let A(r) be
an n x n matrix with entry a;; = S(§)ij — S(g0)i;. Hence

or(§) = e KTl (A+ S(g0)) -
To our aim, we need to find a such that A+ S(go) € I'}. Let € € (0,1/2) and ry = min{3, Ci}.
We will choose a such that
(12.26) a(r) € [0,1] and a(r) =0, for r € [ro, 1].

Since oy(§) = e2F ) g (A(r) 4 S(go)), we want to find a such that oy (A(r) + S(go)) > 0. Tt
is clear to see that for r € [0, ro]

Ar) > <2a—a2—5a5i'+ (O/+ a2—2a> xix])

2r2 r r2 r2

as a matrix. This implies that

12. o (A(r n-U (2a-o®—ca\" (o, ra'-ea )
(12.27) () = e (2 )k( )

~ klN(n—k)! 212 20 — a? — e
One can easily check that for any small § > 0,
2(1—¢)d
(12.28) a(r) = #
O+r2
is a solution of
(2 —e)a — a? = —4(rd’ — ca).

Now we can finish our construction of a. Since S(go) € I'y, by the openness of I'; we can
choose r; € (0,79) and an non-increasing function « : [r1,rg] C [0,1) such that ox(g) > 0 and
a(ry) > 0. Now we choose a suitable § > 0 and « in the form (12.28).Then find ry € (0,r;) with
a(rg) = 1. It is clear that o (A(r)) > 0 on [re,r;]. Define a(r) =1 on [0,r2]. We may smooth
« such that the new resulted conformal metric g satisfying all conditions in Lemma 12.1. [ |
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REMARK 12.1. From Lemma 12.1, one can prove that the connected sum of two locally
conformally flat manifolds (M, g1) and (Ma, g2) with gi1,g2 € Tk (k < n/2) admits a locally
conformally flat structure with a metric in Fz. This is also true for general manifolds, which
will appear in a forthcoming paper.

LEMMA 12.2. For any small constants 6 > 0 and € > 0, there ezists a function u : R"\{0} —

0 satisfying:

1. The metric g = e~2%dx? has positive I'y,-curvature.

2. u=log(1+ |z|?) + by for |z| > 6, i.e., {x € R™||x| > 6},9) is a part of a sphere.
. u=log|z| for |z| < 01, d.e., {x € R"|0 < |z| < d1},9) is a cylinder.

__2n_
4. vol(Bs\Bs,,9) < Cd T-<0.
—2k)

_2(n=2k)
: f35\351 or(g)dvol(g) < C6 =<0, for any k < n/2,

w

Ut

3—¢

3=en
where C'is a constant independent of §, 61 = 670 and by ~ 3=

1—80

logé.

Proof: Let § € (0,1) be any small constant. For any small constant g9 > 0, we define u by

log(1 + %) + by, r>0
2 14 §3-c0p—(1=20) 3 _ ¢,
u(r): —1_6010g 5 +1_€010g5 7‘6(51,5)7
logr, r <oy,
3=eg
where 07 = §1-c0 and
2 1+6% 3-¢o
by = —log(1 +46°) — 1 log 6.
0 og(1+07) o8 g T o8
As in the proof of Lemma 5, we write u/(r) = @ It is easy to see that o : Ry — R, by
272
— >0
1472’ =0
a(r) = 263¢0
gy e 1000
1, r < (51.

One can check all conditions in the Lemma, except the smoothness of u, which is C*t. We first
check (1). By a direct computation, see for example (13), we have

2\ k !
—2u 2y _ 2ku(r) (n — 1)' 200 — - ro
op(e "|dz|*) =€ F(n = k)l 5,3 n 21{:—1—27201_&2 .

In the interval (d1,9), a € (0,2) satisfies

2ra/

Sa—az -~ (e
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Since k < n/2, we have oy(e~2%|dz|?) > 0. One can also directly to check (4) and (5). Here we
only check (5). A direct computation gives

1
/ or(g)dvol(g) < c/ e~ (n=2k)u(r) . =2k .n—1 g,
Bs\Bs,

01
(o 3—¢qp 9
< ¢ (n 2’“)1_50/ 2Ly
01
_ 2(n—2k)
< ¢d T-e0 .

