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Abstract. In this paper, we prove a cohomology vanishing theorem on locally confor-
mally flat manifold under certain positivity assumption on the Schouten tensor. And we
show that this type of positivity of curvature is preserved under 0-surgeries for general
Riemannian manifolds, and construct a large class of such manifolds.

1. Introduction

The notion of positive curvature plays an important role in differential geometry. The
existence of such a metric often implies some topological properties of the underlying
manifold. A typical example is the Bochner vanishing theorem on manifolds of positive
Ricci curvature. In this paper, we consider Riemannian metrics with certain type of
positivity on the Schouten tensor. This notion of curvature was introduced by Viaclovsky
[18] which extends the notion of scalar curvature.

Let (M, g) be an oriented, compact and manifold of dimension n > 2. And let Sg denote
the Schouten tensor of the metric g, i.e.,

Sg =
1

n− 2

(
Ricg − Rg

2(n− 1)
· g

)
,

where Ricg and Rg are the Ricci tensor and scalar curvature of g respectively. For any
n× n matrix A and k = 1, 2, · · · , n, let σk(A) be the k-th elementary symmetric function
of the eigenvalues of n× n matrix A, ∀k = 1, 2, · · · , n. Define σk-scalar curvature of g by

σk(g) := σk(g−1 · Sg),

where g−1·Sg is defined, locally by (g−1·Sg)i
j = gik(Sg)kj . When k = 1, σ1-scalar curvature

is just the scalar curvature R (up to a constant multiple). It is natural to consider manifolds
with metric of positive σk-scalar curvature. However, the surgery might not preserve this
positivity. In fact, we consider a stronger positivity. Define

Γ+
k = {Λ = (λ1, λ2, · · · , λn) ∈ Rn |σj(Λ) > 0, ∀j ≤ k}.

A metric g is said to be in Γ+
k if σj(g)(x) > 0 for j ≤ k and x ∈ M . Such a metric is

called a metric of positive Γk-curvature, or a Γk-positive metric. When k = 1, it is just
the metric of positive scalar curvature. In this paper, we are only interested in the case
k ≥ 2.

It was proved in [6] that any metric g of positive Γk-curvature with k ≥ n/2 is a metric of
positive Ricci curvature. Hence, when the underlying manifold M is locally conformally
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flat, (M, g) is conformally equivalent to a spherical space form. We also proved in [5]
that (M, g) is conformally equivalent to a spherical space form if [g] has a metric with
positive Γn

2
−1-curvature and the Euler characteristic of M is positive. Here, we restrict

our attention to the case k < n/2.
The first result of this paper the following vanishing theorem.

Theorem 1. Let (Mn, g) be a compact, locally conformally flat manifold with σ1(g) > 0.

(i). If g ∈ Γ+
k for some 2 ≤ k < n/2, then the qth Betti number bq = 0 for[

n + 1
2

]
+ 1− k ≤ q ≤ n−

([
n + 1

2

]
+ 1− k

)
.

(ii). Suppose g ∈ Γ+
2 , then bq = 0 for

[
n−√n

2

]
≤ q ≤

[
n+
√

n
2

]
. If g ∈ Γ+

2 , p = n−√n
2 and

bp 6= 0, then (M, g) is a quotient of Sn−p ×Hp.
(iii). If k ≥ n−√n

2 and g ∈ Γ+
k , then bq = 0 for any 2 ≤ q ≤ n− 2. If k = n−√n

2 , g ∈ Γk,
and b2 6= 0, then (M, g) is a quotient of Sn−2 ×H2.

Here Sn−p is the standard sphere of sectional curvature 1 and Hp is a hyperbolic plane of
sectional curvature −1.

A more precise and general statement will be given in Proposition 1 in the next section.
When k = 1, the above was proved by Bourguignon [1] (see also [10, 13, 14]).

