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ABSTRACT. The arguments in paper [2] have been refined to prove a micro-
scopic convexity principle for fully nonlinear elliptic equation under a more
natural structure condition. We also consider the corresponding result for the
partial convexity case.

1. Introduction. Consider fully nonlinear elliptic equation in the form

F(V?u,Vu,u,z) =0, € QCR"is adomain. (1)
Assume F is elliptic at some u € C?(€2) in the sense that
OF
((97° (V2u(z), Vu(z),u(z),z)) >0, Ve (2)
ap

The following microscopic convexity principle was proved in [2].

Theorem 1.1. ([2]) Let F = F(r,p,u,x) € C>1(8" x R" x R x Q) and let u €
C?1(Q2) be a convex solution of (1). If F is elliptic and

F(A™Y p,u,z) s locally convex in (A,u,z) for each p fized, (3)
then the rank of Hessian (VZu(z)) is constant in Q.

This type of constant rank theorem was first established by Caffarelli-Friedman
[3] for convex solutions of semilinear elliptic equation

Au = f(Vu,u,z), QCR? (4)
under the condition that

m is convex in (u, x) for each fixed Vu. (5)
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A similar result was also discovered by Yau [13] at about the same time and the
result for equation (4) in [3] was generalized to  C R"™ by Korevaar-Lewis [11].
The microscopic convexity principle is a powerful tool in the study of geometric
properties of solutions of nonlinear differential equations and is very useful for the
existence of convex solutions of differential equations [8, 7, 9, 4, 2]. The constant
rank theorem shares the same spirit with the results of Hartman-Nirenberg in [10]
for the gradient mapping.

Theorem 1.1 is general in the sense it covers a wide class of fully nonlinear
elliptic differential equations, including Hessian equations whose elliptic structure
was studied in the pioneer work of Caffarelli-Nirenberg-Spruck in [5]. But condition
(3) in Theorem 1.1 is tricky to apply. For example, for equation (4), if apply
Theorem 1.1 directly, one needs that

f(Vu,u,z) is concave in (u,z) for each fixed Vu. (6)

This condition is obviously stronger than (5). On the other hand, rewrite equation
(4) as
1 1
i T e 7
Au f(Vu,u, )
then condition (5) fits Theorem 1.1. This disparity indicates that there should be
a more natural structural condition for microscopic convexity principle.

Denote S the space of positive definite real symmetric n x n matrices, for each
fixed p € R™, define the zero sub-level set

I'r={(Au,z) €S xRxQF(A™ ', pu,z)<0}. (8)
In the rest of the paper, we assume
F(0,Vu(z),u(x),z) #0, VzreQ. 9)

Theorem 1.2. Let F = F(r,p,u,z) € C*1(8" x R" x R x Q) and let u € C*1(Q)
be a convex solution of equation (1). Suppose F satisfies condition (2) and (9) at
(V2u(z), Vu(z),u(z),z) for each x € Q. If for each x € Q and p = Vu(z),

g is locally conver at (A,u(z), ), (10)

then the rank of the hessian (VZu(x)) is constant in Q. If | is the rank of V*u, then
Vo € €, there exist a neighborhood U of xo and (n—1) fized directions Vi, ...,V
such that V2u(:1c)Vj =0forall<j<n—landzxeU.

In other words, the point-wise convexity condition on F' in Theorem 1.1 can
be replaced by the convexity of the zero sub-level set of F' in Theorem 1.2. This
resolves the problem regarding equation (4) we just discussed since the zero sub-sets
{Au—f<0}and {2+ % < 0} are the same.

In fact, condition (10) can be weakened further. Denote S"~! the unit sphere in
R™. For each 6 € S*~!, define

OR = {tf|t € R}, (OR): = {n € R"| < n,0 >= 0}
and

Sp={AecS"A0 =0}, Sf ={A€S"|A0=0,A>0on (IR)"}
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Let (A,p,u,z) € S x R" x R x Q and B € S, with B = A~! on (IR)*. For
each fixed p € R" and z¢ € (2, set
r% ={(B,u,z) € S§ xR x R
|F(A,p,u,z+10) <0,A€SS, A=B""on (IR)*}.

Theorem 1.3. The same conclusion in Theorem 1.2 is true if condition (10) is
replaced by the following structural condition: for any fized xo € Q, p = Vu(xg)
and 0 € S*1

% is locally convez at (B, u(xg),0) with B=A"'€ S, . (11)

There are corresponding theorems for the partially convex solutions of equation
(1). They appear in the last section of the paper.

2. Convexity. We follow the same noation as in [2]. For each function F(r,p, u, x),
denote

OF oF oF oF
FoP = FU=— F% = FPi =
Orap’ ou’ ox;’ opi’
2 2 2
Faﬁ7’y77 _ (9 F af,u _ 6 F af, _ 6 F (12)
87"0‘[387"777 ’ 8raﬁ8u’ 8Tagazk ’
Fu,u _ 82F U, Tq __ 82F Ii,m]‘ — 82F
G T Oudx;’ - Ox;0z;’
the partial derivatives with respect to the corresponding variables. Set
X;" = X;’(Aapvua I)) = ((Faﬁ)v Fua (lea e aan))a (13)

I‘ﬁ‘(; = I‘ﬁ}; (A,p,u,z) = {X € Sy x Rx R| < X, X3:(A,p,u,z) >=0}. (14)
X% is a vector in 8™ x RxR", where functions FoB Fu Fa ... F%n are evaluated
at (A,plu,x).