From our construction, we only have v € C%!. But, for § > 0 fixed, we can smooth a so that
u € C° satisfies all conditions (1)-(5). [ ]

Proof of Theorem 12.4. Let p € M and U a neighborhood of p such that (U, g) is conformally
flat, namely (U, g) = (D, e 2%|dxz|?). Applying Lemma 12.1, we obtain a conformal metric u
satisfying conditions 1)-3) in Lemma 12.1 with constants rg, 73 and a. By adding a constant we
may assume a = 0. Now applying Lemma 12.2 for any small constant 6 > 0 we have a conformal
metric g5 = e 2% |dz|? on R™\{0}. Consider the rescaled function

) 0
Us = u(;(—la:) — log —.
r3 r3
Now w and us are the same in {0 < |z| < r3}. Consider the following conformal transformation
3z

flz) = 5@7

which maps {r3/2 < |z| < r3} into itself and maps one of boundary components to another with
opposite orientations. Now we define a new function on M by

07 |l" 2 To,
’LU(S(IE) = U — ug, T3/2 < |$| < To,
2
ﬁg(f(x))—i—Qlog\x]—log%—uo, |z| < rs/2.

Since u and g are the same in {0 < |z| < r3}, it clear that ws(x) is smooth on M. Consider
the conformal metric gs = e 2%5g and compute, using Lammas 12.1 and 12.2

/ ox(gs)dvol(gs) = / o (g5)dgs + O(1)
M {lz|<rs/2}

_ 2(n—2k)

(2K / o (gse)dvol(gs) + O(1)5 17
R\ {|z[<d}

3—¢q
€

3—¢
= 5_ 1—¢q (n_Qk) / O'k(gSn)d’UOl(gSn) —l— O(é_ﬁ(n_Qk))
R\ {||<d}

and
37

_ 5o (n-2)) n — =22 (n—21)
L a1(gs)dvol(gs) = 6 =0 Twol(R™\{|z| < 6}, gsn) +o(d 1707 ),
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1

(1+]=[)?
a constant independent of §. Now it is readily to see

Yk’l(M) < lim Ykl(g(;) — Yk’l(Sn),
6—0

where gsn = |dz|? is the standard metric of the sphere and O(1) is a term bounded by

as § — 0. [ ]

Notes

The main results in this chapter appeared in [73], as an application of conformal curvature
flow studied in [72, 73|.

When (M, go) is a locally conformally flat manifold and k # n/2, it was proved in [126] that
the critical points of Fj in [go] are the metrics g satisfying (12.2). When k = n/2, Fu(g) is a
constant in the conformal class [126]. In this case, the functional (12.3 was found in [20], see
also [31].

When [ = 0 and k = 1, inequality (12.4) is the standard Sobolev inequality (e.g., see [11]).
Inequality (12.7) is of reminiscent in form to the classical quermassintegral inequality (e.g., see
[72] for the discussion), which is one of the motivations of this paper. In the case n = 4,k = 2 and
[ = 1, inequality (12.7) was proved earlier by Gursky in [76] for general 4-dimensional manifolds.
Some cases of the inequality were also verified in [72] and [70] for locally conformally flat
manifolds. (12.8) is similar to the Moser-Trudinger inequality on compact Riemannian surfaces
(see [101] and [80]). When [ = 0, (12.8) was proven by Brendle-Viaclovsky and Chang-Yang in
[20] and [31] using a result in [72] on a fully nonlinear conformal flow. We also refer to [14] for
a different form of Moser-Trudinger inequality in higher dimensions. We suspect (12.6) should
be true on general compact manifolds.

Note that [, om(g)dvol(g) is a conformal invariant for m = n/2. When n = 4, Theorem
12.3 was proved in [76]. A similar result was obtained for n = 6 in [76] under a weaker condition.

The connected sums technique for locally conformally flat manifolds was devised in [114] in
the case of positive scalar curvatures.