The most direct examples of Γk-positive metrics are Einstein manifolds with a positive
scalar curvature (for instance Sn and CPn) and their small perturbations. Another exam-
ple is the Hopf manifold (a quotient of Sn−1 × S1 with the product metric). It is easy to
check that the product metric is Γk-positive if and only if k < n/2. It is implicitly proved
in [7] that for k < n

2 , the connected sum of two positive Γk-curved locally conformally
flat manifolds can be assigned a locally conformally flat metric with positive Γk curvature.
Here we modify the argument in [4] to construct more examples of manifolds with positive
Γk-curvature without locally conformally flat assumption. The construction of manifolds
by connected sums for positive scalar curvature was furnished in [4] and [16].

Theorem 2. Let 2 ≤ k < n/2, and let Mn
1 and Mn

2 be two compact manifolds (not
necessary locally conformally flat ) of positive Γk-curvature. Then the connected sum
M1#M2 also admits a metric of positive Γk-curvature. If in addition, M1 and M2 are
locally conformally flat, then M1#M2 admits a locally conformally flat structure with
positive Γk-curvature.

It follows that the manifold of the form

(1) L1# · · ·#Li#H1# · · ·#Hj ,

carries a locally conformally flat structure of positive Γk-curvature (k < n/2), where L′is
and H ′

j are quotients of Sn−1 × S1 and the standard sphere Sn respectively. Hence, any
free product of finitely many copies of Z with finite many copies of the fundamental group
of spherical space forms is the fundamental group of a manifold of positive Γk-curvature,
for k < n/2. As mentioned that any locally conformally flat manifold with positive Γk-
curvature for some k ≥ n

2 is conformally equivalent to a spherical space form by [6].
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For k = [n−1
2 ], one would like to classify all such locally conformally flat manifolds with

positive Γk-curvature. When n = 3, 4, results of Izeki [8] and Schoen-Yau [17] imply that
if (Mn, g) is a compact Riemannian manifold with positive scalar curvature, then M has
a form of (1).

The paper is organized as follows. In Section 2, we prove that the positivity of Γk

curvature implies a positivity of a quantity arising in the Weitzenböck formula for p-
forms. This leads to the application of the Bochner type technique to obtain Theorem 1.
In Section 3, we present the construction of Γk-positive metrics on the connected sum.

Acknowledgement. We would like to thank the referee for useful suggestions.

2. A vanishing theorem

We first introduce some notations. Let Λ = (λ1, λ2, · · · , λn) ∈ Rn be an n-tuple. For
any j = 1, 2, · · · , n, we set

Λ|j = (λ1, · · · , λj−1, λj+1, · · · , λn).

Assume that 2 ≤ k < n/2, 1 ≤ p ≤ n/2. Define a function Gn,p : Rn → R by

Gn,p(Λ) = min
(i1,··· ,in)

{(n− p)
p∑

j=1

λij + p
n∑

j=p+1

λij},

where (i1, · · · , in) is a permutation of (1, 2, · · · , n) and the minimum is taken over all
permutations. If we rearrange Λ = (λ1, λ2, · · · , λn) such that λ1 ≥ λ2 ≥ · · · ≥ λn. It is
obvious that for p ≤ n/2,

Gn,p(Λ) = p

n−p∑

j=1

λj + (n− p)
n∑

j=n−p+1

λj .

In the rest of this section, we will always assume that Λ is such arranged. Gn,p is related
to a geometric quantity arising in the Weitzenböck form for p-forms (see (9)). Let Ip =
(1, 1, · · · , 1) ∈ Rp and s > 0. Define n-tuples by

En,p = (In−p,−Ip) and Es
n,p = (In−p,−sIp).

It is trivial to see that Gn,p(En,p) = 0. A straightforward calculation shows that En,p (up
to a constant multiplier) is the Schouten tensor of the manifold Sn−p×Hp. It will become
clear later that this manifold serves the ”minimal” model in our vanishing theorem.

