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Abstract. The arguments in paper [2] have been refined to prove a micro-
scopic convexity principle for fully nonlinear elliptic equation under a more
natural structure condition. We also consider the corresponding result for the
partial convexity case.

1. Introduction. Consider fully nonlinear elliptic equation in the form

F (∇2u,∇u, u, x) = 0, x ∈ Ω ⊂ R
n is a domain. (1)

Assume F is elliptic at some u ∈ C2(Ω) in the sense that

(
∂F

∂rαβ
(∇2u(x),∇u(x), u(x), x)) > 0, ∀x ∈ Ω. (2)

The following microscopic convexity principle was proved in [2].

Theorem 1.1. ([2]) Let F = F (r, p, u, x) ∈ C2,1(Sn × R
n × R × Ω) and let u ∈

C2,1(Ω) be a convex solution of (1). If F is elliptic and

F (A−1, p, u, x) is locally convex in (A, u, x) for each p fixed, (3)

then the rank of Hessian (∇2u(x)) is constant in Ω.

This type of constant rank theorem was first established by Caffarelli-Friedman
[3] for convex solutions of semilinear elliptic equation

∆u = f(∇u, u, x), Ω ⊂ R
2, (4)

under the condition that
1

f(∇u,u,x) is convex in (u, x) for each fixed ∇u. (5)
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A similar result was also discovered by Yau [13] at about the same time and the
result for equation (4) in [3] was generalized to Ω ⊂ R

n by Korevaar-Lewis [11].
The microscopic convexity principle is a powerful tool in the study of geometric
properties of solutions of nonlinear differential equations and is very useful for the
existence of convex solutions of differential equations [8, 7, 9, 4, 2]. The constant
rank theorem shares the same spirit with the results of Hartman-Nirenberg in [10]
for the gradient mapping.

Theorem 1.1 is general in the sense it covers a wide class of fully nonlinear
elliptic differential equations, including Hessian equations whose elliptic structure
was studied in the pioneer work of Caffarelli-Nirenberg-Spruck in [5]. But condition
(3) in Theorem 1.1 is tricky to apply. For example, for equation (4), if apply
Theorem 1.1 directly, one needs that

f(∇u, u, x) is concave in (u, x) for each fixed ∇u. (6)

This condition is obviously stronger than (5). On the other hand, rewrite equation
(4) as

−
1

∆u
= −

1

f(∇u, u, x)
, (7)

then condition (5) fits Theorem 1.1. This disparity indicates that there should be
a more natural structural condition for microscopic convexity principle.

Denote Sn
+ the space of positive definite real symmetric n× n matrices, for each

fixed p ∈ R
n, define the zero sub-level set

ΓF = {(A, u, x) ∈ Sn
+ × R × Ω|F (A−1, p, u, x) ≤ 0}. (8)

In the rest of the paper, we assume

F (0,∇u(x), u(x), x) 6= 0, ∀x ∈ Ω. (9)

Theorem 1.2. Let F = F (r, p, u, x) ∈ C2,1(Sn ×R
n ×R ×Ω) and let u ∈ C2,1(Ω)

be a convex solution of equation (1). Suppose F satisfies condition (2) and (9) at
(∇2u(x),∇u(x), u(x), x) for each x ∈ Ω. If for each x ∈ Ω and p = ∇u(x),

ΓF is locally convex at (A, u(x), x), (10)

then the rank of the hessian (∇2u(x)) is constant in Ω. If l is the rank of ∇2u, then
∀x0 ∈ Ω, there exist a neighborhood U of x0 and (n− l) fixed directions V1, . . . , Vn−l

such that ∇2u(x)Vj = 0 for all 1 ≤ j ≤ n − l and x ∈ U .

In other words, the point-wise convexity condition on F in Theorem 1.1 can
be replaced by the convexity of the zero sub-level set of F in Theorem 1.2. This
resolves the problem regarding equation (4) we just discussed since the zero sub-sets
{∆u − f ≤ 0} and {−1

∆u + 1
f ≤ 0} are the same.

In fact, condition (10) can be weakened further. Denote S
n−1 the unit sphere in

R
n. For each θ ∈ S

n−1, define

θR = {tθ|t ∈ R}, (θR)⊥ = {η ∈ R
n| < η, θ >= 0}

and

Sθ = {A ∈ Sn|Aθ = 0}, S+
θ = {A ∈ Sn|Aθ = 0, A > 0 on (θR)⊥}
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Let (A, p, u, x) ∈ S+
θ × R

n × R × Ω and B ∈ S+
θ with B = A−1 on (θR)⊥. For

each fixed p ∈ R
n and x0 ∈ Ω, set

Γθ
F ={(B, u, x) ∈ S+

θ × R × θR

|F (A, p, u, x + x0) ≤ 0, A ∈ S+
θ , A = B−1 on (θR)⊥}.

Theorem 1.3. The same conclusion in Theorem 1.2 is true if condition (10) is
replaced by the following structural condition: for any fixed x0 ∈ Ω, p = ∇u(x0)
and θ ∈ S

n−1

Γθ
F is locally convex at (B, u(x0), 0) with B = A−1 ∈ S+

θ . (11)

There are corresponding theorems for the partially convex solutions of equation
(1). They appear in the last section of the paper.

2. Convexity. We follow the same noation as in [2]. For each function F (r, p, u, x),
denote

Fαβ =
∂F

∂rαβ
, Fu =

∂F

∂u
, F xi =

∂F

∂xi
, F pi =

∂F

∂pi
,

Fαβ,γη =
∂2F

∂rαβ∂rγη
, Fαβ,u =

∂2F

∂rαβ∂u
, Fαβ,xk =

∂2F

∂rαβ∂xk
,

Fu,u =
∂2F

∂2u
, Fu,xi =

∂2F

∂u∂xi
, F xi,xj =

∂2F

∂xi∂xj
,

(12)

the partial derivatives with respect to the corresponding variables. Set

X∗
F = X∗

F (A, p, u, x)) = ((Fαβ), Fu, (F x1 , · · · , F xn)), (13)

Γ⊥
X∗

F
= Γ⊥

X∗

F
(A, p, u, x) = {X̃ ∈ Sθ × R × θR| < X̃, X∗

F (A, p, u, x) >= 0}. (14)

X∗
F is a vector in Sn×R×R

n, where functions Fαβ , Fu, F x1 , · · · , F xn are evaluated
at (A, p, u, x).

For X̃ =
(

(Xij), Y, (Zk)
)

∈ Sθ × R × θR, define a quadratic form

Q∗(X̃, X̃) =
n

∑

i,j,k,l=1

F ij,klXijXkl + 2
n

∑

i,j,k,l=1

F ijBklXikXjl

+ 2

n
∑

i,j=1

F ij,uXijY + 2

n
∑

i,j,k=1

F ij,xkXijZk

+ Fu,uY 2 + 2

n
∑

i=1

Fu,xiY Zi +

n
∑

i,j=1

F xi,xjZiZj,

(15)

again functions F ij,kl, F ij , Fu,u, F ij,u, F ij,xk , Fu,xi , F xi,xj are evaluated at (A, p,

u, x), and B ∈ S+
θ with B = A−1 on (θR)⊥.