CHAPTER 13

Appendix: Basic facts about concave symmetric functions

We first start with elementary symmetric functions and Garding’s theory of hyperbolic
polynomials. We recall the definition of k-symmetric functions: For 1 < k < n, and A =
()‘17 HES) >\n) € Rn’

(13.1) Tr(N) =D Aip A

where the sum is taken over all strictly increasing sequences i1, ..., 7, of the indices from the set
{1,...,n}. The definition can be extended to symmetric matrices by letting o (W) = or(A(W)),
where A(W) = (M (W), ..., \n(W)) are the eigenvalues of the symmetric matrix W. We also set
oo = 1 and o = 0 for £k > n. The following proposition gives explicit algebraic formulas for

op(W).

ProposITION 13.1. If W = (W;) is an n x n symmetric matriz, let F(W) = o (W) for
1 <k <n. Then the following relations hold.

R ) . .
kW) =4 D 8t ik s e ) Wany -+ Wi

01yl =1
JiyeJk=1
oF
FobB .= %4
8Waﬁ< )

n

1 . , . .
R > St g3 By g1y e ) Wirgs - Wi

Ulyeenip—1=1
Jiseesk—1=1

Fij,rs - O*F
WL 0Ws
1 . . . .

= (k—2)' Z 5(Z7T7/Ll7"'7Zk‘—2;j785]17"'7]k—2)m1j1 "'W/ikfzjkfga

Uyl —2=1
JisesJk—2=1

(W)

n

where the Kronecker symbol §(I;J) for indices I = (i1, ...,im) and J = (J1,..., Jm) 1S defined as

1, if I is an even permutation of J;
0(I;J) =< =1, if I is an odd permutation of J;
0, otherwise.

150
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The Newton-MacLaurin inequality for the elementary symmetric functions is fundamental:
(13.2) (n—q+1)(g+1)og—1(A)og+1(A) < g(n — q)ag(A). (Newton-MacLaurin inequality)

We now introduce Garding’s theory of hyperbolic polynomials [51] and treat the elementary
symmetric functions in that category. We will follow the arguments in [51] and [81] closely.

DEFINITION 13.1. Let P be a homogeneous polynomial of degree m in a finite vector space V.
For§ € V we say P is hyperbolic at 0 if P(8) # 0 and the equation P(x+t0) = 0 (as a polynomial
of t € C) has only real roots for every x € V. We say P is complete if P(x + ty) = P(x) for all
x,t implies y = 0.

PROPOSITION 13.2. Suppose P is hyperbolic at 6, then the component T' of 0 in {x €

V; P(x) # 0} is a convex cone, the zeros of P(x + ty) (as a polynomial in t) are real if v € V
and y € I'. The polynomial % 1s real, and it is positive when x € I'. Furthermore, (%)% 18

concave and homogeneous of degree 1 in I', equal to 0 on the boundary of I

Proof. We may assume P(6) = 1. Then
Plx+t0) = (t—t1) X ... X (t —tm),
with real ¢j. So P(x) = (—t1) X ... X (—t,,) is real. Set
I'g={x € V;P(z+1t0) #0,t >0}.

Then Ty is open and ¢ € T'g since P(6 + tf) = (1 +¢)™P(0) only has the zero t = —1. Since I'
is open and closed in {z € V; P(z) # 0}. If x € Ty, then P(x + tf) # 0, when ¢t > 0. So

Ty = {SC € fg,P(x) 75 0}.

Also, I'g is connected, for if x € T'y, then = + t0 € I'y when ¢t > 0. Hence Ax 4+ uf € I'y for all
A > 0, > 0. This proves that I'y is starshaped with respect to 8 and I'y =T'.
Ify eI and § > 0 is fixed, then

Eys={z € V;P(x+i60 + isy) # 0, Re(s) > 0}

is open, and 0 € E, 5 since for s # 0, P(id +isy) = (is)mP(%g +y) = 0 implies s < 0. If z € Ey 4,
then P(z + 060 + isy) # 0 by Hurwitz’ theorem ifRes > 0, and this is still true when Re(s) = 0
since x + isy is real then. Therefore, £, 5 is both open and closed, so E, s = V' Thus,

Pz +i(60+y)) #0,Yx e R",y € I',§ > 0.

Since I is open, this remains true for 6 = 0. So the equation P(x + ty) = 0 has only real roots,
for if ¢t = t1 + ity is a root with 5 # 0 we would get P(%zly +iy) = 0. This means that y can
play the role of 6, so I is starshaped with respect to every point in I'. T is convex. We also have
P(y) >0forally eT.