For X = ((X45),Y, (Z1)) € Sp x R x R, define a quadratic form

n

Q (X, X) = Z FM X X + 2 Z F9 By X X i

1,5,k,1=1 1,5,k,1=1
+2 ) FUMXGY +2 Y FUTX 7, (15)
1,5=1 i,5,k=1

+ F“ty? 42 Zn: FY™Y Z; + zn: Fo%i 7,7,

i=1 ij=1

again functions FW-kl Fi Fuwu piu Riee [T PTiT are evaluated at (A, p,
u,z), and B € S with B=A""! on (§R)*.

Lemma 2.1. If (A,p,u,z) € 8¢ x R" x R x Q such that F(A,p,u,z) = 0, then
Tz is locally convex at (A=Y, u,x) if and only if

Q(X,X)>0 (16)
for every X = ((Xij),Y, (Zk)) € 8" x R x R"™ with < X,X;(A,p,u,x) >=0.
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Proof. Fix p, let F(B,u,z) = F(B™',p,u,z) for (B,u,z) € ST x R x . Then the
condition (10) is equivalent to

Z FOB(B o, 2) X g Xy + 2 Z FP( B u, 2) XogY

.B,y,m=1 a,B=1
+2 Z FeBor (B u, 2) X op Zi + F“*(B,u, x)Y? (17)
a,B,k=1

+ 2213%% (B,u,x)f/ZAk + Z [ein; (B,u,w)ZiZj >0

k=1 ij=1
for every X € 8", Y € R, Z = (Z) € R™, with
Z F%(B, u,x)Xag + F“(B,u, a:)f/ + F*i(B, u,x)ZAl =0.
o,

A direct computation yields
F%(B,u,z) = = F9(B™',p,u,z) B B,
I:"O‘B’“(B, u,x) = — F9%(B™L p,u,z)B*“BIP,
FOPY (B, u, x) =F* (B~ p u,2)B*BP Bk B
+ F9(B™Y, p,u,z)(BY BP B"® 4 Bi®BinBAY),

Other derivatives can be calculated in a similar way. Substituting these into (17),
equation (16) follows directly. O

Lemma 2.2. If (A, p,u,z) € S x R" x R x Q such that F(A,p,u,x) =0, I'%. is
locally convex near (B,u,z) (where B = A~' on S ) if and only if

Q" (X,X)>0, VX eTy,, (18)
where Q* is evaluated at (A,p,u,x).

Proof. Note that A may not be invertible. But the same computations in the proof
of Lemma 2.1 can be carried out without difficult. We may assume 6 = (1,0,---,0).
In this case, all X1; = X1 = le = le =0forall j =1,---,n. Therefore, we can
still perform corresponding inversions in the proof of Lemma 2.1. Also notice that
4= Zj =0 for all j = 2,---,n, because we restrict = variable in R = R'. |

It is clear that condition (10) is weaker than condition (3). The fact condition
(11) is weaker than condition (10) can be seen from Lemma 2.1 and Lemma 2.2.
Note that condition (11) has a dimensional deduction in symmetric matrix A. The
remaind part of this paper is to refine the arguments in [2] to prove Theorem 1.3
under weaker condition (11).

With the assumptions of F' and v in Theorem 1.3, v is automatically in C31!.
This will be assumed in the rest of this paper. Let W(z) = VZu(x) and | =
min,cq rank(V2u(x)). Since [ = n is of full rank, only I < n — 1 is of interest. And
this will be assume in the rest of the proof. Suppose zy € €2 is a point where W is
of minimal rank .
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Throughout this paper we use convention that o;(W) =01if j <0 or j > n. For
any symmetric function f(W), denote

pii ZIOV) i _ O TOW)

8uij n 8uij8ukm

For each zy € 2 where W is of minimal rank /. Pick an open neighborhood O of
20, for any x € O, let A1 (z) < Aa(x)... < A, () be the eigenvalues of W at x. There
is a positive constant C' > 0 depending only on ||ul|gs.1, W(zp) and O, such that
A () > Ap—1(2).. > Ara () > Clorallz € O. Let G = {n—I1+1,n—1+2,....,n}
and B = {1,...,n — I} be the “good” and “bad” sets of indices respectively. Let
Ac = (An—1+1, .-, An) be the “good” eigenvalues of W at x and Ag = (A1, ..., A\n—y)
be the “bad” eigenvalues of W at z. For the simplicity, write G = Ag, B = Ap if
there is no confusion. Note that for any § > 0, we may choose O small enough such
that \j(x) < ¢ for all i € B and = € O. Use notation h = O(f) if |h(z)] < Cf(z)
for € O with the positive constant C' under control. It is clear that A; = O(¢) for
all i € B.

For € > 0 sufficient small, define

0l+2(We)
O1+1 (We) ’
where W, = W + el. We will also denote

Ge=M—it1t 6. nte€), Be=(M+e ., oy +e).

7.(W) = G (W) = 0111 (We) + (W), (19)

To simplify the notation, we will write ¢ for g., W for W, G for G, and B for
B, with the understanding that all the estimates will be independent of €. In this
setting, with O is small enough, there is C' > 0 independent of € such that

o+1(W(z)) > Ce, and o1(B(z)) > Ce, forallz € O. (20)

Similarly write h = O(f) if |h(x)| < Cf(z) for x € O with positive constant C
under control independent of e.
The importance of the function g is reflected in the following proposition.