We want to find a condition on k, p under which Λ ∈ Γ+
k implies Gn,p(Λ) > 0. Our basic

observation is that if σk(En,p) = 0, then Gn,p(Λ) is a “linearization” of σk at En,p in the
direction of Λ. Namely,

σk−1(En−1,p)
p

Gn,p(Λ) =
d

dt
σk((1− t)En,p + tΛ)|t=0.

Then by the convexity of Γ+
k , if En,p ∈ Γ+

k with σk(En,p) = 0, we have σk(En,p + tΛ) ≥ 0
for Λ ∈ Γ+

k . Note that Γ+
k is the closure of Γ+

k . It would imply that Gn,p(Λ) ≥ 0. Roughly
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speaking, σk(En,p) = 0 is the condition we are seeking (the precise statements are given
Proposition 2 and Lemma 4).

The main objective of this section is to prove the following proposition.

Proposition 1. Let (Mn, g) be a compact, locally conformally flat manifold and let 2 ≤
k ≤ n/2 and 1 ≤ p ≤ n/2. Suppose g ∈ Γ+

k and σ1(g) is not identical to zero in M .
(i). If En,p ∈ Γ+

k−1 and En,p 6∈ Γ+
k , then bq = 0 for all p ≤ q ≤ n− p.

(ii). Suppose En,p ∈ Γ+
k , σk(En,p) = 0 and σk(g) > 0 at some point in M , then bq = 0

for all p ≤ q ≤ n− p.
(iii). Suppose En,p ∈ Γ+

k , σk(En,p) = 0, then bp 6= 0 if and only if (M, g) is a quotient
of Sn−p ×Hp.

We need some technical lemmas in the proof of Proposition 1.

Lemma 1. For any s > 0, if Es
n,p ∈ Γ+

k , then Es
n−1,p ∈ Γ+

k−1 and Es
n−2,p−1 ∈ Γ+

k−1. If

En,p ∈ Γ+
k , then En−2,p−1 ∈ Γ+

k .

Proof. First, it is easy to check that Es
n−1,p ∈ Γ+

k−1 implies Es
n−2,p−1 ∈ Γ+

k−1. If Es
n,p ∈ Γ+

k

(resp. Γ+
k ), then Es

n−1,p ∈ Γ+
k−1 (resp. Γ+

k−1). Hence, we only need to deal with the case
that σk(Es

n,p) = 0. Assume by contradiction that σk−1(Es
n−1,p) = 0. Since σk(Es

n,p) =

σk−1(Es
n−1,p) + σk(Es

n−1,p), we have σk(Es
n−1,p) = 0. Together with Es

n−1,p ∈ Γ+
k−1, it

implies Es
n−1,p ∈ Γ+

k . We may repeat this argument to produce a sequence of integers

m such that Es
m,p ∈ Γ+

k and σk(Es
m,p) = σk(Es

m+1,p) = 0. This process must be stopped

somewhere since −sIp is not in Γ+
k . We then obtain an integer m such that σk(Es

m,p) =
σk(Es

m+1,p) = 0 and Es
m,p ∈ Γ+

k−1. Now

0 = σk(Es
m+1,p) = σk−1(Es

m,p) + σk(Es
m,p) > 0,

this is a contradiction.
To prove the last assertion in the lemma, note that we already have En−2,p−1 ∈ Γ+

k−1.
Now,

0 ≤ σk(En,p) = σk(En−2,p−1)− σk−2(En−2,p−1).

It follows that
σk(En−2,p−1) ≥ σk−2(En−2,p−1) > 0.

Lemma 2. Let 0 < s ≤ 1 and p ≤ n/2. If Es
n,p ∈ Γ+

k with σk(Es
n,p) = 0 for some k ≥ 2,

then for any Λ ∈ Γ+
k ,

Gn,p(Λ) ≥ 0.

If in addition 0 < s < 1 and σ1(Λ) > 0, then

Gn,p(Λ) > 0.