We now prove the concavity statement in the proposition. As P(x + ty) has only real roots
fory € I, there are t; € R, j =1,....,m,

Pz +ty) = P(y)(t —t1) % ... X (£ — tm).

In turn,

P(sx+y) = P(y)(1 — st1) x ...(1 — sty,).
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If st +y € I', we must have 1 — st; > 0 for every j. If f(s) =logP(sz + y), then
2
J

/ t; »
f(s):_zl—]stj’ f (S)Z—Zm-

Therefore, by Cauchy-Schwarz inequality,

1(s)

i d*(em / .
m2e 5 ) 2 g (9
2
i

t
:(Zl_stj)2—mzmgo.

We wish to construct some examples of hyperbolic polynomials. If P is a homogeneous
polynomial of degree m. For x! = (a;ll, zl) eV, 1=1,.. m, we denote < z!, 8% >=>"7 a:é»a%j

ey Ty,
as a vector field. We define the complete polarization of P as

- 1 0 0
1 my _ 1 ¥ mo 7
Pz, ...,x )—m!<x,ax>...<az ,a$>P(x).
It is a multilinear and symmetric in z!,...,2™ € V, independent of x, and that
- 1 d™

And -
Ptiz' + ...+ ta™) = mlty. t, P(zt, 2™ +
where the dots denote terms not containing all the factors t;.

LEMMA 13.1. If P is hyperbolic at 0 and m > 1, then for any y = (y1,...,yn) € T,
- 0
— . P
QD) =Yg, @)

is also hyperbolic at 0. In general, if z',...,x' € T for some | < m, then
Qi(z) = P(zt, ... 2l x, ... x)
1s hyperbolic at 6.

The proof is immediate. It follows Rolle’s theorem. If we repeat the argument, the polyno-
mials {P;}7" defined by P(x + s) is hyperbolic at 0 if P is.

COROLLARY 13.1. 1. The polynomial P = (x1)? — (x2) — ... — (z)? is hyperbolic at
(1,0,...,0).
2. The polynomial P = x1...x,, is complete hyperbolic at any 0 with P(0) # 0. The positive
cone I of P at (1,...,1) is
I'={x=(x1,..,2n);2; >0, Vj}
3. In general the elementary symmetric function oi(z) is complete hyperbolic at (1,...,1),
the corresponding positive cone I'y, is

I'y = {al(x) >0,V < k}
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4. Let § denote set of all real n x n symmetric matrices. Then op(W),W € S is complete
hyperbolic at the identity matriz, the corresponding positive cone is

I'y = {O'l(W) >0,V < k}

5., For Wl .. . W! € Ty, I < k, then Q(W) = PW?',...,. WL W,..,W) is complete
hyperbolic in T'y,.

PROPOSITION 13.3. Suppose P a homogenous polynomial of degree m, suppose it is hyperbolic
at @ and P(0) > 0, then

(13.3) P(z!,...,a™) > P(a)m...P(z™)m V!, .., 2™ € T.

If P is complete, the equality holds if and only if all 27 are pairwise proportional. This is also
1

equivalent that for x,y € T not proportional, the function h(t) = P(x + ty)m is strictly concave

int > 0 If P is complete, then Ql( ) = Pz, ....al 2,...,x) is complete if m —1 > 2 and

z', ...zt € T. In particular, P( ™) >0 zf:v el and xﬂ eI’ when m > 2.

Proof. Since P (X) is concave in T, it follows that for any z,y € I', h(t) = P(x + ty)% is
concave in t > 0. So, h"(t) < 0. A direct computation yields

(
B (0) = (m = D)(P(y,y,2, ... 2) P(X) = P(y,, ..,)) Pla) .
We get the inequality
P(y,y,x,....x)P(X) < P(y,z, ..., x)%
In turn, it implies
P(y,x,...,x)™ > P(y)P(z)™ L.
We now apply induction argument. Take y = z! and assuming that (13.3) is already proved for
hyperbolic polynomials of degree m — 1. Let Q(x) = P(y, z,...,x), we get

P(al,.2™) > (Q(z?)..Q(x™)m D
> (P(a!)P(a?)™ L. P(ah) P(a™)m ) mnT,

which proves (13.3).