Proposition 1. [Proposition 2.1 and Corollary 2.2 in [2]] For each z € O with
W (z) diagonal at z,

Ei,jeB,i;&j UijaUjif

D d P gt = O(6+ Y [Vuy|) —
v < o1(B)
i,7,k,m i,jEB (21)
EieB ViaVip U%(B“)_U?(Bm o
B I Vi G v
1 i€B,jeG 1 J

where
‘/ia = Ujia01 (B) — (u” + 6) ( Z ujja) . (22)
JEB
If u € C3Y(Q) is a convex function and | = mingcqrank(W (z)), then the func-
tion q(z) = q(W(z)) defined in (19) is in CH1(Q) and its CY' norm is bounded
independent of €.

We now prove a strong maximum principle for ¢ defined in (19) for equation (1).
Theorem 1.3 is a direct consequence of Lemma 2.2 and the following proposition.
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Proposition 2. Suppose that the function F satisfies conditions (2) and (18) and
let u € C>Y(Q) be a convex solution of (1). If V*u attains its minimum rank [
at certain point xo € ), then there exist a neighborhood O of x¢ and a positive
constant C' independent of ¢ (defined in (19)), such that

D FPgup(w) < C(6(x) + |Vo(2)]), V€ O. (23)
o,

In turn, V2u is of constant rank 1 in O. Moreover, for each xo € O, there exist a
neighborhood U of xo and (n—1) fized directions Vi, -+, Vy_; such that V*u(x)V; =
0foralll<j<n—landzecl.

Proof. Let u € C*'(Q) be a convex solution of equation (1) and W (x) = (u;;(x)).
Let zo € Q be a point where W = (V2u) attains minimal rank /. We may assume
I < n—1, otherwise there is nothing to prove. Pick an open neighborhood O of z,
forany x € O, let G = {n—1+1,n—101+2,...,n} and B = {1,...,n — I} be the
“good” and “bad” sets of indices for eigenvalues of V2u(x) respectively.

Setting ¢ as (19), ¢ € C11(O) by Proposition 1. There is a constant C' > 0 such
that for all z € O,

Z01(B)(w) < 6(x) < Cor(B)(@),
For each z € O fixed, letting Ay < Aa... <\, be the eigenvalues of (u;;(z)) at z,
one may assume (u;;(z)) is diagonal with proper choice of orthonormal coordinates,
and u;;(z) = N\, i = 1,- -+, n. We will work on equation (1) to obtain the differential
inequality (23) for ¢, defined in (19) with constant Cy, Cs independent of e.
Note that (20) implies

01(B)(@) < 011 (W(x)) < Coy(B)(a).

e < Co¢(x), forallxeO. (24)
And
9 ) 92 ) -~
o = % = d)wuijaa ¢aﬁ = O (;:B = wauijaﬁ + (b”’kmuijaukmﬁ.

Differentiate equation (1) in z; and then z; to obtain

> Fuapi+ Y PP up + Fhus + F =0, (25)
a3 k

D F P uapi + Y PP ukig + Flugg
o, k
+ D QF I Ny 4y FOO Py + POy FOP g
a,B v k
+ Z(Z Fpk,aﬁuaﬁj + ZFPk;PLulj + FPety, 4 Fpk,wj)uki (26)
ka0 l
+ (Z Fu’aﬁ’u,agj + Z F“’plulj + F"’“uj + Fu’xj)ui
a3 l
+ Z Fmi’aﬁ’uaﬁj + Z Fmi’pkukj + Fmi’“uj 4+ F*% = ().
a,B k
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As UaBij = Wijas, WE get

Z FP g5 = Z FP ¢l 05 + Z FoPgiakm ey gms

=D PP gy — Y 6T FPRug — Y 2 PP ug giug
A Flugg Y FP Pl + 2y P uguy 2y 0 FPouy,] (27)
- Z gl [Fo‘ﬁ"muamu.mj +2 Z Fo‘ﬁ’“uamuj +2 Z FoBes UnBi

I DTS oy TR o )

We estimate the terms in the right hand side of (27). The analysis those terms
with third order derivatives which have with at least two indices in B is completely
same as in [2], with the help of the concavity properties of the function ¢ in (19).
The remaining terms in (27) will be sorted out in such way so that condition (18)
can be used to obtain appropriate control.

Since W = (vi;) = (u;; +€d;;) is diagonal at z, by Lemma 2.4 in [2],

g o1 (Bli)—o2(Bli) e
Q/)’Lj (Z) _ UI(G) + Uf(B) + O(Qb), if 1 = J € B (28)
O(¢), otherwise.
Hence at z
Z ¢z‘j [Fuuij + QZFaﬁ’pkuaﬁiukj + ZFpkﬁplukiulj
]
+ 2 Z(Fpk’“ukiuj + FPr:Ti u;ﬂ)]
:O(¢) + Z (25” [F"u” + 2 Z Faﬁ’pi Uapilis + Fpi’piuiiuii
=1 (29)

+ 2Fp““uil-ui + ZFP“J“UM]
=0(¢) + Z Qj“ [FY“ 42 Z Fﬂtﬁapiuaﬁi + FPiPiqy 4 2FPitiq; 4 2FPi®i |y,

i€EB
<0(6) + X (n(@) + LD 2By o)
i€B 1

since A; = O(¢),i € B and 0141 (W) > 0;(G)o1(B). This takes care of the third
term on the right hand side of (27). For the second term we have

