Problem 1 [10], Let G consist of all 3×3 matrices which have 1 along the diagonal and zero below and Γ the matrices in G with integer entries. Show that Γ is a closed discrete subgroup and G/Γ is a compact Hausdorff space.

Problem 2 [10], Let U be an open set in \mathbb{R}^n , suppose a vector $X_p \in T_p(\mathbb{R}^n)$ is given at each $p \in U$. Show that this defines a C^{∞} vector field if and only if for each $f \in C^{\infty}(U)$, $Xf \in C^{\infty}(U)$.

Problem 3 [10], Define a C^{∞} structure of a manifold on T(M) in such a manner that for each coordinate system (U, ϕ) on M, with local coordinates (x_1, \dots, x_n) and frames E_1, \dots, E_n , the set $\tilde{U} = \pi^{-1}(U)$ with mapping $\tilde{\phi} : \mathbb{R}^n \times \mathbb{R}^n \to \tilde{U}$ defined as follows is a coordinate neighborhood: For $p \in U, X_p \in \tilde{U}$, we suppose $X_p = \sum_{i=1}^n a_i E_i(p)$ and define

$$\tilde{\phi}(X_p) = (x_1(p), \dots, x_n(p); a_1, \dots, a_n) = (\phi(p); a_1, \dots, a_n).$$

Problem 4 [10], Using problem 3, show that the C^{∞} -vector fields on M correspond precisely to the C^{∞} mappings $X: M \to T(M)$ satisfying $\pi \circ X = i_M$, the identity map on M.

Problem 5 [10], Let $N \subset M$ be a regular submanifold and (U, ϕ) be a preferred coordinate neighborhood relative to N with local coordinates (x_1, \dots, x_m) and frames (E_l, \dots, E_m) . If $N \cap U$ is given by $x^{n+1} = \dots = x^m = 0$, show that E_l, \dots, E_n , is a basis of $T_p(N)$ for every $P \in N \cap U$.

Problem 6 [10], Suppose that a C^{∞} action θ of $\mathbb{R} \times M$, $M = \mathbb{R}^2$ has infinitesimal generator $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ on M. Determine θ .

Problem 7 [10], Let $M = Gl(2, \mathbb{R})$ and define an action of \mathbb{R} on M by the formula

$$\theta(t,A) = \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right) \cdot A, \quad \forall A \in Gl(2,\mathbb{R}),$$

with the dot denoting matrix multiplication. Find the infinitesimal generator.

Problem 8 [10], Prove that if A is a nonsingular $n \times n$ matrix and X is a $n \times n$ matrix, then $Ae^XA^{-1} = e^{AXA^{-1}}$. From this deduce that $\det e^X = e^{tr(X)}$. Use this to determine those matrices A such that e^{tA} is a one-parameter subgroup of $Sl(n, \mathbb{R})$.

Problem 9 [10], Let $M = \mathbb{R}^2$, the *xy*-plane, and $X = y(\frac{\partial}{\partial x}) - x(\frac{\partial}{\partial y})$. Find the maximal domain W and the one-parameter group $\theta: W \to M$.

Problem 10. [10] Suppose θ is a local one-parameter group with maximal domain W and infinitesmal generator X acting on C^{∞} manifold M. For $p \in M$, denote I(p) the set $\alpha(p) < t < \beta(p)$ of all real numbers t such that (t,p) is in W. Show that if I(p) is a bounded interval, then the integral curve is a closed subset of M. And show that $t \to \theta(t,p)$ is an imbedding of I(p) in M.