Lemma 2.1. If (A, p, u, x) ∈ Sn
+ × R

n × R × Ω such that F (A, p, u, x) = 0, then
ΓF is locally convex at (A−1, u, x) if and only if

Q∗(X̃, X̃) ≥ 0 (16)

for every X̃ =
(

(Xij), Y, (Zk)
)

∈ Sn × R × R
n with < X̃, X∗

F (A, p, u, x) >= 0.
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Proof. Fix p, let F̃ (B, u, x) = F (B−1, p, u, x) for (B, u, x) ∈ Sn
+ × R × Ω. Then the

condition (10) is equivalent to

n
∑

α,β,γ,η=1

F̃αβ,γη(B, u, x)X̂αβX̂γη + 2

n
∑

α,β=1

F̃αβ,u(B, u, x)X̂αβ Ŷ

+ 2

n
∑

α,β,k=1

F̃αβ,xk(B, u, x)X̂αβẐk + F̃u,u(B, u, x)Ŷ 2

+ 2

n
∑

k=1

F̃u,xk(B, u, x)Ŷ Ẑk +

n
∑

i,j=1

F̃ xi,xj (B, u, x)ẐiẐj ≥ 0

(17)

for every X̂ ∈ Sn, Ŷ ∈ R, Ẑ = (Ẑi) ∈ R
n, with

∑

α,β

F̃αβ(B, u, x)X̂αβ + F̃u(B, u, x)Ŷ + F̃ xi(B, u, x)Ẑi = 0.

A direct computation yields

F̃αβ(B, u, x) = − F ij(B−1, p, u, x)BiαBjβ ,

F̃αβ,u(B, u, x) = − F ij,u(B−1, p, u, x)BiαBjβ ,

F̃αβ,γη(B, u, x) =F ij,kl(B−1, p, u, x)BiαBjβBkγBlη

+ F ij(B−1, p, u, x)(BiγBjβBηα + BiαBjηBβγ).

Other derivatives can be calculated in a similar way. Substituting these into (17),
equation (16) follows directly.

Lemma 2.2. If (A, p, u, x) ∈ S+
θ × R

n × R × Ω such that F (A, p, u, x) = 0, Γθ
F is

locally convex near (B, u, x) (where B = A−1 on S+
θ ) if and only if

Q∗(X̃, X̃) ≥ 0, ∀X̃ ∈ Γ⊥
X∗

F
, (18)

where Q∗ is evaluated at (A, p, u, x).

Proof. Note that A may not be invertible. But the same computations in the proof
of Lemma 2.1 can be carried out without difficult. We may assume θ = (1, 0, · · · , 0).

In this case, all X1j = Xj1 = X̂1j = X̂j1 = 0 for all j = 1, · · · , n. Therefore, we can
still perform corresponding inversions in the proof of Lemma 2.1. Also notice that
Zj = Ẑj = 0 for all j = 2, · · · , n, because we restrict x variable in θR = R

1.

It is clear that condition (10) is weaker than condition (3). The fact condition
(11) is weaker than condition (10) can be seen from Lemma 2.1 and Lemma 2.2.
Note that condition (11) has a dimensional deduction in symmetric matrix A. The
remaind part of this paper is to refine the arguments in [2] to prove Theorem 1.3
under weaker condition (11).

With the assumptions of F and u in Theorem 1.3, u is automatically in C3,1.
This will be assumed in the rest of this paper. Let W (x) = ∇2u(x) and l =
minx∈Ω rank(∇2u(x)). Since l = n is of full rank, only l ≤ n− 1 is of interest. And
this will be assume in the rest of the proof. Suppose z0 ∈ Ω is a point where W is
of minimal rank l.
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Throughout this paper we use convention that σj(W ) = 0 if j < 0 or j > n. For
any symmetric function f(W ), denote

f ij =
∂f(W )

∂uij
, f ij,km =

∂2f(W )

∂uij∂ukm

For each z0 ∈ Ω where W is of minimal rank l. Pick an open neighborhood O of
z0, for any x ∈ O, let λ1(x) ≤ λ2(x)... ≤ λn(x) be the eigenvalues of W at x. There
is a positive constant C > 0 depending only on ‖u‖C3,1, W (z0) and O, such that
λn(x) ≥ λn−1(x)... ≥ λn−l+1(x) ≥ C for all x ∈ O. Let G = {n−l+1, n−l+2, ..., n}
and B = {1, ..., n − l} be the “good” and “bad” sets of indices respectively. Let
ΛG = (λn−l+1, ..., λn) be the “good” eigenvalues of W at x and ΛB = (λ1, ..., λn−l)
be the “bad” eigenvalues of W at x. For the simplicity, write G = ΛG, B = ΛB if
there is no confusion. Note that for any δ > 0, we may choose O small enough such
that λi(x) < δ for all i ∈ B and x ∈ O. Use notation h = O(f) if |h(x)| ≤ Cf(x)
for x ∈ O with the positive constant C under control. It is clear that λi = O(φ) for
all i ∈ B.

For ǫ > 0 sufficient small, define

qǫ(W ) =
σl+2(Wǫ)

σl+1(Wǫ)
, φǫ(W ) = σl+1(Wǫ) + qǫ(W ), (19)

where Wǫ = W + ǫI. We will also denote

Gǫ = (λn−l+1 + ǫ, ..., λn + ǫ), Bǫ = (λ1 + ǫ, ..., λn−l + ǫ).

To simplify the notation, we will write q for qǫ, W for Wǫ, G for Gǫ and B for
Bǫ with the understanding that all the estimates will be independent of ǫ. In this
setting, with O is small enough, there is C > 0 independent of ǫ such that

σl+1(W (x)) ≥ Cǫ, and σ1(B(x)) ≥ Cǫ, for all x ∈ O. (20)

Similarly write h = O(f) if |h(x)| ≤ Cf(x) for x ∈ O with positive constant C

under control independent of ǫ.
The importance of the function q is reflected in the following proposition.

Proposition 1. [Proposition 2.1 and Corollary 2.2 in [2]] For each z ∈ O with
W (z) diagonal at z,

∑

i,j,k,m

qij,kmuijαukmβ = O(φ +
∑

i,j∈B

|∇uij |) −

∑

i,j∈B,i6=j uijαujiβ

σ1(B)

−

∑

i∈B ViαViβ

σ3
1(B)

− 2
∑

i∈B,j∈G

σ2
1(B|i) − σ2(B|i)

σ2
1(B)λj

uijαujiβ ,

(21)

where

Viα = uiiασ1(B) − (uii + ǫ)
(

∑

j∈B

ujjα

)

. (22)

If u ∈ C3,1(Ω) is a convex function and l = minx∈Ω rank(W (x)), then the func-
tion q(x) = q(W (x)) defined in (19) is in C1,1(Ω) and its C1,1 norm is bounded
independent of ǫ.