5

Proof. We first notice that if Λ ∈ Γ+
2 and σ1(Λ) = 0, then Λ = 0. This follows from

n∑

i=1

λ2
i = σ2

1(Λ)− 2σ2(Λ).

Thus, we now assume σ1(Λ) > 0. For 0 ≤ s ≤ 1, we note that σ1(Es
n,p) ≥ 0. Since

Es
n,p ∈ Γ+

2 (note that k ≥ 2 by assumption), we must have σ1(Es
n,p) > 0. By Lemma 1,

we have σk−1(Es
n−1,p−1) > 0. Using the identity

∑n
j=1 σk−1(Λ|j)λj = kσk(Λ) we have

(2) 0 = kσk(Es
n,p) = (n− p)σk−1(Es

n−1,p)− spσk−1(Es
n−1,p−1).

We want to show that Gn,p(Λ) is positive for Λ ∈ Γ+
k with σ1(Λ) > 0. Consider a function

f(t) = σk((1 − t)Es
n,p + tΛ). Denote Es

n,p = (e1, e2, · · · , en). By the convexity of Γk, we
know f(t) ≥ 0. Since f(0) = 0, we have f ′(0) ≥ 0 which implies

(3)

0 ≤ f ′(0) =
n∑

j=1

σk−1(Es
n,p|j)(λj − ej) =

n∑

j=1

σk−1(Es
n,p|j)λj − σk(Es

n,p)

= σk−1(Es
n−1,p)

n−p∑

j=1

λj + σk−1(Es
n−1,p−1)

n∑

j=n−p+1

λj

= σk−1(Es
n−1,p){

n−p∑

j=1

λj +
n− p

sp

n∑

j=n−p+1

λj} (by (2))

=
σk−1(Es

n−1,p)
sp

{sp
n−p∑

j=1

λj + (n− p)
n∑

j=n−p+1

λj}.

From Lemma 1 we have σk−1(Es
n−1,p) > 0. Hence, (3) implies that

(4) sp

n−p∑

j=1

λj + (n− p)
n∑

j=n−p+1

λj ≥ 0.

If s = 1, this gives Gn,p(Λ) ≥ 0. If s < 1, from assumption that σ1(Λ) =
∑n

j=1 λj > 0, we
have

∑n−p
j=1 λj > 0 by our arrangement of Λ. Therefore, (4) implies that Gn,p(Λ) > 0.

Lemma 3. Assume that for some 1 ≤ p < n
2 and 2 ≤ k ≤ n/2, En,p ∈ Γ+

k with σk(En,p) =
0. If Λ ∈ Γ+

k , then Gn,p(Λ) ≥ 0. The equality holds if and only if Λ = µEn,p for some
µ ≥ 0. In particular, if Λ ∈ Γ+

k , then Gn,p(Λ) > 0.

Proof. As in the proof of Lemma 2, we may assume σ1(Λ) > 0. Since the positivity of
G(Λ) does not change under a rescaling Λ → µΛ, we may assume that σ1(Λ) = σ1(En,p).
As in the previous lemma, we consider the function f(t) = σk((1 − t)En,p + tΛ). We
have f ′(0) ≥ 0. The argument given in the previous Lemma implies that Gn,p(Λ) > 0 or
Gn,p(Λ) = 0. Hence, we only need to examine the latter case. In this case we also have
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f ′(0) = 0. Since f(0) = 0 and f(t) ≥ 0 for any t ∈ [0, 1], we have f ′′(0) ≥ 0. By our choice
of En,p, it is clear that Gn,p(En,p) = 0. This, together with Gn,p(Λ) = 0, gives

(5) p

n−p∑

i=1

(ei − λi) + (n− p)
n∑

i=n−p+1

(ei − λi) = 0.

Here we denote En,p by (e1, e2, · · · , en). The normalization σ1(Λ) = σ1(En,p) gives

(6)
n−p∑

i=1

(ei − λi) +
n∑

i=n−p+1

(ei − λi) = 0.