To prove the last statement in the proposition, it suffices to show that if m > 3, @ (defined
above) is complete. suppose Q(z) = Q(z +tz) for all x,t. In particular, Q(y+tz) = Q(y). That
means that Q(ty + z) = Q(ty), so P(ty + z) — P(ty) = a is independent of ¢. Since the zeros of
P(ty) +a =t"P(y) + a must all be real, it follows that a = 0. This P(y + sz) = P(y) # 0 for
all s, so it follows that y + sz € I'. Hence,

(s +y + s2)
(s+1)

Letting s — oo, we conclude that 2 4+ z € T for all 2 € I'. This implies  + z € I'. We can
replace z by tz for any t, so x +tz € I for all ¢t and = € I'. Thus P(z + sz) can not have any
zeros # 0, so P(z + sz) = s™P(z). That is P(z +tz) = P(z) for all t and all z € I'. Since P is
analytic, that means P(x +tz) = P(z) for all ¢t and all z € V. By the completeness assumption
on P, z=0.

eT,Vz el,s>0.
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Finally, we discuss the equality case in (13.3). By the above, we may assume m = 2. If
the equality holds, we have P(y)P(z) = P(y,r)?. This implies the roots of the second order
polynomial p(t) = P(x + ty) are equal, i.e., t; = t = =\ # 0. In turn, for all ¢,

Ply+(t+AN) "z —Xy) = (t+N) 2Pty +z) = P(y).
That is both roots of the polynomial f(s) = P(sy + (z — Ay)) are vanishing.
LEMMA 13.2. Suppose P is a second order complete hyperbolic polynomial. Suppose both

roots of f(s) = P(sy + w) wvanishing for some y € T' and w € V. Then, all the roots of
g(s) = P(sz 4+ w) are vanishing for any z € T.

Proof of the lemma. Since P(y 4+ tw) = P(y) # 0 for all ¢, we must have y 4+ tw € I'. By the
convexity of I', we have z + tw € T for all t. So, P(z + tw) # 0. For any z € I" and all ¢,
P(2)(1 +tA1)(1 +tXo) = P(z + tw) # 0,
A1, A2 are the roots of P(sz + w). Since ¢ is arbitrary, this gives A\; = Ag = 0. ]
From the lemma, we have P(z+t(x —\y)) = P(z) for all z € I" and all ¢. Since I" is open and

P is analytic, P(z+t(z — \y)) = P(z) for all z and all ¢. By the completeness of P, x — Ay = 0.
That is, x and y are proportional. [ |

COROLLARY 13.2. Let F' = ai/k, then the matriz ;WF is positive definite for W & Fz.
ij
where W;; are the entries of W. If W € F;, then (W1li) e T'y—1,V¢=0,1,--- ,n,i=1,2,--- ,n,
where (Wi) is the matriz with i-th column and i-th row deleted.
The above follows from the strictly concavity of F'. The following facts regarding the quo-

tients of elementary symmetric functions will be used in later chapters.

PROPOSITION 13.4.

|
(13.4) nik k-l

=ikt i kg0 WS ok1(4), VAETY.

Uf s conver and if W € T}, then (W|i) € Ty-1,Y¢=0,1,--- ,n,i=1,2,--- ,n, where (W|i) is
the matriz with i-th column and i-th row deleted. Let F' = (%’;)ﬁ, then 8630% is positive definite
for W = (wij) € T} and it is semi-positive definite for W = (w;;) € I'y_|, and > Fii > 1.
The function F' is concave in Fz_l. If W = (wyj) is diagonal with W = A. Then, Vi fized,

(13.5) P = Foa () () 210 — an(a),

L1
where F* = 1 (o'k(A))> = 021

LEMMA 13.3. For F(W) = ox(W) defined on symmetric matrices with w € F;, let F9 =

o (W)
851%/). Suppose W is diagonal, and w;; = A\;,Vi=1,--- ,n. Then

FU<FIf N>\
If in addition, A;; € I‘;_l, then F“)\Z2 > Fjj)\? for Xi > Aj.
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Proof: The first statement follows from (13.5) and the monotonicity of o;_; and % We now

check F ”)\3 > FJi )\?, under the condition that A;; € F:ﬁl. It is easy to check that for any
m=1,---,n,

om(Ni) = om(Aij) + Njom-1(Ay),
O‘m(A) = Um(Aij) + ()\Z + )\j)O’mfl(Ai]‘) + )\i)\jO'm,Q(Aij).
By (13.6), we compute
FUX; = FIIX: = (A = AD)[ou(Aij)or—1(Aij) — or(Aij)or—1(Ag)]
+(Xi = A AN o1 (ANij)or—2(Nij) — or(ANij)or—a(Aij)].