D T FPug; = 0(6) + > ¢ FPrui = O(6 + | |Vuij) (30)

i€B i,jEB
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For the fourth term in (27), by (28) we have,

Y ST EP T g pitg + 2F P uapiug + 20 uag;
+ F"’“uiuj + QFU’Iin + lezj]
ZO(¢) + Z (bii [Z FO‘B”"uagiuwi +2 Z Faﬁ’“uagiui
i€B
+2 Z Fo‘ﬁ””uam + F““uf + 2F" "y, + ¥
o?(Bli) — o9(Bli (31)
06+ Y IVuyl) + Y (ou() + LD B,
i,jEB i€EB o1(B)
[ Z Faﬁﬂnuiaguirm +2 Z Faﬁ’uuiaﬁui
a,B,7,n€EG a,BeC
+2 ) PP + FUMud + 2F i, + P70
a,BEG

Now deal with the first term > F*# ¢k, upms in (27). Note that

d)zj,km _ O,lzi,llcm +qZJ1km.

Since 0,1 (Wij) = O(¢) for i,j € G,i # j, for a, § fixed, by Lemma 2.3 in [2],

ij,km o ii,kk 17,51
{1 WijaUkmp = ) 0141 WiiaUkks + ) 0131 WijalUjip

itk i
= Z o1-1(Wik)viiaurks — Z Ulfl(W|Z.j)uijaujiﬁ
i#k i#j
=0(¢+ D> [Vuyl) =2 D o1 1(Gli)uijatiip-
i,j€B i€B,jEG
As 01_1(Glj) = ‘”/\(f),j € G, we have
. 1
o M ijattkmp = O(6 + Y |Vui|) = 200(G) > 3 Uisalii-
ijeB i€B,jeG Y

By Proposition 1,

ik 1
Z gk UijaUkmp =O(¢ + Z [Vuij|) — o1(B) Z Wijajip

i,5:k,m i,jEB 1,jEB,i#j
e ViaVi 2(Bli) — o2(Bli
_ Ezelg’ B _ g 3 oi( |Z2) a2 Il)uijauj%
UI(B) 071 (B))\J

i€B,jeG

where Vj, is defined in (22). We conclude that

= o}(B) o1(B)
02 1) — o ) UijaUss
+2i€ZB(Ul(G)+ 1(B|;%(B)2(B| )) )\j 5] (32)

+O0(6+ Y [Vuy)).

i,j€EB
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Combining (29)-(32), one reduces (27) to
> g

o > iep ViaVip doi e, iz Wijalljis
=0(p+ Y |Vuy|) = Y FO[=E5 4 ShiEBiAg Yo
) "

oi(B) o1(B)

o2(Bli) — o 1
_Z[UZ(G)+ 1(B|U)%(B)2(B| )][ Z FQB’inaﬁumn (33)

i€B a,B,7,n€EG
1
+ 2 Z Faﬁ Z ruijauiﬂg + 2 Z Fo‘ﬁ""umﬁui
aBeG jea 7Y a,BEG

+2 > FOPPip 4 P 0l 4 2F i, 4 PO,
a,BEG

For each ¢ € B, set

J; = Z FO‘B’Wumﬁuiw + 2 Z FoB Z %Uijauijﬁ

a,B,y,neCG a,B8eq jeag ™
+2 ) PP Muagu+2 Y PP (34)
a,BeG a,BeG

+ Ftud + 2F" iy,  F0b

where functions F*%77 ... are evaluated at (V2u(z), Vu(z),u(z),z). So far, we
have followed same lines of arguments in [2]. We now modify the arguments in [2]
to use of new structural condition (18) to control J; in (34).

Condition (9) implies that G # (), we may assume

Unn(z) >0, i=1€B, and 0= (1,0---,0) =ey.

By condition (2), and the assumption of F' and u (since O C ), there exists a
constant 6y > 0 independent of the lower bound of V?u and ¢, such that

(FP) > 601, Yy € O. (35)

In particular, F™™ > §y. For any § > 0 small enough, set

~ 0 0
As = ( 0 (uij(2) +66i)7 o )
So, A5 € S/ and
A5 =VPu(2) = 00+ ¢), F(As, Vu(z),u(z),2) = O(0 + ¢).

If O is sufficient small around the minimal rank point xy and choose 0 < § <<
Unn(2), (35) and the mean value theorem imply that there is |\s| < C(6 + ¢),

As = A5 + ( 00 ) €SH, F(As, Vu(z),u(z),2)=0. (36)

0 A er’

where 0 is the (n — 1) x (n — 1) zero matrix.
(25) and (36) yield

Z Fugg + Fluy + F™ = g;
a,BeEG
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where FP F¥ etc. are evaluated at (As, Vu(z),u(z), 2), and
=00 +¢+ Y [Vuyl).
ijeB
Set

g .
an’
Xog=0,Va € B; X,3 = uqp1, otherwise;
Y =ui, Zp=0n,Vk,

Xnn = Ulnn —

again, F"" is evaluated at (As, Vu(z),u(z), 2).
Thus X = ((Xap),Y,Z1, -+ ,2Z,) € FJX;(A(;,VU(Z),U(Z),Z). Conditions (18)
and (36) imply (by letting § — 0)

i,jEB
; o2 (B|i)—o2(Bli
Since C > 0;(G) + % >0,
ZF P o g <C(¢+ Z [Vuij)
i,jEB

(38)