(5) and (6) imply

(7)
n−p∑

i=1

(ei − λi) =
n∑

i=n−p+1

(ei − λi) = 0.

Let Λ̃1 = (e1− λ1, · · · , en−p− λn−p) and Λ̃2 = (en−p+1− λn−p+1, · · · , en− λn). (7) means
that σ1(Λ̃1) = σ1(Λ̃2) = 0. Now we compute f ′′(0)
(8)

0 ≤ f ′′(0) =
∑

i6=j

σk−2(En,p|ij)(λi − ei)(λj − ej)

= 2{σk−2(En−2,p−1)σ1(Λ̃1)σ1(Λ̃2) + σk−2(En−2,p−2)σ2(Λ̃1) + σk−2(En−2,p)σ2(Λ̃2)}

= σk−2(En−2,p−2)[σ2
1(Λ̃1)−

n−p∑

i=1

(ei − λi)2] + σk−2(En−2,p)[σ2
1(Λ̃2)−

n∑

n−p+1

(ei − λi)2]

= −σk−2(En−2,p−2)
n−p∑

i=1

(ei − λi)2 − σk−2(En−2,p)
n∑

i=n−p+1

(ei − λi)2.

By Lemma 1, we know that σk−2(En−2,p−2) > 0 and σk−2(En−2,p) > 0. Hence, (8) implies
that

ei = λi, for any i.

Hence the equality holds implies Λ = µEn,p for some µ > 0.

Proposition 2. (i). Suppose that σk(En,p) < 0 for some 2 ≤ k < n/2 and 2 ≤ p < n/2.
If Λ ∈ Γ+

k , then Gn,q(Λ) ≥ 0 for any p ≤ q ≤ n/2. If in addition σ1(Λ) > 0, then
Gn,q(Λ) > 0 for any p ≤ q ≤ n/2.

(ii). Suppose that σk(En,p) = 0 and En,p ∈ Γ+
k for some 2 ≤ k < n/2 and 2 ≤ p < n/2.

If Λ ∈ Γ+
k , then Gn,q(Λ) ≥ 0 for any p ≤ q ≤ n/2. And if Λ ∈ Γ+

k , then Gn,q(Λ) > 0 for
any p ≤ q ≤ n/2.

Proof. Set 0p = (0, · · · , 0). Since Es
n,p = (In−p, 0p)− s(0n−p, Ip), σk(Es

n,p), as a function of
s, is decreasing. Hence, from σk(E0

n,p) > 0 and the assumption that σk(E1
n,p) = σk(En,p) <

0, there is a s ∈ (0, 1) such that σk(Es
n,p) = 0. And one can check that for any other integer
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1 ≤ k′ < k, σk′(Es
n,p) > 0. Hence Es

n,p ∈ Γk and we can apply Lemma 2 to show that
Gn,p(Λ) ≥ 0 for any Λ ∈ Γ+

k , and Gn,p(Λ) > 0 for any Λ ∈ Γ+
k and σ1(Λ) > 0. For

n/2 ≥ q > p, it is easy to see that σk(En,q) < σk(En,p) < 0. Therefore the same argument
applies for q. This proves (i). (ii) is proved by the same argument.

We now prove Proposition 1.
Proof of Proposition 1. Recall the Weitzenböck formula for p-forms ω

∆ω = ∇∗∇ω +Rω,

where

Rω =
∑

j,l=1

ωj ∧ i(el)R(ej , el)ω.

Here ej is a local basis and i(·) denotes the interior product ∆ = dd∗ + d∗d is the Hodge-
de Rham Laplacian and ∇∗∇ is the (positive) Laplacian . In local coordinates, let ω =
ω1 ∧ · · · ∧ ωp. Then

(9) Rω =


(n− p)

p∑

i=1

λi + p
n∑

i=p+1

λi


ω,

where λ’s are eigenvalues of the Schouten tenser Sg. Under the conditions given in (i) or
(ii), Proposition 2 implies that R is a non-negative operator and positive at some point.
It is clear from the Weitzenböck formula that any q-harmonic form ω is parallel for such
q considered in the Proposition. Since R is positive at some point, this forces ω = 0
everywhere. So, Hq(M) = {0}.