(13.6)

As Ay € F:_l, both terms in [-- -] are positive by the Newton-MacLaurin inequality. [ |

The following Garding’s inequality is also valid for the quotient of hessians.

LEMMA 13.4. Let A= (A1, , An), Ao = (p1, -+, pin) €T,

Then,

o1 (A) o1 (M) F(Ao)

Proof. The main argument of the proof follows from [26]. For A = (Ay,---,\,) € '}, set

1

= (20)"

From the concavity of F' in F;‘, for A;,Ag = (p1,-++ , ) € I‘: we have
OF (A
F(ho) < PO+ Y (n— 2 20
1 X2
1 op—1(Ai) o1 (Ay)
= F(AN)+-—F(A — i — A
B+ PO AT ~ T Yo =X

_ 1 op-1(Ni) o (Ni) |

In the last equality, we have used the fact that F' is homogeneous of degree one. Hence, we have

PR e
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We now treat general concave symmetric functions. Let ¥ C R™ be an open symmetric
domain and f is a C? symmetric function defined in ¥, denote

Sym(n) = {n x n real symmetric matrices},

set
(13.7) U ={A e Sym(n) : \(A) € U}
We extend f to F : ¥ —> R by F(A) = f()\(A)). We define F(A) = —F(A~') whenever
At €W, We define f* = S, it = SO0 pad = B and pebes = 5 %P The following
lemma is well known (e.g., see [13, 9, 53, 125]).
LEMMA 13.5. (a). The at any diagonal A € U with distinct eigenvalues, let F(B, B) be
the second derivative of F in direction B € Sym(n), then
(13.8) F(B,B) = f: f*BjiBer +2 i ka?k.
k=1 N M !

(b). If F(A) = —F(A™Y) is concave near a positive definite matriz A, then
n
(13.9) D (FMPUA) 4+ 2FP(A) AR) X1, X pg > 0
Jk,prg=1

for every symmetric matriz X.
We deduce the following form of Lemma 13.5.

COROLLARY 13.3. Assume F' satisfies condition in Lemma 13.5(b). Suppose A € U, A s
semipositive definite and diagonal. Let 0 < Ay < --- < Ay and A\; > 0,Vi >n—1+1. Then

n

J_ ¢
(13.10) Y FRA)X; X +2 ) J; J; X5 +2 Z fA( )ka >0
jk=n—l+41 n—lt1<j<k I ik=n—i+1 K

for every symmetric matric X = (X;) with X;, =0 if j <n — L.

Proof. (13.10) follows directly from (13.8) and (13.9) if A is positive definite. For semi-definite
A, it follows by approximating. [

We now further assume that ¥ = I' is a convex cone such that
(13.11) I'cry.

and the symmetric function f satisfies the following conditions in I':

of
O

(13.12) (A)>0 for i=1,2,...,n and A €T,

(13.13) f is concave in I',
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and for M > 0, there is dp; > 0 such that for A € I' with F'(\) < M,

13.14 A) >0
(13.14) 2 o, N 2 ou
Set
' ={W| W isa symmetric matrix whose eigenvalues A = (\1,---, \,) € I'}.

Define F(W) = f(AM(W)) for W € T'. We note that since I' C T'y, for W € I, the eigenvalues
A; of W satisfies |\;| < (n — 1) Az, where Apq, is the largest eigenvalue of W. From a result
in section 3 in [26], F' is concave in I' implies F' is concave in I" and condition (13.12) implies

(%) is positive definite for all W = (W;;) € I'. If there is no confusion, we will also simply
ij

write I for T.

1
REMARK 13.1. We note that o and general quotient operator (‘(’T—’;)ﬁ 0<l<k<n)
satisfy the structure conditions (13.11)-(15.14) with T' = 'y, and one may take dpy = 1 for all
M > 0.