_ Z Faﬁ 163 ViaVip n Zi,jeB,i;ﬁj Uija“jiﬁ)
o} (B) o1(B) '

The term }; ;c g [Vuis| in (38) can be controlled in the same way as in [2] using
the remaind terms on the right hand side. Here is a sketch.
By (35),

n
ZFO‘QVMVQ > 0o Z s ZFaﬁuijauijﬁ > do Zufja.
a,B a=1

a,B a=1

Inserting above inequalities into (38),

n

2
. Ui
j :F ﬁq,) 4 < O ¢+ j : |VUZJ j : 1€B Zz,jEB z;£]| J | ] (39)

i,jEB a=1 o1 (B)

From Proposition 1, it follows that

B — Bli
¢ =0(¢) + Y _(ou(G (Bl) — o |Z>)un‘a- (40)
1€B 1

By Lemma 3.3 in [2] and (39), there exist positive constants C7, Cy independent of
¢ and the lower bound of tr(V2u(z)), such that

D> FPhas < Ci(d+ |Vel) = Co Y [Vugl. (41)
o, i,jEB
Taking € — 0, (23) is verified for all z € O.
The Strong Maximum Principle implies ¢ = 0 in O. Since 2 is flat, following the
arguments in [3, 11], for any zo € Q, there is a neighborhood U and (n — 1) fixed
directions V7, - -+, V,,_; such that V2u(:1c)Vj =0foralll<j<n—landzxeld. O
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There is also a parabolic version of Theorem 1.3 for the equation in the form

ug = F(V?u, Vu,u,,t). (42)
Here one needs stronger structural condition for (42): for each p, z¢ and t > 0,
F(A, p,u,x + xg,t) is locally convex in(B,u, z), (43)

for A€ S, B= A" on (IR):. Condition (43) was discussed in [12] for the
preservation of convexity of equation (42) in whole space R™. The same lines of
proof in [2] with modifications in this paper, we can prove

Theorem 2.3. Suppose that the function F satisfies conditions (2) and (43) for
each t € [0,T], let u € C31(Q x [0,T] is a convex solution of (42). For each
0 < to < T, if V2u attains minimum rank | at certain point xo € Q, then there exist
a neighborhood O of x¢ and two positive constant Cq,Cs independent of ¢ (defined
in (19)), such that for t close to to, o(uij(z,t)) >0 for z € O, and

D FPgap(@) — ¢ < Cro(x) + Co|Vo(x)|, Va €O, (44)
a3

Remark 1. Condition (9) forces G # (), that was used in the proof to create
appropriate X to get (37). When G = (), this trick can not apply if |F“| + |F®i
does not have lower bound. On the other hand, in this case,

where F“ [ [%i%i are evaluated at (V2u(z), Vu(z),u(2), z). For each p, set

Ty ={F(0,p,u,z) = 0}.

G = ) implies |V2u(z)| < C¢(z), therefore the following condition will guarantee
(37) in this case: for each p = Vu(z) fixed, F(0,p,u, ) is locally convex in (u,x)
near I'g.

3. Partial convexity. We treat the the constant rank theorem for partially convex
solutions of fully nonlinear elliptic equation (1) with ellipticity assumption (2).

Let N =N + N with N" and N are two positive integers. Write = = (x/,:zc )
with ' € RN l and z” € RN : respectively. As in the case of the study of the full
convexity, homotopic deformation argument (provided if there is a homotopic path)
would reduce this problem to a constant rank theorem. The question we want to
address is, when Vi,u(x/,x//) has constant rank?

"

Let us write 2 = (2,2 ) € Qand p = (p,p ) € RN with p’ € RN/, p e RN
and split a matrix A € SV into( b(; I; )withaESN/,beRN/XNN anchSN”.
Let

sVo=(aesVa=( 5 " )aesty
Define for (A, p,u,z) € SV® x RN x R x

a”t a” b

F(Aap y Uy T ) :F(( (aflb)T C—I—bTaflb )7pau7x)

For each fixed 2" and p/ e RV /, define the zero sub-level set

Tp={(Ap uz)e8V®x R xR x RN,H:“(A,p”,u,:E,) < 0}. (46)
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We say u is partially convex if u(z',z") is convex in the first variable " for each
fixed z".

Theorem 3.1. Let F = F(r,p,u,z) € C>1(SN x RY x R x Q) and let u €
C?1(Q) be a partially convex solution of (1). Suppose F satisfies condition (2)
at (V2u(z), Vu(x),u(z), z) for each x € Q. If for each v € Q and p = Vu(z),

T'r is locally convex in (A,p”,u,xl), (47)
then the rank of the hessian (Vi,u(x/,x”)) is constant in €.

Under the stronger structural condition
F(A,p”,u,xl) is convex, (48)

the above theorem was proved by C. Chen [6] following the arguments in [2]. The
partial convexity of solutions of equation (1) under (48) with state constraint bound-
ary condition on convex domains was studied in [1]. The proof of Theorem 3.1 will
make use of the refined arguments in section 2.