Now we prove (iii). By assumption, there is a non-zero harmonic p-form ω. In this case,
R is non-negative by Proposition 2. Again from the Weitzenböck formula, ω is parallel.
Now one can follows the argument given in [11] to prove that the restricted holonomy
group of M is reducible and the universal cover M̃ of M is a Riemannian product. And
we can conclude that M̃ is Sn−p ×Hp.

Finally, we prove Theorem 1. We need to spell out the relationship of k and p such that
the conditions in Proposition 2 are satisfied.

Lemma 4. The followings are true.

(i). k = 2 and n
2 ≥ p ≥ [n−

√
n

2 ]; then En,p 6∈ Γ+
2 . If p = n−√n

2 is an integer, then
En,p ∈ Γ+

2 with σ2(En,p) = 0.
(ii). p = 2 and k ≥ [n−√n

2 ], then En,2 6∈ Γ+
k . If k = n−√n

2 is an integer, then En,2 ∈ Γ+
k

with σk(En,2) = 0.
(iii). For the general case, En,p 6∈ Γ+

k , if 3 ≤ p ≤ n/2, and

(10) k ≥ n− 2p + 4−√n− 2p + 4
2

;
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or if 3 ≤ k < n/2, and

(11) p ≥ n− k + 2−√n− k + 2
2

.

In particular, if n > 4 and k = [n+1
2 ] + 1− p, then En,p 6∈ Γ+

k .

Proof. It is easy to compute that

σ2(En,p) =
(n− 2p)2 − n

2
.

So En,p 6∈ Γ+
2 if n

2 ≥ p ≥ n−√n
2 .

Similarly, if p = 2, we compute

σk(En,2) = σk(In−2)− 2σk−1(In−2) + σk−2(In−2)

=
(n− 2)!

k!(n− k)!
{(n− 2k)2 − n} ≤ 0,

if k ≥ n−√n
2 .

If p > 2 and En,p ∈ Γk, applying Lemma 1 (the last assertion) repeatedly, we have
En−2p+4,2 ∈ Γ+

k . However, one can compute

σk(En−2p+4,2) = σk(In−2p+2) + σk−2(In−2p+2)− 2σk−1(In−2p+2)

=
(n− 2p + 2)!

k!(n− 2p + 4− k)!
{(n− 2p + 4− 2k)2 − (n− 2p + 4)} ≤ 0,

for k satisfies (10). A contradiction.
And if n

2 > k > 2 and En,p ∈ Γk, by Lemma 1, En−k+2,p ∈ Γ+
2 . This implies that

n− k − 2p + 2 > 0. By (11)

σ2(En−k+2,p) =
(n− k + 2− 2p)2 − n + k − 2

2
≤ 0.

Contradiction again.

The statements (i) and (ii) in Lemma 4 are sharp, but (iii) is not sharp. When p > 2
and k > 2, the relationship of them is a combinatorial problem which involves polynomials
of degree k. By Lemma 1, there is an optimal relation for each pair (k, p). For example,
one may calculate that for k ≥ n−√3n−2

2 and p = 3, σk(En,p) ≤ 0. The dual relation is also
true for k = 3. In (iii), we simply reduced it to the cases p = 2 or k = 2 to get relations
(10) and (11). Regarding two relations (10) and (11), for relative small p the first one is
sharper, and for relative small k the later is better.

Proof of Theorem 1. Theorem 1 is follows from Proposition 1 and Lemma 4.



9

3. Construction for the connected sums

In the section, we first prove Theorem 2 for the case without the locally conformally
flat structure. The proof follows closely the idea in [4]. Then we prove Theorem 2 for the
case with the locally conformally flat structure.