The condition (13.12) is a monotonicity condition which is natural for the ellipticity of
equation (3.9) we will treat in later chapters, as we will see that the concavity condition (13.13)
is also crucial for C? and C*% estimates. The condition (13.14) appears artificial, but it follows
from some natural conditions on F'. For example, in order that equation (3.9) has an admissible
solution for some ¢ with sup » = M, there must exist W € I" such that F(W) = M. We may
assume M = 1. By conditions (13.11)-(13.13), we have

(13.15) F(tol) > 1, for some tg >0,

where [ is the identity matrix.

LEMMA 13.6. Suppose that f satisfies (19.11), (13.13) and (13.15). Set F'I(W) = %50
for W = (WZ]) erl.
(a). Let to be the number in (13.15), then for all W € T with f(W) <1,

(13.16) S FIW)Wi; <to Yy FHW).
,] 7
(b). Suppose further that f satisfies (13.12), then there is C > 0 such that YW € I' with
f(W) > 1, the following is true:
(13.17) o1(W)>Cf(W).
(c). If in addition, f satisfies
(13.18) Vy eT, limisyoof(ty) >1; and for allp € O  limy,f(N) < 1,

then >, ; FO9(W)W;; > 0,YW € T. And for any compact set K in T, there is a tx > 0,
such that

(13.19) fty) >1, forall e K,t>tk.
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Moreover there is § > 0 such that for all W € G with f(W) < 1, the following is true

(13.20) § <0+ FIW)Wi; <2t > FH(W
irj i
(d). If F satisfies (13.15) and
(13.21) limy s 1 oo F(tW) > —o00, for all W €T,

then there is dp; > 0 depending on F' and to in (13.15) such that (18.14) is true.
(e). If F satisfies

(13.22) limys 4 oo F(tW7 + W) > —o0, for all Wi, Wy € T,
then >, ; F9(W)W;; >0 for all W €T.

Proof. Let I be the identity matrix. By the concavity of f,

(13.23) Fien < fw +ZF” — Wij).

By (13.15), f(toI) > 1. Since f(W) <1, (13.16) follows from (13.23).

To prove (13.17), we note o1 (W) is invariant under symmetrization (i.e., symmetrization of
eigenvalues of W), while f(W) is non-decreasing under symmetrization by the concavity of f.
So we only need to check that if f(¢,---,t) > 1, then oy(t,--- ,t) > Cf(¢t,--- ,t). By (13.12),
f(t,---,t) > 1 implies t > ty. From the concavity of f,

f(t, - t) < ftod) + (t —to) Zf)\ to, -+, to) < Aou(t, -+, 1),

. . I
if we pick A > % + > (to, - S to).
We note that by concavity assumption on f and the first condition in (13.18), for any v € T,

f(tv) is an increasing function for ¢ > 0. This implies

> FIW)W; > 0.
0]
By the monotonicity of f(¢y) and the first condition in (13.18), for any v € I', there is ¢, < 0o
such that f(ty) > 1forallt > t,. Then (13.19) follows from the continuity of f and compactness
of KinT.
By the first condition in (13.18) again, there exists § > 0 such that f(2tol) > 146 (this also
follows from the monotonicity condition (13.12)). Since f(W) < 1, (13.20) follows from (13.23).
The concavity condition (13.13) and (13.21) implies that d F(tW) >0 for all W e T'. That
s> FU9(W)W;; > 0 for all W € T'. By the monotonicity condltlon (13.12), there exists € > 0
such that F'(2tgl) > M + e. Since F(W) < M, (13.14) follows from (13.23) by letting ¢ = 2t,.
We now prove the last statement in the lemma. Since I' is open, for each W € I', there is
6 > 0 such that W = W — 61 € T. In turn, tW + 61 € T for all t > 0. Set g(t) = F(tW + 5I).
By concavity of F and condition (13.22), we have g'(1) > 0, that is, Do FI(W)W;; > 0. In
turn, by condition (13.12) we get >, FIW)W;; > 83, F*(W) > 0. [ ]
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Notes

The theory of hyperbolic polynomial was developed by Garding [51], our presentation here
follows mainly from Garding’s original treatment, see also [81]. Some important properties of
concave symmetric functions were discussed in [26].
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