We now prove a strong maximum principle for φ defined in (19) for equation (1).
Theorem 1.3 is a direct consequence of Lemma 2.2 and the following proposition.
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Proposition 2. Suppose that the function F satisfies conditions (2) and (18) and
let u ∈ C3,1(Ω) be a convex solution of (1). If ∇2u attains its minimum rank l

at certain point x0 ∈ Ω, then there exist a neighborhood O of x0 and a positive
constant C independent of φ (defined in (19)), such that

∑

α,β

Fαβφαβ(x) ≤ C(φ(x) + |∇φ(x)|), ∀x ∈ O. (23)

In turn, ∇2u is of constant rank l in O. Moreover, for each x0 ∈ O, there exist a
neighborhood U of x0 and (n− l) fixed directions V1, · · · , Vn−l such that ∇2u(x)Vj =
0 for all 1 ≤ j ≤ n − l and x ∈ U .

Proof. Let u ∈ C3,1(Ω) be a convex solution of equation (1) and W (x) = (uij(x)).
Let z0 ∈ Ω be a point where W = (∇2u) attains minimal rank l. We may assume
l ≤ n− 1, otherwise there is nothing to prove. Pick an open neighborhood O of z0,
for any x ∈ O, let G = {n − l + 1, n − l + 2, ..., n} and B = {1, ..., n − l} be the
“good” and “bad” sets of indices for eigenvalues of ∇2u(x) respectively.

Setting φ as (19), φ ∈ C1,1(O) by Proposition 1. There is a constant C > 0 such
that for all x ∈ O,

1

C
σ1(B)(x) ≤ φ(x) ≤ Cσ1(B)(x),

1

C
σ1(B)(x) ≤ σl+1(W (x)) ≤ Cσ1(B)(x).

For each z ∈ O fixed, letting λ1 ≤ λ2... ≤ λn be the eigenvalues of (uij(z)) at z,
one may assume (uij(z)) is diagonal with proper choice of orthonormal coordinates,
and uii(z) = λi, i = 1, · · · , n. We will work on equation (1) to obtain the differential
inequality (23) for φǫ defined in (19) with constant C1, C2 independent of ǫ.

Note that (20) implies

ǫ ≤ Cφ(x), for all x ∈ O. (24)

And

φα =
∂φ

∂xα
= φijuijα, φαβ =

∂2φ

∂xα∂xβ
= φijuijαβ + φij,kmuijαukmβ .

Differentiate equation (1) in xi and then xj to obtain

∑

α,β

Fαβuαβi +
∑

k

F pkuki + Fuui + F xi = 0, (25)

∑

α,β

Fαβuαβij +
∑

k

F pkukij + Fuuij

+
∑

α,β

(
∑

γ,η

Fαβ,γηuγηj +
∑

k

Fαβ,pkukj + Fαβ,uuj + Fαβ,xj)uαβi

+
∑

k

(
∑

α,β

F pk,αβuαβj +
∑

l

F pk,plulj + F pk,uuj + F pk,xj)uki

+ (
∑

α,β

Fu,αβuαβj +
∑

l

Fu,plulj + Fu,uuj + Fu,xj)ui

+
∑

α,β

F xi,αβuαβj +
∑

k

F xi,pkukj + F xi,uuj + F xi,xj = 0.

(26)



MICROSCOPIC CONVEXITY 795

As uαβij = uijαβ , we get

∑

Fαβφαβ =
∑

Fαβφijuijαβ +
∑

Fαβφij,kmuijαukmβ

=
∑

Fαβφij,kmuijαukmβ −
∑

φijF pkukij −
∑

φij [2
∑

Fαβ,pkuαβiukj

+ Fuuij +
∑

F pk,plukiulj + 2
∑

F pk,uukiuj + 2
∑

F pk,xj uki]

−
∑

φij [Fαβ,γηuαβiuγηj + 2
∑

Fαβ,uuαβiuj + 2
∑

Fαβ,xjuαβi

+
∑

Fu,uuiuj + 2
∑

Fu,xiuj +
∑

F xixj ]

(27)

We estimate the terms in the right hand side of (27). The analysis those terms
with third order derivatives which have with at least two indices in B is completely
same as in [2], with the help of the concavity properties of the function q in (19).
The remaining terms in (27) will be sorted out in such way so that condition (18)
can be used to obtain appropriate control.

Since W = (vij) = (uij + εδij) is diagonal at z, by Lemma 2.4 in [2],

φij(z) =

{

σl(G) +
σ2
1(B|i)−σ2(B|i)

σ2
1
(B)

+ O(φ), if i = j ∈ B

O(φ), otherwise.
(28)

Hence at z

∑

i,j

φij [Fuuij + 2
∑

Fαβ,pkuαβiukj +
∑

F pk,plukiulj

+ 2
∑

(F pk,uukiuj + F pk,xj uki)]

=O(φ) +

n
∑

i=1

φii[Fuuii + 2
∑

Fαβ,piuαβiuii + F pi,piuiiuii

+ 2F pi,uuiiui + 2F pi,xiuii]

=O(φ) +
∑

i∈B

φii[Fu + 2
∑

Fαβ,piuαβi + F pi,piuii + 2F pi,uui + 2F pi,xi ]uii

≤O(φ) + C
∑

i∈B

(σl(G) +
σ2

1(B|i) − σ2(B|i)

σ2
1(B)

)uii = O(φ),

(29)

since λi = O(φ), i ∈ B and σl+1(W ) ≥ σl(G)σ1(B). This takes care of the third
term on the right hand side of (27). For the second term we have

∑

φijF pkukij = O(φ) +
∑

i∈B

φiiF pkukii = O(φ +
∑

i,j∈B

|∇uij |) (30)
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For the fourth term in (27), by (28) we have,
∑

φij [Fαβ,γηuαβiuγηj + 2Fαβ,uuαβiuj + 2Fαβ,xjuαβi

+ Fu,uuiuj + 2Fu,xiuj + F xixj ]

=O(φ) +
∑

i∈B

φii[
∑

Fαβ,γηuαβiuγηi + 2
∑

Fαβ,uuαβiui

+ 2
∑

Fαβ,xiuαβi + Fu,uu2
i + 2Fu,xiui + F xixi ]

=O(φ +
∑

i,j∈B

|∇uij |) +
∑

i∈B

(σl(G) +
σ2

1(B|i) − σ2(B|i)

σ2
1(B)

)

[
∑

α,β,γ,η∈G

Fαβ,γηuiαβuiγη + 2
∑

α,β∈G

Fαβ,uuiαβui

+ 2
∑

α,β∈G

Fαβ,xiuiαβ + Fu,uu2
i + 2Fu,xiui + F xixi ].

(31)

Now deal with the first term
∑

Fαβφij,kmuijαukmβ in (27). Note that

φij,km = σ
ij,km
l+1 + qij,km.