Proof of Theorem 2 for the case without the locally conformally flat structure.. Let M be
an n-dimensional manifold with a Γk-positive metric and n > 2k ≥ 4. Fix p ∈ M and let
D = {x ∈ Rn | ‖x‖ ≤ r̄} be a small normal coordinate ball centered at p of radius r̄, where r̄
is smaller than the injectivity radius of M . For any ρ < r̄, let Sn−1(ρ) = {x ∈ D | ‖x‖ = ρ}
be the geodesic ball of radius ρ. Following [4], we consider the Riemannian product D×R
with coordinates (x, t) and its hypersurface

T = {(x, t) ∈ D ×R | (‖x‖, t) ∈ γ, }

where γ is a curve in the (r, t)-plane. We will choose γ satisfying

1. γ begins at one end with a vertical line segment t = 0, r1 ≤ r ≤ r̄ and γ ends at
another end with a horizontal line segment r = r∞ > 0, with r∞ sufficiently small,
see figure 1.

2. The resulted hypersurface T has a metric of Γk-positive.

The statement 2 is the crucial point of the construction. Now we compute the Schouten
tensor at x̄ = (x, t) ∈ T with ‖x‖ = r 6= 0. Choose an orthonormal basis e1, e2, · · · , en

of Tx̄ such that e1 is the tangent vector of the curve {(sx, t)|s, t ∈ R+} ∩ T parametrized
by arc length. Moreover, one can choose this basis such that e1, e2, · · · , en are principal
vectors of the second fundamental form of T in D × R. The corresponding principal
curvature λi are

λ1 = κ,

λi = (−1
r + O(r)) sin θ, i ≥ 2,

where κ is the geodesic curvature of the curve γ at (r, t) and θ is the angle between the
normal to the hypersurface and the t-axis, see [4]. The Gauss equation is

Rijkl = R̄ijkl + hikhjl − hilhjk

= R̄ijkl + λiλj(δikδjl − δilδjk).

Here Rijkl (R̄ijkl resp.) is the curvature tensor of T (D ×R resp.). It is clear that

R̄ijkl = R̄D
ijkl, i, j, k, l ≥ 2,

R̄1jkl = R̄D
∂rjkl cos θ, j, k, l ≥ 2,

R̄1j1l = R̄D
∂rj∂rl cos2 θ j, l ≥ 2.
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Hence, the Ricci tensor of T is given by (∀i, j ≥ 2),

Rij = RD
ij −RD

i∂rj∂r sin2 θ − κδij

(
1
r

+ O(r)
)

sin θ + (n− 2)δij

(
1
r

+ O(r)
)2

sin2 θ,

R11 = RD
∂r∂r −RD

∂r∂r sin2 θ − (n− 1)κ
(

1
r

+ O(r)
)

sin θ,

R1j = RD
1j −RD

1j(1− cos θ).

We compute the scalar curvature R and Schouten tensor S:

R = RD − 2RD
∂r∂r sin2 θ

+(n− 1)(n− 2)
(

1
r2

+ O(1)
)

sin2 θ − 2(n− 1)κ
(

1
r

+ O(r)
)

sin θ,

(12)

S = SD + V sin2 θ

+
1
2

(
1
r2

+ O(1)
)

sin2 θ




1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0
0 0 · · · 0 −1




−κ

(
1
r

+ O(r)
)

sin θ




0 0 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0
0 0 · · · 0 1




= SD + V sin2 θ +
1
2

(
1
r2

+ O(1)
)

sin2 θG0 − κ

(
1
r

+ O(r)
)

sin θG1,

where all entries of the matrix V are bounded ( depending only on the metric on D).
It is easy to check that the n × n matrix G0 is in Γ+

k if and only if n > 2k. From this
fact, one can see that when r is small, the third term in (12) dominates others. Since Γ+

k

is a open cone and SD ∈ Γ+
k , there is a positive constant c0 > 0 such that SD − c0I ∈ Γ+