Set
X;" = X;;(Avpauv'r)) = ((Faﬁ)a (FpN/+la' o 7FpN)7Fua (lea' o aFIN/))v (49)

I‘JX; :I‘J)g; (A, p,u, ) (50)
={X e SV xRN xRxRY|<X,X5(A4,p,u,z) >=0}.
X% isavectorin SV xRN xRxRYN | where functions Fo%, FPn'+1 ... [Py [u o
are evaluated at (A, p,u, z).
For X = ((Xy5), (P:),Y,(Zx)) € S¥ x RN x R x RY | define a quadratic form

Q" (X,X) = Z FOkX Xy + 2 Z Z Fa" X X1
1,5,k,1=1 i,j=1k,l=1

N N N N
+2) FUUXGY 23 Y FURXZ+ Y FPUPIPP
i,j=1 i,7=1 k=1 fL'ijlJrl

+2 Z FPiupy 4+2 Z ZFW]PZ +2ZFWYZ

i=N'+1 i=N'+4+17=1

/

N N N
FFSY? 4 NPT 7,42y Y PO
i,j=1 4,J=1 k=N"+1
again functions FW:k Fii fpuwu piju pijee [t PTiTi are evaluated at (A, p,

x) with A = ( b(?/z" I; ) € SN® and a=! = (a*). Theorem 3.1 is based on the

(51)

following lemma.
Lemma 3.2. If (A,p,u,z) € SNV xRV xRx Q, A = ( baT

-1 -1
F(A,p,u,x) =0, then T'p is locally convez at (( (acjlb)T . _abe,lb ),p U )

b ), such that
c
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if and only if
Q*(X,%) >0 (52)
for every X = ((XU) (R),Y, (Zk)) € FJX; (A, p,u,x).

Proof of Lemma 3.2. Fix p and 2", let

F( g i )op"ua) = F(( (dd_lw é—i—dETd—lB ) pou,z).

Then the condition (47) is equivalent to

Z FeBmK 5X ., 42 Z Z FeBre X o Py
a,B,y,n=1 a,f=1 =N'+1

/

N N
0 SR T S LTS Y AR S )
k=1 i,j=N'"+1

N N N
42 Z Frivpy 19 Z Z FPitip, 7
i=N'+1 i=N'+1J=1
N’ N’
+ fuuy? 4 22 F“*sY 7, + Z Fr®i 7,7 >0
k=1 ij=1
for every X e SN, P = (P;) € RN”, YeR,Z=(Z)e RN,, with

’

N N
Z FX 5 + Z FPiPi+F“?+ZF1iZi=O.

a,f=1 i=N'+1 =1
where functions F*#77 ... are evaluated at
( a b ) - (( a! a='b )
bt o) (a7t ec—bTa"ty )
at a'b S . a 0
Decompose ( (d’llN))T e b1 ) = FE'"D'E + C with D = ( 0 I ),
E= ( é g ) and C' = ( 8 (E) ) A direct computation yields
Ef\; lF,L Zkl lEk'LElJ ka lﬁ ISO‘vﬁSva
~0¢B — ’ ’
F7= S v SN (Budis + Ergdip)a™, 1<a <N N +1<B<N,
FoP, N +1<a,8<N.
And we get
~ N .. N, l
Fetan = N RN EpiBya™a ) (Y EpgEnd™a™)
i,7,k,l=1 m,n=1 m,n=1

+ Z Fz] Z ElmEl k'yana ﬁl+akaaﬁnal7)
ij=1 k=1
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for 1 < a,8,7,n <N,
~ N L. N,
FoPm = — Z FH Z EpiBpja"*a" @" (Bnibyy + Enidiy)
,4,k,l=1 m,n,h=1
- Z FY Z Eijbin@ @ + Epibjna?a")
i,j=1 k=1
for 1 §o¢,ﬁ,'y§N,,Nl—|—1 <n<N,

/

N N
Feboan — _ E ' Fm E ' EmiEnjdmo‘d”ﬁ
i,j=1 m,n=1

forlga,ﬁSNl,N,—l—lg”y,nSN,

’

N N N’
ot = " OR[N G (Bibip + Emidip)l[> @ (Endky + Enkdim)]
i,j,k,0l=1 m=1 n=1

N
+ > F9a (805 + 6;50in)

ij=1
for1< o,y <N ,N +1<8,n<N,
~ N N/
FoBan — Z Fm Z (Emjbip + Enmidjp)a™
ij=1 m=1

forlSaSN/,N,—i—lS%ﬁ,ngN,

FoBan — paBan
for N\ +1 < a,7v,0,n < N. Other derivatives can be calculated in a similar
way. Where functions F7:-kl Fii Fuu pi Fiee [uri PTi%; gre evaluated at
(A, p,u, ). Set the relation between X and X is as follow

- Z _1 @@ X o, 1<ij<N,
2Zk Lal ij
N YN @ea K, 1<i<N, N 41< <N,
Xij=1 25 1&’“JX,”
Zaﬁlzklajaﬁbleaﬁu N +1<i<N,1<j<N,
Xij + 2Zkl = a* (bkzXla + by X1i)
_Zaﬁ 1Zkl1a @lPbyibi X ap, N 4+1<i,j<N,

Substituting these into (53), equation (52) follows directly. O

The key inequality is (52). This inequality holds under even further weakened
condition. Following the same notation as in section 2, denote S” ! the unit sphere

in R” for integer n. For each §' € SN/_l, let 0 = (0',0) € SN~! and define

OR={t0|t R}, (IR ={neRY |<n0>=0)