Since σl−1(W |ij) = O(φ) for i, j ∈ G, i 6= j, for α, β fixed, by Lemma 2.3 in [2],
∑

σ
ij,km
l+1 uijαukmβ =

∑

i6=k

σ
ii,kk
l+1 uiiαukkβ +

∑

i6=j

σ
ij,ji
l+1 uijαujiβ

=
∑

i6=k

σl−1(W |ik)viiαukkβ −
∑

i6=j

σl−1(W |ij)uijαujiβ

=O(φ +
∑

i,j∈B

|∇uij |) − 2
∑

i∈B,j∈G

σl−1(G|j)uijαuijβ .

As σl−1(G|j) = σl(G)
λj

, j ∈ G, we have

σ
ij,km
l+1 uijαukmβ = O(φ +

∑

i,j∈B

|∇uij |) − 2σl(G)
∑

i∈B,j∈G

1

λj
uijαuijβ .

By Proposition 1,

∑

i,j,k,m

qij,kmuijαukmβ =O(φ +
∑

i,j∈B

|∇uij |) −
1

σ1(B)

∑

i,j∈B,i6=j

uijαujiβ

−

∑

i∈B ViαViβ

σ3
1(B)

− 2
∑

i∈B,j∈G

σ2
1(B|i) − σ2(B|i)

σ2
1(B)λj

uijαujiβ ,

where Viα is defined in (22). We conclude that

∑

Fαβφij,kmuijαukmβ = −
∑

α,β

Fαβ [

∑

i∈B ViαViβ

σ3
1(B)

+

∑

i,j∈B,i6=j uijαujiβ

σ1(B)

+ 2
∑

i∈B

(σl(G) +
σ2

1(B|i) − σ2(B|i)

σ2
1(B)

)
uijαujiβ

λj
]

+ O(φ +
∑

i,j∈B

|∇uij |).

(32)
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Combining (29)-(32), one reduces (27) to
∑

Fαβφαβ

=O(φ +
∑

i,j∈B

|∇uij |) −
∑

α,β

Fαβ [

∑

i∈B ViαViβ

σ3
1(B)

+

∑

i,j∈B,i6=j uijαujiβ

σ1(B)
]

−
∑

i∈B

[σl(G) +
σ2

1(B|i) − σ2(B|i)

σ2
1(B)

][
∑

α,β,γ,η∈G

Fαβ,γηuiαβuiγη

+ 2
∑

αβ∈G

Fαβ
∑

j∈G

1

λj
uijαuijβ + 2

∑

α,β∈G

Fαβ,uuiαβui

+ 2
∑

α,β∈G

Fαβ,xiuiαβ + Fu,uu2
i + 2Fu,xiui + F xi,xi ].

(33)

For each i ∈ B, set

Ji =
∑

α,β,γ,η∈G

Fαβ,γηuiαβuiγη + 2
∑

α,β∈G

Fαβ
∑

j∈G

1

λj
uijαuijβ

+ 2
∑

α,β∈G

Fαβ,uuiαβui + 2
∑

α,β∈G

Fαβ,xiuiαβ

+ Fu,uu2
i + 2Fu,xiui + F xi,xi,

(34)

where functions Fαβ,γη, · · · are evaluated at (∇2u(z),∇u(z), u(z), z). So far, we
have followed same lines of arguments in [2]. We now modify the arguments in [2]
to use of new structural condition (18) to control Ji in (34).

Condition (9) implies that G 6= ∅, we may assume

unn(z) > 0, i = 1 ∈ B, and θ = (1, 0 · · · , 0) = e1.

By condition (2), and the assumption of F and u (since Ō ⊂ Ω), there exists a
constant δ0 > 0 independent of the lower bound of ∇2u and ǫ, such that

(Fαβ) ≥ δ0I, ∀y ∈ O. (35)

In particular, Fnn ≥ δ0. For any δ > 0 small enough, set

Ãδ =
( 0 0

0 (uij(z) + δδij)
n
i,j=2

)

.

So, Ãδ ∈ S+
e1

and

Ãδ −∇2u(z) = O(δ + φ), F (Ãδ,∇u(z), u(z), z) = O(δ + φ).

If O is sufficient small around the minimal rank point x0 and choose 0 < δ <<

unn(z), (35) and the mean value theorem imply that there is |λδ| ≤ C(δ + φ),

Aδ = Ãδ +
(

0 0
0 λδ

)

∈ S+
e1

, F (Aδ,∇u(z), u(z), z) = 0. (36)

where 0 is the (n − 1) × (n − 1) zero matrix.
(25) and (36) yield

∑

α,β∈G

Fαβuαβ1 + Fuu1 + F x1 = g;
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where Fαβ , Fu, etc. are evaluated at (Aδ,∇u(z), u(z), z), and

g = O(δ + φ +
∑

i,j∈B

|∇uij |).

Set

Xnn = u1nn −
g

Fnn
;

Xαβ = 0, ∀α ∈ B; Xαβ = uαβ1, otherwise;

Y = u1, Zk = δk1, ∀k,

again, Fnn is evaluated at (Aδ,∇u(z), u(z), z).

Thus X̃ = ((Xαβ), Y, Z1, · · · , Zn) ∈ Γ⊥
X∗

F
(Aδ,∇u(z), u(z), z). Conditions (18)

and (36) imply (by letting δ → 0)

Ji ≥ −C(φ +
∑

i,j∈B

|∇uij |). (37)

Since C ≥ σl(G) +
σ2
1(B|i)−σ2(B|i)

σ2
1
(B)

≥ 0,

∑

α,β

Fαβφαβ ≤C(φ +
∑

i,j∈B

|∇uij |)

−
∑

α,β

Fαβ(

∑

i∈B ViαViβ

σ3
1(B)

+

∑

i,j∈B,i6=j uijαujiβ

σ1(B)
).

(38)

The term
∑

i,j∈B |∇uij | in (38) can be controlled in the same way as in [2] using
the remaind terms on the right hand side. Here is a sketch.

By (35),

∑

α,β

FαβViαViβ ≥ δ0

n
∑

α=1

V 2
iα,

∑

α,β

Fαβuijαuijβ ≥ δ0

n
∑

α=1

u2
ijα.