k .
Here I is the identity matrix. In order to satisfy 2, from the convexity of Γ+

k we only need
to find a curve such that the matrix

(13) F := c0I − c1 sin2 θI +
1
2

(
1
r2
− c2

)
sin2 θG0 − κ

(
1
r

+ c3

)
sin θG1

is in Γ+
k , Where c1 > 0 is chosen such that (Vij) + c1I is positive definite and c2, c3 are

positive constants independent of r. Near the starting point (0, r1), by the openness of
Γ+

k we can choose a small θ0 such that for 0 ≤ θ < θ0 the matrix F is in Γ+
k . Hence we

can bend γ in a small region around the point (0, r1) and end the “first bend” at (t2, r2)
with θ = θ0, see [4]. Now we continue the curve γ by a straight line segment with angle θ0
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and end at a point (t3, r3) where r3 > 0 is very small which will be chosen later. Since on
(t2, t3) the geodesic curvature κ = 0, F is in Γ+

k . We find r3 small so that for any r ≤ r3

(c0 − c1 sin2 θ)I +
1
2

(
1
r2
− c2

)
sin2 θG0 − κ

(
1
r

+ c3

)
sin θG1 ∈ Γ+

k .

We compute

σk(F ) = ak (n− 1)!
k!(n− k)!

(n− 2k − b

a
),

where
a =

1
2
(

1
r2
− c2) sin2 θ + (c0 − c1 sin2 θ),

b = κ(
1
r

+ c3) sin θ − 2(c0 − c1 sin2 θ).

Since n > 2k, to keep the k-positivity we only need b/a < 1/2, i.e.,

2κ(
1
r

+ c3) sin θ <
1
2
(

1
r2
− c2) sin2 θ + 3(c0 − c1 sin2 θ).

Now we can choose γ as in [15] to finish the proof.

The proof of the last statement in Theorem 2 is inspired by arguments in [12], we need
a lemma which was proven in [7].

Lemma 5. Let D be the unit disk in Rn and ds2 the standard Euclidean metric. Let
g0 = e−2u0ds2 be a metric on D of positive Γk-curvature with k < n/2. Then there is
a conformal metric g = e−2uds2 on D\{0} of positive Γk-curvature with the following
properties:

1). σk(g) > 0 in D\{0}.
2). u(x) = u0(x) for r = |x| ∈ (r0, 1].
3). u(x) = a + log r for r = |x| ∈ (0, r3) and some constant a.

for some constant r0 and r3 with 0 < r3 < r0 < 1.

Proof of Theorem 2 in the case of locally conformally flat. Let (M1, g1) and (M2, g2)
be two compact locally conformally flat manifolds of Γk-positive. Let pi ∈ Mi. The
locally conformally flatness of Mi implies that there is a neighborhood Ui of pi such that
(Ui, gi) = (D, e−2ui |dx|2). Applying Lemma 5, we obtain a new conformal metric g̃i

on Mi\{pi} satisfying in D conditions 1)-3) with constants ri
0, r

i
3 and ai. By scaling of

metrics, we may assume that a1 = a2 = 0. Let r0 = min{r1
3, r

2
3}. Hence in {0 < |x| ≤ r0}

two metrics g̃1 and g̃2 are the same, namely, g̃1 = g̃2 = 1
|x|2 |dx|2. The inversion map

φ(x) = (r0)2

2
x
|x|2 , maps { r0

2 ≤ |x| ≤ r0} into itself. Now we can glue M1 and M2 by

identifying { r0

2 ≤ |x| ≤ r0} by φ. Note that φ is conformal. It is clear that the glued
manifold is a locally conformally flat manifold of positive Γk.

Added-in-proof. After this paper was completed, we learned two recent papers by
Chang-Hang-Yang [2] and M. González [3] on further topological implications of Γk posi-
tivity for locally conformally flat manifolds.
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