MICROSCOPIC CONVEXITY 803

and

SY =faesVab =0}, SYt={aeS¥ |t =0,a>00n (6 R)"}

a b !
Sé\f’@:{AeSNM:(bT C),aes;Y*}, SN ={Ae SN0 =0}

SVE —f{AeSNA= ( o lc’ ),aesg + A0 =0}

ag bo
bg Co
sume zg € Q, ug = u(zp) and pg = Vu(zg) such that F (Ao, po,uo, o) = 0. Let
(A,p" u,x’) € 8% x RV xR x IR, a € Sé\,[ T with @ = ' on (A'R) and
define

Suppose Ag = ( ) € Sé\,,’@, ap € Sé\,’ "+ with ag = &51 on (HIR)l. As-

a bo + ab ) ’
bE + (ab)T  co+c+bTab ) PoP

" "

Fg(A,p”,u,.’L'/)ZF(( 7u7x/+$£)7x )

Set
% ={(Ap uz)e Sévﬁ xRN xR x OR|Fy(A,p ,u,z) <0}

For X = ((Xij); (P), Y, (Z1)) € S x R x R x 0'R, define a quadratic form

N N N
QX X)= Y FIMX;iXu+2> > F(ao)uXinX;
0,5k, l=1 ij=1 k=1
N N N N
+2 > F9UXY +2 Y N FORX 7+ Y FPUPIPP,
i,j=1 i,j=1k=1 i,j=N'+1
. o o (54)
+2 ) FPURY 42 Y Y FPONPRZ+2) FUNYZ,
i=N'+1 i=N'+1J=1 i=1
N N N
FFSY? 4 N P 7,42y Y PO,
i,j=1 4,j=1 g=N"+1
where functions F¥"* ... are evaluated at (Ao, po,uo, zo) with Ay = ( qu l;g ),

ap € Sé\/[ "+ and ag = ag ! on (A'R)*.

Lemma 3.3. For any fized xg € (2, 0 e SN/_l and Ay = ( (C)L% 1670 ) € Sé\,[’@
o Co

with (Ao, po, uo, zo) = 0, T'% is locally convex at (( %0 8 ),pg,u(xo),(),) if and
only if
QH(X.X) =0 (55)
for every X = (Xij), (P).Y,(Zy)) € SN x RY xR x6'R satisfying
< X, X3(Ao, po, uo, x9) >= 0.
Condition (56) is weaker than condition (47) by Lemma 3.2 and Lemma 3.3.
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Proof. Note that the matrix a may not be invertible. But the same computations
in the proof of Lemma 3.2 can be carried out without difficult. We may assume

’

0 =€) = (1,0,---,0). In this case, all X;; = X;; = X;; = X;1 = 0 for all

j=1--- /N " Therefore, we can still perform corresponding inversions in the
proof of Lemma 3.2. Also notice that Z; = Z; =0 for all j = 2,--- ,Nl, because
we restrict 2 variable in 'R = R!. O

Theorem 3.4. The same conclusion in Theorem 3.1 is true if condition (47) is

replaced by the following structural condition: for any fived x¢ € €2, 9 €SN ! and

A= (g2 M) €SN withag € S ag =g on (FR),
bo CO 0 0

if F(Ag,po,uo, o) = 0 then T'% is locally conver at (( %0 8 ),pg,uo,O/). (56)

Notice that u is automatically in C*' by the assumptions of F and u in Theorem
3.4. As in section 2, let W(z) = (VZu(z)) '« x+ and | = mingeq rankW (). Since
I =N is of full rank, only [ < N’ —1is of interest. And this will be assume in the
rest of the proof. Suppose zy € €2 is a point where W is of minimal rank [.

For each zp € Q2 where W is of minimal rank /. Pick an open neighborhood
O of z, for any x € O, let A\i(z) < Aa(x)... < Ay’ (x) be the eigenvalues of
W at z. There is a positive constant C' > 0 depending only on |lul|cz.1, W(zo)
and O, such that Ay (z) > Ay (2)... > Ayr_yyq(x) > C for all 2z € O. Let
G={N —14+1,N —1+2,..,N'}and B={1,..., N —1} be the “good” and “bad”
sets of indices respectively. Let Ag = (Ay/_j4q;-) /\/N) be the “good” eigenvalues
of W at x and Ap = (A1, ..., A\ys_;) be the “bad” eigenvalues of W at z. For the
simplicity, write G = Ag, B = Ap if there is no confusion. Note that for any § > 0,
we may choose O small enough such that \;(z) < § for all i € B and x € O. Use
notation h = O(f) if |h(z)| < Cf(x) for x € O with the positive constant C' under
control. It is clear that A\; = O(¢) for all i € B.

For € > 0 sufficient small, define

0142 (We)
Ol+1 (We) ’

where W, = W + eI. We will also denote

2(W) = ¢ (W) = 0111 (We) + (W), (57)

Ge= A1 T6n Ay +6), Be=(A+e.., Ay +e).

As in section 2, we will drop subindex € with the understanding that the estimates
we carry on will be independent of €. In this setting, with O is small enough, there
is C' > 0 independent of € such that

o+1(W(z)) > Ce, and o1(B(z)) > Ce, forallz € O. (58)
Similarly write h = O(f) if |h(z)| < Cf(x) for x € O with positive constant C

under control independent of e.