Inserting above inequalities into (38),

∑

α,β

Fαβφαβ ≤ C(φ+
∑

i,j∈B

|∇uij |)−δ0

n
∑

α=1

[

∑

i∈B V 2
iα

σ3
1(B)

+

∑

i,j∈B i6=j |uijα|2

σ1(B)
]. (39)

From Proposition 1, it follows that

φα = O(φ) +
∑

i∈B

(σl(G) +
σ2

1(B|i) − σ2(B|i)

σ2
1(B)

)uiiα. (40)

By Lemma 3.3 in [2] and (39), there exist positive constants C1, C2 independent of
ǫ and the lower bound of tr(∇2u(x)), such that

∑

α,β

Fαβφαβ ≤ C1(φ + |∇φ|) − C2

∑

i,j∈B

|∇uij |. (41)

Taking ǫ → 0, (23) is verified for all z ∈ O.
The Strong Maximum Principle implies φ ≡ 0 in O. Since Ω is flat, following the

arguments in [3, 11], for any x0 ∈ Ω, there is a neighborhood U and (n − l) fixed
directions V1, · · · , Vn−l such that ∇2u(x)Vj = 0 for all 1 ≤ j ≤ n− l and x ∈ U .
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There is also a parabolic version of Theorem 1.3 for the equation in the form

ut = F (∇2u,∇u, u, x, t). (42)

Here one needs stronger structural condition for (42): for each p, x0 and t > 0,

F (A, p, u, x + x0, t) is locally convex in(B, u, x), (43)

for A ∈ S+
θ , B = A−1 on (θR)⊥. Condition (43) was discussed in [12] for the

preservation of convexity of equation (42) in whole space R
n. The same lines of

proof in [2] with modifications in this paper, we can prove

Theorem 2.3. Suppose that the function F satisfies conditions (2) and (43) for
each t ∈ [0, T ], let u ∈ C3,1(Ω × [0, T ] is a convex solution of (42). For each
0 < t0 ≤ T , if ∇2u attains minimum rank l at certain point x0 ∈ Ω, then there exist
a neighborhood O of x0 and two positive constant C1, C2 independent of φ (defined
in (19)), such that for t close to t0, σl(uij(x, t)) > 0 for x ∈ O, and

∑

α,β

Fαβφαβ(x) − φt ≤ C1φ(x) + C2|∇φ(x)|, ∀x ∈ O. (44)

Remark 1. Condition (9) forces G 6= ∅, that was used in the proof to create

appropriate X̃ to get (37). When G = ∅, this trick can not apply if |Fu| + |F xi |
does not have lower bound. On the other hand, in this case,

Ji = Fu,uu2
i + 2Fu,xiui + F xi,xi, (45)

where Fu,u, Fu,xi , F xi,xi are evaluated at (∇2u(z),∇u(z), u(z), z). For each p, set

Γ0 = {F (0, p, u, x) = 0}.

G = ∅ implies |∇2u(z)| ≤ Cφ(z), therefore the following condition will guarantee
(37) in this case: for each p = ∇u(x) fixed, F (0, p, u, x) is locally convex in (u, x)
near Γ0.

3. Partial convexity. We treat the the constant rank theorem for partially convex
solutions of fully nonlinear elliptic equation (1) with ellipticity assumption (2).

Let N = N
′

+ N
′′

with N
′

and N
′′

are two positive integers. Write x = (x
′

, x
′′

)

with x
′

∈ R
N

′

and x
′′

∈ R
N

′′

respectively. As in the case of the study of the full
convexity, homotopic deformation argument (provided if there is a homotopic path)
would reduce this problem to a constant rank theorem. The question we want to
address is, when ∇2

x′u(x
′

, x
′′

) has constant rank?

Let us write x = (x
′

, x
′′

) ∈ Ω and p = (p
′

, p
′′

) ∈ RN with p
′

∈ RN
′

, p
′′

∈ RN
′′

and split a matrix A ∈ SN into
(

a b

bT c

)

with a ∈ SN
′

, b ∈ R
N

′

×N
′′

and c ∈ SN
′′

.

Let

SN,⊕ = {A ∈ SN |A =
(

a b

bT c

)

, a ∈ SN
′

+ }

Define for (A, p, u, x) ∈ SN,⊕ × R
N × R × Ω

F̃ (A, p
′′

, u, x
′

) = F (
(

a−1 a−1b

(a−1b)T c + bT a−1b

)

, p, u, x)

For each fixed x
′′

and p
′

∈ R
N

′

, define the zero sub-level set

ΓF = {(A, p
′′

, u, x
′

) ∈ SN,⊕ × R
N

′′

× R × R
N

′

|F̃ (A, p
′′

, u, x
′

) ≤ 0}. (46)
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We say u is partially convex if u(x
′

, x
′′

) is convex in the first variable x
′

for each

fixed x
′′

.

Theorem 3.1. Let F = F (r, p, u, x) ∈ C2,1(SN × R
N × R × Ω) and let u ∈

C2,1(Ω) be a partially convex solution of (1). Suppose F satisfies condition (2)
at (∇2u(x),∇u(x), u(x), x) for each x ∈ Ω. If for each x ∈ Ω and p = ∇u(x),

ΓF is locally convex in (A, p
′′

, u, x
′

), (47)

then the rank of the hessian (∇2
x′ u(x

′

, x
′′

)) is constant in Ω.

Under the stronger structural condition

F̃ (A, p
′′

, u, x
′

) is convex, (48)

the above theorem was proved by C. Chen [6] following the arguments in [2]. The
partial convexity of solutions of equation (1) under (48) with state constraint bound-
ary condition on convex domains was studied in [1]. The proof of Theorem 3.1 will
make use of the refined arguments in section 2.

Set

X∗
F = X∗

F (A, p, u, x)) = ((Fαβ), (F
p

N
′
+1 , · · · , F pN ), Fu, (F x1 , · · · , F x

N
′ )), (49)

Γ⊥
X∗

F
=Γ⊥

X∗

F
(A, p, u, x)

={X̃ ∈ SN × R
N

′′

× R × R
N

′

| < X̃, X∗
F (A, p, u, x) >= 0}.

(50)

X∗
F is a vector in SN×R

N
′′

×R×R
N

′

, where functions Fαβ , F
p

N
′
+1 , · · · , F pN , Fu, F xi

are evaluated at (A, p, u, x).

For X̃ =
(

(Xij), (Pi), Y, (Zk)
)

∈ SN × R
N

′′

× R × R
N

′

, define a quadratic form

Q∗(X̃, X̃) =

N
∑

i,j,k,l=1

F ij,klXijXkl + 2

N
∑

i,j=1

N
′

∑

k,l=1

F ijaklXikXjl

+ 2
N

∑

i,j=1

F ij,uXijY + 2
N

∑

i,j=1

N
′

∑

k=1

F ij,xkXijZk +
N

∑

i,j=N ′+1

F pi,pj PiPj

+ 2

N
∑

i=N ′+1

F pi,uPiY + 2

N
∑

i=N ′+1

N
′

∑

j=1

F pi,xjPiZj + 2

N
′

∑

i=1

Fu,xiY Zi

+ Fu,uY 2 +
N

′

∑

i,j=1

F xi,xj ZiZj + 2
N

∑

i,j=1

N
∑

k=N ′+1

F ij,pkXijPk,

(51)

again functions F ij,kl, F ij , Fu,u, F ij,u, F ij,xk , Fu,xi , F xi,xj are evaluated at (A, p,

u, x) with A =
(

a b

bT c

)

∈ SN,⊕ and a−1 = (akl). Theorem 3.1 is based on the

following lemma.

Lemma 3.2. If (A, p, u, x) ∈ SN,⊕ × R
N × R × Ω, A =

(

a b

bT c

)

, such that

F (A, p, u, x) = 0, then ΓF is locally convex at (
(

a−1 a−1b

(a−1b)T c − bT a−1b

)

, p
′′

, u, x
′

)
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if and only if

Q∗(X̃, X̃) ≥ 0 (52)

for every X̃ =
(

(Xij), (Pi), Y, (Zk)
)

∈ Γ⊥
X∗

F
(A, p, u, x).

Proof of Lemma 3.2. Fix p
′

and x
′′

, let

F̃ (
(

ã b̃

b̃T c̃

)

, p
′′

, u, x
′

) = F (
(

ã−1 ã−1b̃

(ã−1b̃)T c̃ + b̃T ã−1b̃

)

, p, u, x).

Then the condition (47) is equivalent to

N
∑

α,β,γ,η=1

F̃αβ,γηX̂αβX̂γη + 2

N
∑

α,β=1

(

N
∑

k=N ′+1

F̃αβ,pkX̂αβP̂k

+ F̃αβ,uX̂αβ Ŷ +

N
′

∑

k=1

F̃αβ,xkX̂αβẐk) +

N
∑

i,j=N ′+1

F̃ pi,pj P̂iP̂j

+ 2

N
∑

i=N ′+1

F̃ pi,uP̂iŶ + 2

N
∑

i=N ′+1

N
′

∑

j=1

F̃ pi,xj P̂iẐj

+ F̃u,uŶ 2 + 2
N

′

∑

k=1

F̃u,xk Ŷ Ẑk +
N

′

∑

i,j=1

F̃ xi,xj ẐiẐj ≥ 0

(53)

for every X̂ ∈ SN , P̂ = (P̂i) ∈ R
N

′′

, Ŷ ∈ R, Ẑ = (Ẑi) ∈ R
N

′

, with

N
∑

α,β=1

F̃αβX̂αβ +

N
∑

i=N ′+1

F̃Pi P̂i + F̃uŶ +

N
′

∑

i=1

F̃ xiẐi = 0.

where functions F̃αβ,γη, · · · are evaluated at
(

ã b̃

b̃T c̃

)

= (
(

a−1 a−1b

(a−1b)T c − bT a−1b

)

.

Decompose
(

ã−1 ã−1b̃

(ã−1b̃)T c̃ + b̃T ã−1b̃

)

= ET D−1E + C with D =
(

ã 0
0 I

)

,

E =
(

I b̃

0 0

)

and C =
(

0 0
0 c̃

)

. A direct computation yields

F̃αβ =















−
∑N

i,j=1 F ij
∑N

′

k,l=1 EkiElj ã
kαãlβ , 1 ≤ α, β ≤ N

′

,
∑N

i,j=1 F ij
∑N

′

k=1(Ekiδjβ + Ekjδiβ)ãkα, 1 ≤ α ≤ N
′

, N
′

+ 1 ≤ β ≤ N,

Fαβ , N
′

+ 1 ≤ α, β ≤ N.

And we get

F̃αβ,γη =

N
∑

i,j,k,l=1

F ij,kl(

N
′

∑

m,n=1

EmiEnj ã
mαãnβ)(

N
′

∑

m,n=1

EmkEnlã
mγ ãnη)

+

N
∑

i,j=1

F ij
N

′

∑

k,l=1

EkiElj(ã
kγ ãηαãβl + ãkαãβηãlγ)
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for 1 ≤ α, β, γ, η ≤ N
′

,

F̃αβ,γη = −
N

∑

i,j,k,l=1

F ij,kl
N

′

∑

m,n,h=1

EmiEnj ã
mαãnβ ãγh(Ehlδkη + Ehkδlη)

−
N

∑

i,j=1

F ij
N

′

∑

k=1

(Ekjδiη ãγαãkβ + Ekiδjη ãγβãαk)

for 1 ≤ α, β, γ ≤ N
′

,N
′

+ 1 ≤ η ≤ N ,

F̃αβ,γη = −
N

∑

i,j=1

F ij,γη
N

′

∑

m,n=1

EmiEnj ã
mαãnβ

for 1 ≤ α, β ≤ N
′

, N
′

+ 1 ≤ γ, η ≤ N ,

F̃αβ,γη =

N
∑

i,j,k,l=1

F ij,kl[

N
′

∑

m=1

ãαm(Emjδiβ + Emiδjβ)][

N
′

∑

n=1

ãγn(Enlδkη + Enkδlη)]

+

N
∑

i,j=1

F ij ãαγ(δiβδjη + δjβδiη)

for 1 ≤ α, γ ≤ N
′

,N
′

+ 1 ≤ β, η ≤ N ,

F̃αβ,γη =
N

∑

i,j=1

F ij,γη
N

′

∑

m=1

(Emjδiβ + Emiδjβ)ãmα

for 1 ≤ α ≤ N
′

,N
′

+ 1 ≤ γ, β, η ≤ N ,

F̃αβ,γη = Fαβ,γη

for N
′

+ 1 ≤ α, γ, β, η ≤ N . Other derivatives can be calculated in a similar
way. Where functions F ij,kl, F ij , Fu,u, F ij,u, F ij,xk , Fu,xi , F xi,xj are evaluated at
(A, p, u, x). Set the relation between X̂ and X is as follow

Xij =



























































−
∑N

′

α,β=1 ãiαãjβX̂αβ, 1 ≤ i, j ≤ N
′

,

2
∑N

′

k=1 ãikX̂kj

−
∑N

′

α,β=1

∑N
′

k=1 ãiαãkβ b̃kjX̂αβ , 1 ≤ i ≤ N
′

, N
′

+ 1 ≤ j ≤ N,

2
∑N

′

k=1 ãkjX̂ki

−
∑N

′

α,β=1

∑N
′

k=1 ãjαãkβ b̃kiX̂αβ , N
′

+ 1 ≤ i ≤ N, 1 ≤ j ≤ N
′

,

X̂ij + 2
∑N

′

k,l=1 ãkl(b̃kiX̂lj + b̃kjX̂li)

−
∑N

′

α,β=1

∑N
′

k,l=1 ãkαãlβ b̃kib̃ljX̂αβ, N
′

+ 1 ≤ i, j ≤ N,

Substituting these into (53), equation (52) follows directly.