Theorem 3.4 is a direct consequence of Lemma 3.3 and the following proposition.
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Proposition 3. Suppose that the function F satisfies conditions (2) and (55) and
let w € C31(Q) be a partially convex solution of (1). If (V2u)y/y N altains its
minimum rank | at certain point xo € Q, then there exist a neighborhood O of xg
and a positive constant C' independent of ¢ (defined in (57)), such that

N
Y F¥ap(z) < C(g(x) + |Ve(a)]), vz €O (59)
a,B=1
In turn, (V2u) . is of constant rank | in O. Moreover, for each xo € O, there
exist a neighborhood U of xo and (N/ —1) fized directions Vy,--- Vo _, € RN/ such
that (V?u) o ' Vj =0 for all1 <j < N —1 and z € U.

Proof. The proof is similar to the proof of Proposition 2 in section 2. Following the
same arguments as in section 2, one deduces

N
> P
a,f=1
N
Sien ViaVie  2oijen iz Wijaljis
=0 Vuiil) — FoBeie 4,jEBiZ]
(¢+Z | u]') Z [ UB(B) + Ul(B) ]
i,jEB a,f=1 1
2 . .
o1 (Bli) — o2(Bli) o,
- Z[Ul(G) + O'% (B) ][ Z F Vnuiaﬁuiﬁ’n
ic€B a,B,v,n¢B
1 " (60)
+2 Z FoB Z Tuijauijﬁ +2 Z ( Z Faﬁ"pkuaﬁiuik
o.B¢B jea Y a,8¢B k=N'+1
N
+ Faﬁﬂuuiaﬁui + Faﬁ,miuiaﬁ) + Z Fpk7pluikuil
k,l=N'"+1
N
+20) 0 (PP tugus + PP Tiug) + P 4 2F™ %, + P70,
kE=N'+1
For each ¢ € B, set
« « 1
Ji = Z F ﬁ"'mumgumn—FQ Z F ﬁz ruijauijg
a.Byn¢B a.f¢B jea ™
N
+2 > FPPruggiuig + FOP uiggu; + FOP " ui0p)
a,f¢B k=N'+1 (61)
N N
+ Z FPRPly g + 2 Z (FPE Y ugu; + FPo %)
k,l=N'"+1 k=N'+1
+ FUUy? + 2F "%y, 4 Fo0,
where functions F#77 ... are evaluated at (VZu(z), Vu(z),u(z), z). We now want

to make use of new structural condition (55) to control .J; in (61).
We may assume

i=1€B, 6 =(1,0---,0)=¢, and 6= (1,0---,0) = e;.
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By condition (2), and the assumption of F' and u (since O C ), there exists a
constant &y > 0 independent of the lower bound of V?u and ¢, such that

(FP) > 601, Yy € O. (62)
In particular, FVY > . For any § > 0 small enough, set
0 0
(uji(2)) (i (2))}_n' 41

So, /L; S Si\,[@ and
1

As = V2u(z) = 000+ ¢), F(As, Vu(z),u(z),z) = 06 + ¢).

If O is sufficient small around the minimal rank point xg and choose § > 0 small
enough, (62) and the mean value theorem imply that there is [As| < C(d + ¢),

0 0
0 Xs

where 0 is the (N — 1) x (N — 1) zero matrix.
Differentiate (1) in x1, together with (63),

As = As + ( ) eSO P45, Vu(2), u(2),2) = 0. (63)

N
Y FPugprit Y FPlug o Flug + F7 = g;
«,p¢B k=N'+1

where FP F¥ etc. are evaluated at (As, Vu(z),u(z), 2), and
g=00@+¢+ ) [Vuyl).
ijeB
Set
Xy = A
NN — ulNN FNN7
Xap=0,Vae€ B; X,3=1uqp1, otherwise;
Po=wn, N +1<k<N, Y=u, Zx=0u,"k
again, FN~N is evaluated at (As, Vu(z),u(z), z).
Thus X = (Xag), (P).Y,Z1,--- ,Zy) € FJX;(A(;,VU(Z),U(Z),Z). Conditions
(55) and (63) imply (by letting § — 0)
i,jEB

o2 (Bli)—0»(Bli)
o 20

Since C' > 0;(G) +
Y F%ap <Co+ Y |Vuyyl)
a,f i,j€B

(65)

_ Z FQB(EieB ViaVig n Zi7j637i¢j Uijatjip ).
Z o4 (B) 71 (B)

The term 3, ;g [Vuij| in (65) can be controlled in the same way as in [2] and
section 2, we won’t repeat it here. O
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Remark 2. Since N > 1, we don’t need the extra assumption (9) in Theorem
3.1. On the other hand, the structural condition (47) is much stronger than (10).
In the sense, Theorem 3.1 is not as useful as Theorem 1.2. The partial convexity
of solutions to fully nonlinear equations in the form (1) has significant geometric
implications. In particular, it is important to understand this property for solutions

of Monge-Ampere type equations.

A parabolic version of Theorem 3.4 can be proved for the equation in the form

uy = F(VZu, Vu,u, z,t).
In this case, the structural condition is: for each fixed p’, zo, bo, co and t > 0,
d bO + db ’ / "
F(( bg + (db)T co+c+ vTab )7pau733 + Io,xo,t)
b

c )ap”,u,xl) GSéV@XRN xRx0'R, with&ESéY o

1s locally convex in (( b%"

=a' on (IR)*.

Q>
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