The key inequality is (52). This inequality holds under even further weakened
condition. Following the same notation as in section 2, denote S

n−1 the unit sphere

in R
n for integer n. For each θ

′

∈ S
N

′

−1, let θ = (θ
′

, 0) ∈ S
N−1 and define

θ
′

R = {tθ
′

|t ∈ R}, (θ
′

R)⊥ = {η ∈ R
N

′

| < η, θ >= 0}
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and

SN
′

θ′ = {a ∈ SN
′

|aθ
′

= 0}, SN
′

,+

θ′ = {a ∈ SN
′

|aθ
′

= 0, a > 0 on (θ
′

R)⊥}

SN,⊕

θ′ = {A ∈ SN |A =
(

a b

bT c

)

, a ∈ SN
′

,+

θ′ }, SN
θ = {A ∈ SN |Aθ = 0}

SN,⊕
θ = {A ∈ SN |A =

(

a b

bT c

)

, a ∈ SN
′

,+

θ′ , Aθ = 0}

Suppose A0 =
(

â0 b0

bT
0 c0

)

∈ SN,⊕

θ′ , a0 ∈ SN
′

,+

θ′ with a0 = â−1
0 on (θ

′

R)⊥. As-

sume x0 ∈ Ω, u0 = u(x0) and p0 = ∇u(x0) such that F (A0, p0, u0, x0) = 0. Let

(A, p
′′

, u, x
′

) ∈ SN,⊕
θ × R

N
′′

× R × θ
′

R, â ∈ SN
′

,+

θ′ with â = a−1 on (θ
′

R)⊥ and
define

F̃θ(A, p
′′

, u, x
′

) = F (
(

â b0 + âb

bT
0 + (âb)T c0 + c + bT âb

)

, p
′

0, p
′′

, u, x
′

+ x
′

0, x
′′

0 ).

Set

Γθ
F = {(A, p

′′

, u, x
′

) ∈ SN,⊕
θ × R

N
′′

× R × θ
′

R|F̃θ(A, p
′′

, u, x
′

) ≤ 0}.

For X̃ =
(

(Xij), (Pi), Y, (Zk)
)

∈ SN
θ × R

N
′′

× R × θ
′

R, define a quadratic form

Q∗
θ(X̃, X̃) =

N
∑

i,j,k,l=1

F ij,klXijXkl + 2
N

∑

i,j=1

N
′

∑

k,l=1

F ij(a0)klXikXjl

+ 2

N
∑

i,j=1

F ij,uXijY + 2

N
∑

i,j=1

N
′

∑

k=1

F ij,xkXijZk +

N
∑

i,j=N ′+1

F pi,pj PiPj

+ 2

N
∑

i=N ′+1

F pi,uPiY + 2

N
∑

i=N ′+1

N
′

∑

j=1

F pi,xjPiZj + 2

N
′

∑

i=1

Fu,xiY Zi

+ Fu,uY 2 +

N
′

∑

i,j=1

F xi,xj ZiZj + 2

N
∑

i,j=1

N
∑

k=N ′+1

F ij,pkXijPk,

(54)

where functions F ij,kl, · · · are evaluated at (A0, p0, u0, x0) with A0 =
(

â0 b0

bT
0 c0

)

,

a0 ∈ SN
′

,+

θ′ and a0 = â−1
0 on (θ

′

R)⊥.

Lemma 3.3. For any fixed x0 ∈ Ω, θ
′

∈ S
N

′

−1 and A0 =
(

â0 b0

bT
0 c0

)

∈ SN,⊕

θ′

with F (A0, p0, u0, x0) = 0, Γθ
F is locally convex at (

(

a0 0
0 0

)

, p
′′

0 , u(x0), 0
′

) if and

only if

Q∗
θ(X̃, X̃) ≥ 0 (55)

for every X̃ =
(

(Xij), (Pi), Y, (Zk)
)

∈ SN
θ × R

N
′′

× R × θ
′

R satisfying

< X̃, X∗
F (A0, p0, u0, x0) >= 0.

Condition (56) is weaker than condition (47) by Lemma 3.2 and Lemma 3.3.
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Proof. Note that the matrix a may not be invertible. But the same computations
in the proof of Lemma 3.2 can be carried out without difficult. We may assume

θ
′

= e
′

1 = (1, 0, · · · , 0). In this case, all X1j = Xj1 = X̂1j = X̂j1 = 0 for all

j = 1, · · · , N
′

. Therefore, we can still perform corresponding inversions in the
proof of Lemma 3.2. Also notice that Zj = Ẑj = 0 for all j = 2, · · · , N

′

, because

we restrict x
′

variable in θ
′

R = R
1.

Theorem 3.4. The same conclusion in Theorem 3.1 is true if condition (47) is

replaced by the following structural condition: for any fixed x0 ∈ Ω, θ
′

∈ S
N

′

−1 and

A0 =
(

â0 b0

bT
0 c0

)

∈ SN,⊕

θ′ with a0 ∈ SN
′

,+

θ′ , a0 = â−1
0 on (θ

′

R)⊥,

if F (A0, p0, u0, x0) = 0 then Γθ
F is locally convex at (

(

a0 0
0 0

)

, p
′′

0 , u0, 0
′

). (56)

Notice that u is automatically in C3,1 by the assumptions of F and u in Theorem
3.4. As in section 2, let W (x) = (∇2u(x))N ′×N ′ and l = minx∈Ω rankW (x). Since

l = N
′

is of full rank, only l ≤ N
′

− 1 is of interest. And this will be assume in the
rest of the proof. Suppose z0 ∈ Ω is a point where W is of minimal rank l.

For each z0 ∈ Ω where W is of minimal rank l. Pick an open neighborhood
O of z0, for any x ∈ O, let λ1(x) ≤ λ2(x)... ≤ λN ′ (x) be the eigenvalues of
W at x. There is a positive constant C > 0 depending only on ‖u‖C3,1, W (z0)
and O, such that λN ′ (x) ≥ λN ′−1(x)... ≥ λN ′−l+1(x) ≥ C for all x ∈ O. Let

G = {N
′

− l+1, N
′

− l+2, ..., N
′

} and B = {1, ..., N
′

− l} be the “good” and “bad”

sets of indices respectively. Let ΛG = (λN ′−l+1, ..., λ
′

N ) be the “good” eigenvalues
of W at x and ΛB = (λ1, ..., λN ′−l) be the “bad” eigenvalues of W at x. For the
simplicity, write G = ΛG, B = ΛB if there is no confusion. Note that for any δ > 0,
we may choose O small enough such that λi(x) < δ for all i ∈ B and x ∈ O. Use
notation h = O(f) if |h(x)| ≤ Cf(x) for x ∈ O with the positive constant C under
control. It is clear that λi = O(φ) for all i ∈ B.

For ǫ > 0 sufficient small, define

qǫ(W ) =
σl+2(Wǫ)

σl+1(Wǫ)
, φǫ(W ) = σl+1(Wǫ) + qǫ(W ), (57)

where Wǫ = W + ǫI. We will also denote

Gǫ = (λN ′−l+1 + ǫ, ..., λN ′ + ǫ), Bǫ = (λ1 + ǫ, ..., λN ′−l + ǫ).

As in section 2, we will drop subindex ǫ with the understanding that the estimates
we carry on will be independent of ǫ. In this setting, with O is small enough, there
is C > 0 independent of ǫ such that

σl+1(W (x)) ≥ Cǫ, and σ1(B(x)) ≥ Cǫ, for all x ∈ O. (58)

Similarly write h = O(f) if |h(x)| ≤ Cf(x) for x ∈ O with positive constant C

under control independent of ǫ.

Theorem 3.4 is a direct consequence of Lemma 3.3 and the following proposition.
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Proposition 3. Suppose that the function F satisfies conditions (2) and (55) and
let u ∈ C3,1(Ω) be a partially convex solution of (1). If (∇2u)N ′×N ′ attains its
minimum rank l at certain point x0 ∈ Ω, then there exist a neighborhood O of x0

and a positive constant C independent of φ (defined in (57)), such that

N
∑

α,β=1

Fαβφαβ(x) ≤ C(φ(x) + |∇φ(x)|), ∀x ∈ O. (59)

In turn, (∇2u)N ′×N ′ is of constant rank l in O. Moreover, for each x0 ∈ O, there

exist a neighborhood U of x0 and (N
′

− l) fixed directions V1, · · · , VN ′−l ∈ R
N

′

such

that (∇2u)N ′×N ′ Vj = 0 for all 1 ≤ j ≤ N
′

− l and x ∈ U .

Proof. The proof is similar to the proof of Proposition 2 in section 2. Following the
same arguments as in section 2, one deduces

N
∑

α,β=1

Fαβφαβ

=O(φ +
∑

i,j∈B

|∇uij |) −
N

∑

α,β=1

Fαβ [

∑

i∈B ViαViβ

σ3
1(B)

+

∑

i,j∈B,i6=j uijαujiβ

σ1(B)
]

−
∑

i∈B

[σl(G) +
σ2

1(B|i) − σ2(B|i)

σ2
1(B)

][
∑

α,β,γ,η/∈B

Fαβ,γηuiαβuiγη

+ 2
∑

α,β/∈B

Fαβ
∑

j∈G

1

λj
uijαuijβ + 2

∑

α,β/∈B

(

N
∑

k=N ′+1

Fαβ,pkuαβiuik

+ Fαβ,uuiαβui + Fαβ,xiuiαβ) +
N

∑

k,l=N ′+1

F pk,pluikuil

+ 2
N

∑

k=N ′+1

(F pk,uuikui + F pk,xiuik) + Fu,uu2
i + 2Fu,xiui + F xi,xi ].

(60)

For each i ∈ B, set

Ji =
∑

α,β,γ,η/∈B

Fαβ,γηuiαβuiγη + 2
∑

α,β/∈B

Fαβ
∑

j∈G

1

λj
uijαuijβ

+ 2
∑

α,β/∈B

(

N
∑

k=N ′+1

Fαβ,pkuαβiuik + Fαβ,uuiαβui + Fαβ,xiuiαβ)

+

N
∑

k,l=N ′+1

F pk,pluikuil + 2

N
∑

k=N ′+1

(F pk,uuikui + F pk,xiuik)

+ Fu,uu2
i + 2Fu,xiui + F xi,xi,

(61)

where functions Fαβ,γη, · · · are evaluated at (∇2u(z),∇u(z), u(z), z). We now want
to make use of new structural condition (55) to control Ji in (61).

We may assume

i = 1 ∈ B, θ
′

= (1, 0 · · · , 0) = e
′

1 and θ = (1, 0 · · · , 0) = e1.
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By condition (2), and the assumption of F and u (since Ō ⊂ Ω), there exists a
constant δ0 > 0 independent of the lower bound of ∇2u and ǫ, such that

(Fαβ) ≥ δ0I, ∀y ∈ O. (62)

In particular, FNN ≥ δ0. For any δ > 0 small enough, set

Ãδ =
(

( 0 0

0 (uij(z) + δδij)
N

′

i,j=2

)

(uij(z))

(uji(z)) (uij(z))N
i,j=N ′+1

)

.

So, Ãδ ∈ SN,⊕

e
′

1

and

Ãδ −∇2u(z) = O(δ + φ), F (Ãδ,∇u(z), u(z), z) = O(δ + φ).

If O is sufficient small around the minimal rank point x0 and choose δ > 0 small
enough, (62) and the mean value theorem imply that there is |λδ| ≤ C(δ + φ),

Aδ = Ãδ +
(

0 0
0 λδ

)

∈ SN,⊕

e
′

1

, F (Aδ,∇u(z), u(z), z) = 0. (63)

where 0 is the (N − 1) × (N − 1) zero matrix.
Differentiate (1) in x1, together with (63),

∑

α,β /∈B

Fαβuαβ1 +

N
∑

k=N ′+1

F pk,uu1k + Fuu1 + F x1 = g;

where Fαβ , Fu, etc. are evaluated at (Aδ,∇u(z), u(z), z), and

g = O(δ + φ +
∑

i,j∈B

|∇uij |).

Set

XNN = u1NN −
g

FNN
;

Xαβ = 0, ∀α ∈ B; Xαβ = uαβ1, otherwise;

Pk = uk1, N
′

+ 1 ≤ k ≤ N, Y = u1, Zk = δk1, ∀k,

again, FNN is evaluated at (Aδ,∇u(z), u(z), z).

Thus X̃ = ((Xαβ), (Pi), Y, Z1, · · · , Zn) ∈ Γ⊥
X∗

F
(Aδ,∇u(z), u(z), z). Conditions

(55) and (63) imply (by letting δ → 0)

Ji ≥ −C(φ +
∑

i,j∈B

|∇uij |). (64)

Since C ≥ σl(G) +
σ2
1(B|i)−σ2(B|i)

σ2
1
(B)

≥ 0,

∑

α,β

Fαβφαβ ≤ C(φ +
∑

i,j∈B

|∇uij |)

−
∑

α,β

Fαβ(

∑

i∈B ViαViβ

σ3
1(B)

+

∑

i,j∈B,i6=j uijαujiβ

σ1(B)
).

(65)

The term
∑

i,j∈B |∇uij | in (65) can be controlled in the same way as in [2] and
section 2, we won’t repeat it here.



MICROSCOPIC CONVEXITY 807

Remark 2. Since N
′′

≥ 1, we don’t need the extra assumption (9) in Theorem
3.1. On the other hand, the structural condition (47) is much stronger than (10).
In the sense, Theorem 3.1 is not as useful as Theorem 1.2. The partial convexity
of solutions to fully nonlinear equations in the form (1) has significant geometric
implications. In particular, it is important to understand this property for solutions
of Monge-Ampère type equations.

A parabolic version of Theorem 3.4 can be proved for the equation in the form

ut = F (∇2u,∇u, u, x, t).

In this case, the structural condition is: for each fixed p
′

, x0, b0, c0 and t > 0,

F (
(

â b0 + âb

bT
0 + (âb)T c0 + c + bT âb

)

, p, u, x
′

+ x
′

0, x
′′

0 , t)

is locally convex in
(

( a b

bT c

)

, p
′′

, u, x
′

)

∈ SN,⊕
θ ×R

N
′′

×R×θ
′

R, with â ∈ SN
′

,+

θ′ ,

â = a−1 on (θ
′

R)⊥.
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